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"AB.LEMENDELEEV'S PERIODIC OF THE ELEMENTS

., .. Groups of Elements

~
..
...

VI VII VIII"
.. I II III IV Vc. CIJ

I H 2 He
1 1 Hydrogen Helium

1.00797 4.00260

Li 3 Be 4 5 B 6 C 1 N I 8 0 9 F 10 Ne
2 2 Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon

6.94 9.01218 10.81 12.01 14.0067 15.9994 18.9984 20.179

Na 11 Mg 12 13 Al 14 Si 15 P 16 S 17 CI 18 Ar
3 3 Sodium Magnesium Aluminium Silicon Phosphorus Sulphur Chlorine Argon

22.98977 24.305 26.9815 28.086 30.97376 32.06 35.453 39.948

K 19 Ca 20 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28

4 Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel

39.098 40.08 44.9559 47.90 50.9414 51.996 54.9380 55.847 58.9332 58.70

" Cu Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr29 30

5 Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

63.546 65.38 69.72 72.59 74.9216 78.96 79.904 83.80

Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 R\l 44- Rh 45 Pd 46
...'t.

6 Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium

5
85.4673 87.62 88.9059 91.22 92.9064 95.94 98.9062 101.07 102.9055 106.4

47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe
7 Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

107.868 112.40 114.82 118.69 121.75 127.66 126.9045 131.30

Cs 55 Ba 56 La* 57 *' Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78-8 Cesium Barium Lanthanum
r-.

Hafnium Tantalum Tungsten Rhenium Osmium Iridium PlatinumI
00

132.9054 137.34 J38.9055 It') 178.49 180.9479 183.85 186.207 190.2 192.22 195.09
6

79 Au 80 Hg 81 TI 82 Pb 83 Bi 84 Po 85 At 86 Rn
9 Gold Mercury Thallium Lead Bismuth . Polonium Astatine Radon

196.9665 200.59 204.37 207.2 208.9804 (209] [21 01 [2221

Fr 87 Ra 88 Ac 89 *' Ku 104 105
~

7 10
0

Francium Radium Actinium - KurchatoviumI

[223} 226.0254 (227] 0 (261]Ol

* LANTHANI DES

C(e 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 Er 68 Tm 69 Yb 70 Lu 71
Cerium Praseod ymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium
14012 140.9077 144.24 [145] 150.4 151.96 157.25 158.9254 162.50 164.9304 167.26 168.9342 173.04 174.97

** ACTINI DES
Th 90 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 (No) 102 Lr 103
Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium (Nobelium) ~awrencium
232.0381 231.0359 238.02 237.0482 [244] [243] [247J [247J [251) [254J [257J [2581 (2551 [256J
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PREFACE TO THE ENGLISH EDITION

This book is intended primarily for students taking general courses
in atomic and nuclear physics. It contains, however, a sufficiently
large number of problems lying beyond the general course to make
it also useful in the study of some special courses.

The volume contains over 1000 problems. The solutions of the
most complicated of them are provided with detailed explanation.
A brief summary of the basic terms and definitions at the beginning
of each chapter also makes the solving easier. The fundamental
physical constants and reference tables and graphs are given in the
Appendix. Both the Periodic Table of the elements and the table of
elementary particles are also provided.

The Gaussian sysJ.em of units is employed throughout the book.
All initial data and numerical answers are given with due regard
for the accuracy of appropria.te values and the rules of operation
with approximate numbers.

In conclusion, the author takes pleasure in expressing his deep
appreciation to his colleagues from the Moscow Engineering Physics
Institute and all those who submitted their comments on certain
problems and thereby contributed to the improvement of the book.

I. Irodov~



NOTATION

Vectors are designated in boldfaced Roman type, e.g., v, H; the
same letters printed in lightfaced Italic type (v, H) denote the modu­
lus of a vector.

Mean quantities are denoted by French quotes ( ), e.g., (A), (x).
The terms Land C frame designate the laboratory frame of reference

and the frame of the centre of inertia respectively. All quantities in
the C frame are marked with the'" (tilde) sign over a letter, e.g.,
p, E.

Energy: T kinetic, U potential, and E total.
Bp is the product of the magnetic field and the radius of curvature

of a particle's trajectory.

Wave numbers: spectroscopic v= 1/1.,
adopted in theory k = 2n/A,
where A is the wavelength.

All operators (with the exception of coordinates and functions of

coordinates only) are marked with the sign" A " over a letter, e.g.,
.. A

A, Px'
The designations of antihyperons indicate the sign of the electric

charge of antihyperons themselves, not of the corresponding hy­
perons.
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• The radiant exitance llJ is related to the volume density u of thermal radi­
ation as

• Relation between the total energy E and the momentum p of a relativistic
particle with rest mass m:

E2 = p2e2 + m 2e4 • (1.5).

• The Compton change in wavelength of a scattered photon:
~A = 4nA sin2 (1'}/2); .\ = nlme, (1.6)

where A is the Compton wavelength of a particle with rest mass m.

t
QUANTUM NATURE
OF ELECTROMAGNETIC RADIATION

(1.4)

(1.1)c
lIJ=T u.

THERMAL RADIATION

1.1. Demonstrate that Wien's formula permits one to calculate­
the energy distribution curve U1 (w) for thermal radiation at the
temperature T1 , if the distribution U 2 (w) at the temperature T 2

is known.
1.2. Using Wien's formula demonstrate that: (a) the most prob­

able radiation frequency Wpr ex: T; (b) the radiant exitance M ex: T4
(the Stefan-Boltzmann law). .

1.3. Using Wien's formula demonstrate that in the thermal radia­
tion energy distribution over wavelengths: (a) the most probable'
wavelength Apr ex: 11T (Wien's displacement law); (b) the maximum
spectral density of radiation energy (u'.)max ex: T5.

1.4. The initial temperature of thermal radiation is equal to­
2000 K. By how many degrees does this temperature change when
the most probable wavelength of its spectrum increases by 0.25 !-tm r

9,

• Wien's formula and Wien's displacement law
U w = w3f (wiT); AprT = b, (1.2)~

where w is the radiation frequency, S-l; T is the absolute temperature; Apr is
the most probable wavelength in the radiation spectrum; b is a constant.
• Stefan-Boltzmann law (for blackbody radiation):

M = aT4. (1.3)

• Planck's formula for the spectral concentration of radiant exitance:
,,' nw3 1

u w = n 2c3 • ehWjkT -1 .
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1.5. Find the most probable wavelength in the spectrum of thermal
l'adiation with the radiant exitance 5.7 W/cm2 •

1.6. The solar radiation spectrum resembles that of a black body
with Apr = 0.48 /lm. Find the thermal radiation power of the Sun.
Evaluate the time interval during which the mass of the Sun dimin­
ishes by 1 % (due to thermal radiation). The mass of the Sun is
equal to 2.0.1030 kg and its radius is 7.0.108 m.

1.7. There are two cavities 1 and 2 with small holes of equal radii
r = 0.50 cm and perfectly reflecting outer surfaces. The cavities
are oriented so that the holes face each other and the distance be­
tween them is R = 10.0 cm. A constant temperature T1 = 1700 K
is maintained in cavity 1. Calculate the steady-state temperature
inside cavity 2.

1.8. Considering that the thermal radiation pressure p = u13,
where u is the volume density of radiation energy, find: (a) the pres­
sure of thermal radiation from the Sun's interior, where the tem­
perature is about 1.6.106 K; (b) the temperature of totally ionized
hydrogen plasma of density 0.10 g/cm3 , at which the thermal radia­
tion pressure is equal to the gas pressure of plasma's particles.
(At high temperatures substances obey the equation of state for the
ideal gas.)

1.9. A copper sphere of radius r = 1.00 cm with perfectly black
surface is placed in an evacuated vessel whose walls are cooled down
to the temperature close to 0 K. The initial temperature of the sphere
is To = 300 K. How soon will its temperature decrease n = 1.50
times? The heat capacity of copper is e = 0.38 Jig· K.

1.10. Wien proposed the following formula to describe the energy
.distribution in the thermal radiation spectrum: u Ul = A U>3e- OUl / T ,

where a=7.64·10-12 s·K/rad. Using this formula, find for T=
= 2000 K: (a) the most probable radiation frequency; (b) the
mean radiation frequency.

1.11. Using the formula of the foregoing problem, find in the
thermal radiation energy distribution over wavelengths at the
temperature T = 2000 K: (a) the most probable wavelength; (b) the
mean' wavelength.

1.12. A piece of copper located in a closed cavity is in equilibrium
with its radiation. The system's temperature is T = 300 K. Resort­
ing to Dulong and Petit's law, fmd the ratio of the volume density
of vibration energy of copper to that of radiation energy. .

1.13. The thermal radiation filling up a certain cavity can be
treated as a set of oscillators, that is, natural oscillations with differ­
ent frequencies. Find the mean energy of the oscillator with frequency
U> and the volume density of energy within the interval (U>, U> + dU»,

r assuming the energy e of each oscillator to take on: (a) any value
{continuous spectrum); (b) only discrete values nnU> where n is an
integer. '

The energies of the oscillators are supposed to be distributed ac­
cording to Boltzmann's formula N (e) ex: e-e/kT.

-10

1.14. Derive the approximate expressions of Planck's formula for
the extreme cases nU> « leT and nU> » leT.

1.15. Transform Planck's formula to obtain the distribution over:
(a) linear frequencies; (b) wavelengths.

1.16. In what wavelength interval does Wien's formula taken
in the form u Ul = (/1u> 2/Jt 2e3 ) e-/,ul/hJ describe the energy distribution
to an accuracy better than 1.0 % at the temperature T = 2000 K?

1.17. Using Planck's formula, calculate: (a) by what factor the
spectral density of radiation with wavelength A = 0.60 /lm increases
when the temperature T grows from 2000 to 2300 K; (b) the radiation
power emitted from a unit ared of the black body surface in the
interval of wavelengths whose values differ less than 0.50 % from the
most probable value at T = 2000 K.

1.18. Using Planck's formula, find the numerical values of:
(a) the Stefan-Boltzmann constant; (b) the constant b in Wien's
displacement law.

1.19. From Planck's formula determine: (a) the mean frequency
value U> in the thermal radiation spectrum at T = 2000 K; (b) the
temperature of thermal radiation whose mean wavelength is equal
to 2.67 [lm.

CORPUSCULAR THEORY

1.20. l\Iaking use of Planck's formula, obtain: (a) the expression
giving the number of phot'ons per 1 cm3 within spectral intervals
(U>, U> + du» and (A, A dA); (h) the total number of photons per
1 cm3 at the temperature T = 300 K .

1.21. Using Planck's formula, calculate: (a) the most probable
energy of photons; (b) the mean energy of photons at T = 1000 K.

1.22. Demonstrate that the number of thermal radiation photons
falling on a unit area of cavity's wall per unit time is equal to nel4,
where e is the velocity of light and 1l is the number of photons in
a unit volume. See that the product of this value and the mean energy
of the photon is equal to the radiant exitance.

1.23. Find the photon flux density at the distance 1.0 m from a
point light source 1.0 W in power, if light: (a) is monochromatic
with a wavelength of 0.50 /lm; (h) contains two spectral lines with
wavelengths of 0.70 and 0.40 /lDl whose intensities relate as 1:2.

1.24. The wavelengths of photons are equal to 0.50 /lm, 2.5 X
X 10-8 em, and 0.020 A. Calculate their momenta in units of eV Ie,

where e is the velocity of light.
1.25. On the basis of the corpuscular theory demonstrate that the

momentum transferred by the plane luminous flux (j) is independent
of its spectral composition.

1.26. A laser emits a light pulse of duration T = 0.13 ms and
energy E = 10 J in the shape of a narrow beam. Find the pressure,
averaged over the pulse duration, that such a beam would develop
when it is focused into a stop of diameter d = 10 /lm on a surface

11



with reflectance p = 0.50. The beam falls at right angles to the
surface.

1.27. A short light pulse with energy E = 7.5 J falls in the form
of a narrow beam on a mirror plate whose reflectance is p = 0.60.
The angle of incidence is 8 = 30°. Find the momentum transferred
to the plate.

1.28. From the concepts of the corpuscular theory find the force
of light pressure that a plane luminous flux of intensity J W/cmz
exerts, when it illuminates: (a) a flat mirror surface at the incidence
angle 8; (b) a mirror hemisphere; (c) a flat perfectly matted surface
at right angles.

In all cases the area of illuminated surface is equal to Sand
reflectance to unity.

1.29. A point light source of power N = 60 W is located above the
centre of a round perfectly mirror plate whose radius is r = 10 cm.
The distance between the plate and the source is equal to l = 10 cm.
Emplo~ing the concepts of the corpuscular theory, find the force
that lIght exerts on the plate. Consider the cases r ~ land
r ~ l.

1.30. On the basis of the corpuscular theory demonstrate that
the thermal radiation pressure p = u/3, where u is the volume
density of radiation energy.

1.31. An atom moving with velocity v (v ~ c) emits a photon
at the angle {} to its motion direction. Using the conservation laws
find the relative magnitude of the Doppler shift in the frequency of
the photon.

1.32. A photon is emitted from the surface of a star whose mass
is JvI and radius R. Assuming the photon to possess a mass. with its
intrinsic gravitational properties, find the relative decrease in the
photon's energy at a great distance from the star. Calculate the
gravitational wavelength shift (!'1A/'A) of the radiation emitted from
the surface of: (a) the Sun (iVi = 2.0.1030 kg, R = 7.0.108 m);
(b) a neutron star whose mass equals that of the Sun and whose mean
density is 1.0.1014 times that of the Sun.

1.~3. Explain the existence of the short-wave limit in the X-ray
contlllUOUS spectrum. Calculate the magnitude of the constant C
in the relation Amin = C/V, if A is expressed in A and V in kV.

1.34. Find the wavelength of the short-wave limit of the X-ray
continuous spectrum, if it is known that it shifts by 0.50 A when the
voltage applied to an X-ray tube increases 2.0 times.

1.35. A narrow X-ray beam falls on a NaCI single crystal. The
least grazing angle at which the mirror reflection from the natural
~ace of the cr~stal is still ob~erved is equal to 4.1°. The corresponding
lllt,oerplanar dIstance is 2.81 A. How high is the voltage applied to the
X-ray tube?

1.36. Calculate the velocity of electrons flying up to the target
cathode of an X-ray tube, if the wavelength of the short-wave limit
of the X-ray continuous spectrum is Amin = 0.157 A.
12

1.37. With a thin metal foil used as a target cathode of an X-ray
tube the spectral ~istribution of bremsstrahlung has the form! '" =
= 10-5PZ/A2 W /A where P is the tube current power, W; Z IS the
atomic number of t'he element used as the target; A is the radiation
wavelength, A. .

(a) Draw the approximate graphs of the functlO~sJ", (A) and ~ "' (ro).
(b) Calculate the tube effIciency, if the applIed v?ltage IS V =

= 80 kV and the target cathode is made of golden fOIl.
1.38. Find the most probable wavelength of bremsstrahlung wit~

spectral distribution of the form J w ex (romax - ro), .where romax IS
the limit frequency of the spectrum. The voltage applIed to the tube
is equal to 31 kV.

1.39. Using the tables of the Appendix, calculate: (~) the photo­
Blectric threshold wavelengths for Cs and Pt; (b) the hIghest veloc­
ities of electrons liberated from the surface of zinc, silver, and nickel
by light of the wavelength 0.270 fIm.

1.40. Up to what maximum potential will a copper ball, remote
from all other bodies, be charged when illuminated by light of the
wavelength 0.20 fIm? ., .

1.41. At a certain maximum value of retardlllg potentIal dIfference
the photoelectric current from lithium surface illuminated b~ light
of wavelength Ao clJts off. The increase in the wavelength of lIght ?y
a factor of n = 1.5 results in the increase of the cut-off potentIal
difference by a factor of lJ = 2.0. Calculate Ao• .

1.42. Find the maximum kinetic energy of photoelectrons llberated
from the surface of lithium by electromagnetic radiation whose elec­
tric component varies with time as E = a (1 + cos rot) cos root,
where a is a constant, ro = 6.0.1014 s-\ roo = 3.60.1015 S-l. .

1.43. There is a vacuum photocell one of whose electrodes IS
made of cesium and the other of copper. The electrodes are shorted
outside the cell. The cesium electrode
is illuminated by monochromatic light.
Find: (a) the wavelength of light at
which the current appears in the cell's
circuit; (b) the highest velocity of photo­
electrons approaching the copper elec­
trode, if the wavelength of light is
equal to 0.220 fIm.

1.44. A photoelectric current emer­
ging in the circuit of a photocell when
its zinc electrode is illuminated by Fig. 1
light of wavelength 2620 A is can-. .,
celled if the external retarding potential dIfference 1.5 V IS applIed.
Find the magnitude and polarity of the contact potential difference
of the given photocell. .

1.45. A nickel sphere serving as an inner electrode of a sphencal
vacuum photocell is illuminated by monochromatic light .of various
wavelengths. Figure 1 illustrates how the photoelectnc current

13



~7 F· d the energy of an incident photon that is scattered at
1.;) '1 ~~ _ 600 by a stationary free electron and transfers to the

the ang ev - .
latter a kinetic energy T = 0.450 MeV. . .

- A hoton with energy fz(f) = 1.00 MeV IS scatt,ered by a
1.:J8. l I ctron Find the kinetic energy of the recoIl electron,

~ta~ionhary ree e eof sc~ttering the photon's wavelength changes by
If m t e process

11 1-~') o/AJter collision with a relativistic electron a ~hoton was
.:J . d t angle of 60° while the electron stopped. Fmd: (a) the

scattere a an h (h) h k· t·
h ·ft· wavelength of the scattered p oton; t e me IC

Compton s 1 m II·· ·f th fthat the electron possessed prior to co ISlOn, 1 e energy 0

~~:r~lriking photon is equal to the rest energy of an electron.
1 60 E l·n the following features of the Compton effect emerg­

. . '. xdP.atI. n of a substance by monochromatic X-rays: (a) the
Ina on Irra Ia 10 ffi· I hid·'" . h'ft uation can be verified when su Clent y arc ra 13-
C.omp.t0n s 1. ~q the magnitude of the shift is independent of the
tlOn IS ~St~d, (~stance. (e) the presence of the non-shifted compo~ent
~atuhre 0 tIe SIdI adI·ati~n. (d) the increase in intensity of the shIfted
m t e scat ere 1', . b f th b

t f the scattered light as the atomIC num er 0 e su -
componden 0 es and the scattering angle increases; (e) the broaden-
stance ecreas . h
ing of both components of the scattered hg 1.

Tz T

Fig. 2

o

depends on the applied voltage V. Using these graphs, find the cor-
responding wavelengths. 0

1.46. A photon with 'A = 0.170 A knocks out of a stationary atom
an electron whose binding energy is E = 69.3 keV. Find the momen­
tum transferred to the atom in this process, if the electron is ejected
at right angles to the direction of the incident photon.

1.47. Making use of the conservation laws, demonstrate that a
free electron cannot absorb a photon.

1.48. A photon of energy fz(f) is scattered at the angle 1t by a sta­
tionary free electron. Find: (a) the increment of wavelength of the
scattered photon; (h) the angle cp at which the recoil electron moves.

1.49. A photon with energy 0.46 MeV is scattered at the angle
1t = 120° by a stationary free electron. Find: (a) the energy of the
scattered photon; (h) the energy transferred to the electron.

1.50. A photon with momentum 60 keV/c, having experienced the
Compton scattering at the angle 120° by a stationary free electron,
knocks out of a Mo atom an electron whose binding energy is equal
to 20.0 keV. Find the kinetic energy
of the photoelectron.

1.51. On irradiation of a substance
by hard monochromatic X-rays the
highest kinetic energy of Compton
electrons was found to be Tmax =
'= 0.44 MeV. Determine the wavelength
of the incident radiation.

1.52. Figure 2 shows the energy
spectrum of electrons ejected from
a sample made of a light element, when it is exposed to hard
monochromatic X-ray radiation (T is the kinetic energy of the
electrons). Explain the character of the spectrum. Find the wave­
length of the incident radiation and T1 and T 2 , if T 2 - T1 =
. 180 keV.

1.53. A photon with energy 374 keV is scattered by a stationary
free electron. Find the angle between the directions in which the
recoil electron and scattered photon move. The Comp!on shift in
wavelength of the scattered photon is equal to 0.0120 A.

1.54. A photon is scattered by a stationary free electron. Find
the momentum of the incident photon if the energy of the scattered
photon is equal to the kinetic energy of the recoil electron with the
divergence angle of 90°.

1.55. At what angle is a gamma quantum with energy 0.80 MeV
scattered after collision with a stationary free electron, if the velocity
of the recoil electron is equal to O.60c?

,1.56. A photon with momentum 1.02 MeV/c is scattered by a
stationary free electron. Calculate the Compton shift in wavelength
of the scattered photon, if the recoil electron: (a) moves at the angle
30° to the direction of the incident photon; (b) obtains the momentum
0.51 MeV/c.

14
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• The angle {} at which a charged particle is scattered by the Coulomb field
-of a stationary atomic nucleus is defined by the formula

17

C
1""l

l
~-

angle dQ at an angle {} to their initial propagation direction ' ,.',""elementary solid
equals

2-0330

dN _ (q1q2) 2 dQ
~-n ---w- sin" (1'}/2) , (2.3)

where n is the number of nuclei per unit area of the foil surface, T is the kinetic
energy of the incoming particles, dQ = sin I'} d{} dcp .
• Generalized Balmer formula (Fig. 4)

W=R*Z2 (_1 1_); R*= [let (2.4)
ni n~ 211;; ,

where (j) is the transition frequency (in S·1) between energy levels with quantum
numbers n1 and n 2 , Z is the atomic number of atom (ion), R* is the Rydberg
constant, and [l is the reduced mass.
• Resonance line is a line resulting from the transition of atoms from the
first excited state to the ground one.

SCATTERING OF PARTICLES.
RUTHERFORD FORMULA

2.1. Employing the Thomson model, calculate: (a) the radius of
a hydrogen atom whose ionization energy is equal to 13.6 eV; (b) the
oscillation frequency of the electron if the radius of a hydrogen atom
is r. At what value of r is the wavelength of emitted light equal to
0.6 ""m?

2.2. To what minimum distance will an alpha-particle with
kinetic energy T = 40 keV approach, in the case of the head-on
collision: (a) a stationary Pb ,nucleus; (b) a stationary LF nucleus?

2.3. Using the laws of conservation of energy and angular momen­
tum, derive formula (2.1).

2.4. An alpha-particle with momentum 53 MeV Ie (e is the velocity
of light) is scattered at the angle 60° by the Coulomb field of a sta­
tionary uranium nucleus. Find the aiming parameter.

2.5. An alpha-particle with kinetic energy T strikes a stationary
Pb nucleus with the aiming parameter 0.90.10-11 em. Find: (a) the
modulus of the momentum vector increment of the scattered alpha­
particle if T = 2.3 MeV; (b) at what value of T the modulus of the
momentum vector increment of the scattered alpha-particle will
be the greatest for the given aiming parameter. What is the magni­
tude of the scattering angle in this case?

2.6. To what minimum distance will a proton with kinetic energy
T = 0.87 MeV approach a stationary Hg nucleus, if the scattering
angle is equal to {t = n12? Compare this distance with the corre­
sponding value of aiming parameter.

2.7. A non-relativistic particle of mass m and kinetic energy T
is elastically scattered by initially stationary nucleus of mass M.
Find the momentum of each particle and their combined kinetic
energy in the C frame.

2.8. Substantiate the construction of the vector diagram of momen­
ta shown in Fig. 3. Draw the similar diagrams for the cases m = M
and m> M.

(2.1)

Fig. 4
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RUTHERFORD-BOHR ATOM

where q1 and q2 are the charges of the interacting particles, T is the kinetic
energy of the incoming particle, b is the aiming parameter.

In the general case this expression is valid in the C frame as well, provided

that the substitution {} ~ {} and T ~ T is made, where ,fr and T are the scatter­
ing angle and the total kinetic energy
of interacting particles in the C frame: n

~ Vector diagram of momenta for elastic scattering on non-relativistic par­
trcle of mass m by an initially stationary particle of mass M is shown in Fig. 3.
In this figure Pm and P;" denote the momenta of the incoming particle before and
after scattering, PM is the momentum of the recoil particle, 0 is the centre of

a ~ircle whose radius equals the momentum; of particles in the C frame; the
POint 0 divide~ the line segment AC into two parts in the ratio AO : OC =

= m : M, and {} is the scattering angle of the incoming particle in the C frame•
• Rutherford formula. The relative number of particles scattered into an

Here [l is the reduced mass, Vrel is
the relative velocity of the particles, 2

and p is their momentum in the C
frame.

1



'1

HYDROGEN-LIKE ATOMS

. 2.2f\. Estimate the time interval during which an electron moving
m a hydrogen atom along an orbit of radius 0.5.10-8 em \vould have
~allen to the nucleus, if it had been losing energy through radiation
In .accordance with. classical theory: dE/dt = - (2e2/3c S ) w 2, where
W IS the acceleratIOn of the electron. The vector w is assumed
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.2.20.. Ca.lculate the cross-section of Au nucleus causing protons
WIth kllletIc energy T = 1.20 MeV to scatter through the angular
interval from -& = :n/3 to :n.

2.21. Alpha-particles with kinetic energy T = 1.70 MeV are
scattered by the Coulomb field of Pb nuclei. Calculate the differential
cross-sections of these nuclei, da/d-& and da/do., corresponding to
scattering through an angle -& = :n/2.

2.22. The differential cross-section of scattering of alpha-particles
by the Coulomb field of a stationary nucleus is equal to da/do. =
= 7.0.10-22 cm2/sr for an angle -&0 = 30°. Calculate the cross-section
of scattering of alpha-particles for the angles -& > -& •

2.23. Find the probability for an alpha-particle 0 with energy
!' = ~.O MeV.to be scattered after passing through a lead foil 1.5 /lm
In thIckness Into the angular interval (a) 59-61°; (b) 60-90°.

2.24. A nar~ow b.eam') of alpha-particles with kinetic energy
1.00 MeV and ~ntensIt~ 0.6.104 particles per second falls normally
on ~ golden fOIl of thIckness 1.0 /lm. Find the number of alpha­
partIcles scattered by the foil during 10 min into the angular interval
(a) 59-61°; (b) -& > -&() = 60°; (c) &< -&() = 10°.

2.25. A narrow beam of protons with kinetic energy T = 1.0 MeV
falls normal~y ~n a brass .foil whose mass thickness is p. d =
= 1.5 mg/cm . Fmd the fractIOn of the protons scattered through the
angles exceeding -&() *= 30° if the weight ratio
of copper to zinc in the foil is 7:3.

2.26. A narrow beam of alpha-particles of
equal energy falls normally on a lead foil
with mass thickness 2.2 mg/cm2 • The fraction
of the original flux scattered through angles
exceeding -& = 20° is equal to 11 = 1.6 ·10-s.
Find the differential cross-section da/do. of
a Pb nucleus corresponding to a scattering
angle -&0 = 60°.

2.27. A plane flux of alpha-particles with
kinetic energy T falls normally on a thin gold- Fig. 5
en foil cut i~ the shape of a flat ring (Fig. 5).
The flux denSIty of alpha-particles is equal to N particles per cm2

per second. The foil contains n nuclei per 1 cm 2 ~rea. Find N', the
number of alpha-particles reaching the screen near the point S per 1
second per 1 cm2area. The angles -&1 and -&2 are known, and scattering
through these angles obeys the Rutherford formula.

2*

2.9. A non-relativistic particle of mass m 1 and kinetic energy T
undergoes a head-on collision with initially stationary particle of
mass m 2 • Find the kinetic energy of the incoming particle after­
the collision.

2.10. Find the maximum value of the angle at which an alpha­
particle is scattered by an initially stationary deuteron.

2.11. A non-relativistic deuteron is elastically scattered by an
initially stationary H4 nucleus through the angle ~. Find this angle'

if in the C frame the corresponding angle is equal to ~ = 45°.
2.12. A deuteron with kinetic energy 15.0 keV and aiming param­

eter 0.60.10-10 cm is scattered by the Coulomb field of a stationary
He4 nucleus. Find the deuteron's scattering angle in the L frame.

2.13. A proton with the aiming parameter b = 2.5.10-11 cm
is elastically scattered at right angles by the Coulomb field of a
stationary deuteron. Find the relative velocity of the particles after
scattering.

2.14. As a result of elastic scattering of a proton with kinetic
energy T = 13.0 keY by the Coulomb field of a stationary He4

nucleus the latter recoils at an angle&' = 60° to the motion direction
of the incoming proton. Cakulate the aiming parameter.

2.15. An alpha-particle with kinetic energy T = 5.0 keY is
elastically scattered by the Coulomb field of a stationary deuteron.
Find the aiming parameter corresponding to the greatest possible
scattering angle of the alpha-particle in the L frame.

2.16. After scattering of an alpha-particle with kinetic energy
T = 29 keY by the Coulomb field of a stationary Li6 nucleus the
latter recoils at an angle -& = 45° to the motion direction of the
incoming particle. To what minimum distance do both particles
approach in the process of interaction?

2.17. A stationary sphere of radius R is irradiated with parallel
flux of particles of radius r. Assuming the collision of a particle with
the sphere to be perfectly elastic, find:

(a) the deflection angle -& of a particle as a function of its aiming
parameter b;

(b) the fraction of particles which after collision with the sphere
are scattered in the angular interval from -& to -& + d-&, and also the
probability of a particle being scattered into the front hemisphere
(-& < :n/2).

2.18. Using formula (2.1) derive the expressions for the relative
number of alpha-particle.::; scattered in the angular interval (-&, -& + d-&)
and for the corresponding cross-section of a nucleus.

2.19. A narrow beam of protons with kinetic energy 100 keY
falls normally on a golden foil of thickness 1.0 mg/cm 2• The protons
scattered through the angle 60° are registered by a counter with
round inlet of the area 1.0 cm2 located at the distance 10 em from
the scattering section of the foil and oriented normally to the motion
direction of incident protons. 'What fraction of the scattered protons
reaches the counter inlet?
18
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to be permanently directed toward the centre of the atom.
2.29. A particle of mass m moves along a circular orbit in the

central-symmetry potential field U = xr2/2. Using the Bohr quan­
tization condition, find the permissible orbital radii and energy levels
of the particle.

2.30. Calculate the ratio of the Coulomb and gravitational forces
acting between an electron and a nucleus in a hydrogen atom.

2.31. Assuming the nucleus to be stationary, calculate for a
hydrogen atom and He+ and Li++ ions: (a) the radii of the first and
second Bohr orbits and the velocities of an electron moving along
them; (b) the kinetic energy and binding energy of the electron in
the ground state; (c) the first excitation potential and wavelength of
resonance line.

2.32. Demonstrate that the photon frequency W corresponding
to the electronic transition between neighbouring orbits of hydrogen­
like ions satisfies the inequality W n > W > W n +lo where W n and
wn +1 are the circular frequencies of the electron moving along these
orbits. Make sure that W -+ Wn, if n -+ 00.

2.33. In the spectrum of some hydrogen-like ions the three lines
are known, which bel<}ng to the same series and have the wavelengths
992, 1085, and 1215 A. What other spectral lines can be predict­
ed?

2.34. Calculate and draw on the wavelength scale the spectral
intervals in which the Lyman, Balmer, and Paschen series for
atomic hydrogen are confined. Indicate the visible portion of the
spectrum.

2.35. (a) Calculate the wavelengths of the first three spectral
lines of the Balmer series for atomic hydrogen. (b) What is the
minimum number of slits needed for a diffraction grating to resolve
the first 30 lines of the Balmer series of atomic hydrogen in the second
order?

2.36. The emission spectrum of atomic hydrogen has two lines
of the Balmer series with wavelengths 4102 and 4861 A. To what
series does a spectral line belong, if its wave number is equal to the
difference of the wave numbers of the two lines? What is the magni­
tude of its wavelength?

2.37. Atomic hydrogen is excited to the nth energy level. Deter­
mine: (a) the wavelengths of emission lines if n = 4; to what series
do these lines belong? (b) how many lines does hydrogen emit when
n = 10?

2.38. What lines of the atomic hydrogen absorPotion spectrum
fall within the wavelength range from 945 to 1300 A?

2.39. Find the quantum number n corresponding to the excited
state of a hydrogen atom, if on transitionoto the ground state the
atom emitso: (a) a photon wit.h A = 972.5 A; (b) two photons with
Al = 6563 A and A2 = 1216 A.

2.40. What hydrogen-like ion has the difference of waveloengths
of the main lines of Balmer and Lyman series equal to 593 A?
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2.41. Find the binding energy of an electron in the ground state
of hydrogen-like ions in whose spectrum the third line of the Balmer
series is equal to 1085 A.

2.42. The binding energy of an electron in a He atom is equal to
Eo = 24.6 eV. Find the energy required to remove both electrons
from the atom.

2.43. Find th!,; velocity of electrons liberated by light with wave­
length A = 180 A from He+ ions in the ground state.

2.44. A photon emitted by He+ ion passing from the first excited
state down to the ground one ionizes a hydrogen atom in the around
state. Find the velocity of the photoelectron. b

2.45..At. wh~t mi~imum kinetic energy of a moving hydrogen
atom WIll Its melastlc head-on collision with another, stationary,
hydrogen atom produce a photon emitted by one of the atoms? Both
atoms are supposed to be in the ground state prior to the collision.

2.~6. Determine the velocity which a stationary hydrogen atom
obtams due to photon emission resulting from transition of the atom
from the first excited state down to the ground one. How much (in
p.e~ cent) does the energy of the emitted photon differ from the tran­
SItIOn energy?

2.47. When observed at the angle 45° to the motion direction a
beam of excited hydr.pgen atoms seems to radiate the resonance line
whose wavelength is shifted by 2.0 A. Find the velocity of the
hydrogen atoms.

2.48. A .He+ ion app~oac~ing a hydrogen atom emits a photon
correspondmg to the mam hne of the Balmer series. What must be
the minimum approach velocity to enable the photon to excite the
hydrogen atom from the ground state? Instruction: make use of the
precise formula for the Doppler effect.

2.49. Taking into ac~ount the motion of the nucleus in a hydrogen
atom, find the expreSSIOns for the electron's binding energy in the
ground state and for the Rydberg constant as a function of nuclear
mass. How m~ch (in per cent) ~o the binding energy and Rydberg
constant, obtamed when neglectmg the motion of the nucleus, differ
from the more accurate corresponding values of these quantities?

2.50. Calculate the proton to electron mass ratio if the ratio of
Rydberg constants for ~eavy an? light hydrogen is equal to 11 =
- 1.000272 and the ratIO of theIr nuclear masses is n = 2.00.

2.51. For atoms of light and heavy hydrogen find the difference:
(a) of the binding energies of their electrons in the ground state.
(b) of the first excitation potentials; (c) of the wavelengths of th~
resonance lines.

2.52. For a mesonic hydrogen atom (in which an electron is
replaced by a meson whose charge is the same and mass is 207 that
?f electron) calculate: (a) the distance between a meson and a nucleus
m the ground s.tat~; (b) the wavelength of the resonance line; (c) the
groun.d state bmdmg energies of the mesonic hydrogen atoms whose
nucleI are a proton and a deuteron.
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2.53. For a positronium consisting of an electron and a positron
revolving around their common centre of masses fmd: (a) the distance
between the particles in the ground state; (b) the ionization poten­
tial and first excitation potential; (c) the Rydberg constant and
wavelength of the resonance line.

2.54. According to the Bohr-Sommerfeld postulate the following
quantization rule has to be satisfied in the case of a particle moving
in a potential field:

3

WAVE PROPERTIES OF PARTICLES

• de Broglie relations for energy and momentum of a particle:

E = nUl; P = 1lk, (3.1)

where (U is the frequency of the de Broglie wave, and k = 2n/'A.
• Uncertainty principle

~,pq dq = 2:rrfi· n,

where q and PC[ are the generalized coordinate and projection of
generalized momentum (x, Px and <p, L z), n is an integer. Using this
rule, find the allowed energy values E for a particle of mass m moving:

(a) in a unidimensional rectangular potential well of width l
with infinitely high walls;

(b) in a unidimensional potential field U = %x
2/2, where % is a

positive constant;
(c) along the circle of permanent radius r;
(d) along a round orbit in a central field, where the potential

energy of the particle is equal to U = -air (a is a positive constant).

!1x·tJ,PX if: n.
• Schr6dinger equation in the time-dependent and

in a'¥ = _~ V2 '¥+U,¥'at 2m '
')

V21jJ+ -;~ (E-U) 1\-'=0,

(3.2)

time-independent form

(3.3)

(3.4)1: 2/ 9 dn _"21jJ (I:)=a (_1)n e - --- (e ~)
n t n d;n'

where '¥ is the total~ave function. 1jJ is its coordinate part. \72 is the Laplace
()perator, E and U are the total and potential energies of the particle .
• Energy eigenvalues and eigenfunctions of a particle of mass m in the unidi­
mensional potential field U (x) ~ xx2/2 (a harmonic oscillator with frequency
<U = Vx/m):

En = !Ht} (n+ ~);

where n=O. 1. 2, ... ; s=rxx: 0;= lfIllUl/h; an is the normalizing factor.

• Coefficient of transparency D of the potential barrier U (x):

X2

D~ exp [ --}.\ V2m(U-Eldx],
Xl

where Xl and X 2 are the coordinates of the points between which U > E.

(3.5)

DE BROGLIE WAVES.
UNCERTAINTY PRINCIPLE

3.1. Calculate the de Broglie wavelengths of an electron and
prbton moving with kinetic energy 1.00 keY. At what. values of
kinetic energy will their \vavelengths be equal to 1.00 A ?

3.2. The 200 eV increase in electron's energy changes its de
Broglie wavelength by a factor of two. Find the initial wavelength
of the electron.

3.3. Calculate the wavelength of hydrogen molecules moving with
the most probable velocity in gas at the temperature O°C.
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3.4. Determine the kinetic energy of a proton whose wavelength
is the same as that of an alpha-particle with Bp = 25 kG·cm.

3.5. What amount of energy should be added to an electron ,with
momentum 15.0 keY Ie to make its waveleI1gth equal to 0.50 A?

3.6. A proton with wavelength 'A = 0.017 A is elastically scattered
through the angle 90° by an initially stationary particle whose mass
is n = 4.0 times larger than the proton's. Find the wavelength of the
scattered proton.

3.7. A neutron with kinetic energy T = 0.25 eV collides elastical­
ly with a stationary HeJ nucleus. Find the wavelengths of both par­
ticles in the C frame before and after the collision.

3.8. Two atoms, HI and He4, move in the same direction, with
the same de Broglie wavelength 'A == 0.60 ;\ . Find the wavelengths of
both atoms in the C frame.

3.9. A relativistic particle with rest mass m possesses the kinetic
energy T. Find: (a) the de Broglie wavelength of the particle; (b) the
values of T at which the error in wavelength obtained from the non­
relativistic formula does not exceed 1.0 % for an electron and a pro­
ton.

3.10. At what value of kinetic energy is the de Broglie wavelength
of an electron equal to its Compton wavelength?

3.11. Find the wavelength of relativistic electrons reaching the
anticathode of an X-ray tube, if the short wa,;"elength limit of the
continuous X-ray spectrum is equal to 0.100 A.

3.12. Using Maxwell's distribution of velocities find the distri­
bution of molecules of gas over de Broglie wavelengths and the most
probable wavelength of hydrogen molecules at T = 300 K.

3.13. The velocity distribution function of atoms in a beam has
the form f (u) ,..., u 3e-u2 , where u is the ratio of the atom's velocity
in the beam to the most probable velocity vpr in the source
(vpr = -V2kT1m). Find the distribution function in terms of de
Broglie wavelengths. Calculate the most probable wavelength in the
beam of He atoms provided the source temperature is 300 K.

3.14. Determine the kinetic energy of electrons falling on a
diaphragm with two narrow slits, if on a screen located at a distance
I = 75 cm from the diaphragm the separations between neighbouring
maxima Ax and between the slits d are equal to 7.5 and 25 flm re­
spectively.

3.15. A narrow stream of monochromatic electrons falls at a
grazing angle 1'} = 30° on the natural facet of an aluminium single
crystal. The distance between I1eighbouring crystal planes parallel
to that facet is equal to d = 2.0 A. The maximum mirror reflection is
observed at a certain accelerating voltage Yo' Determine Vo if the next
maximum mirror reflection is observed when the accelerating volt­
age is increased 11 = 2.25 times.

3.16. A stream of electrons with kinetic energy T = 180 eV falls
normally on the surface of aNi single crystal. The reflecting maxi­
mum of fourth order is observed in the direction forming an angle
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ex, = 55° with the normal of the surface. Calculate the interplanar
distance corresponding to that reflection.

3.17. A stream of electrons with kinetic energy T = to keY
passes through a thin polycrystalline foil forming a system of diffrac­
tion fringes on a screen located at a distance I = 10.0 cm from the
foil. Find the interplanar distance that is responsible for the reflec­
tion of third order forming a diffraction ring of radius r = 1.G cm.

3.18. A stream of electrons accelerated through the potential
difference V falls on a surface of nickel whose inner potentiill is
Vi = 15 V. Calculate: (a) the refractive index of nickel when l' =
= 150 V; (b) the values of the ratio VlV i at which the refractive
index differs from unity by not more than 1.0 %.

3.19. \tVith allowance made for refraction of electron waves.
Bragg's formula takes the form

2d -Vn2 - cos {t2 = k'A,

where d is the interplanar distance, n is the refractive index, {t is the
grazing angle, k is the reflection order, 'A is the wavelength of the
electrons.

(a) Derive this formula, assuming the reflecting planes to be
parallel to the surfa5(8 of the single crystal.

(b) Find the inner potential of an Ag single crystal, if a stream of
electrons accelerated through a potential difference V = 85 V forms
a maximum of second 9rder due to the mirror reflection from crystal
planes with d = 2.04 A. The grazing angle is {t = 30°.

3.20. A particle of mass m moves in a unidimensional square­
potential well with infinitely high walls. The width of the well is
equal to I. Find the allowed energy values of the particle taking into
account that only those states are realized for which the whole­
number of de Broglie half-wavelengths are fitted within the well.

3.21. Describe the Bohr quantum conditions in terms of the wave
theory: demonstrate that stationary Bohr orbits are those which
accommodate a whole number of de Brogl ie waves. Find the wave­
length of an electron in the nth orbit.

3.22. Assuming that the wave function 'If (x, t) describing a
moving particle represents a superposition of de Broglie waves of
equal amplitudes and slightly differing wave numbers k o + Ak:
(a) transform 'If (x, t) to the form 'I' (x, t) = A (x, t) ei (lVol-liox);

find the explicit expression for the function A (x, t); (b) derive the
expression describing the displacement velocity of the given group of
waves, i.e. for the maximum of the function A (x, t).

3.23. Demonstrate that the group velocity of a wave packet is
equal to the velocity of a freely moving particle. Consider both
non-relativistic and relativistic cases.

3.24. Demonstrate that a narrow slit of width b used in measure­
ments of x coordinates of particles introduces the uncertainty Apx
in their momenta, such that Ax·px "de n.

2:')

j,

I'



3.25. Make sure that the measurement of the x coordinate of a
:particle by means of a microscope (Fig. 6) introduces the uncertainty
/),.Px in its momentum, such that /),.x· /),.Px d fl. Remember that the
microscope resolution d = A/sin 1'1, where "A is the wavelength of
light used in the measurements.

3.26. A plane stream of particles falls normally on a diaphragm
with two narrow slits and forms a diffraction pattern on a screen
.(Fig. 7). Demonstrate that an attempt to determine through which

L
I
I

3.34. The kinetic energy of a free moving non-relativistic particle
is known with relative uncertaintv about 1.6.10-4

• Evaluate how
much the coordinate uncertainty ~f such a particle exceeds its de
Broglie wavelength.

3.35. A free electron was initially confllled within a region with
linear dimensions l = 10-8 cm. Evaluate the time interval during
which the width of the corresponding train of waves increases by
a factor of 'YJ = 102

•

3.36. A parallel stream of hydrogen atoms with velocity v =
= 1.2.103 m/s falls normally on a diaphragm with a narrow slit
behind which a screen is placed at a distance l = 1.0 m. Using the
uncertainty principle, evaluate the width of the slit at which the
width of its image on the screen is minimal.

3.37. Find the density of probability distribution for a particle
and effective dimensions of its localization region, if the state of the
particle is described by the wave function 1): (.1.) representing a super­
position of de Broglie waves whose amplitudes depend on wave
numbers k as follows:

(a) { a = const (in the interval k o + /),,1£, /),.k ~ 1£0);
ah = 0 (outside this interval);

(b) ah = e-a2 <\-;-h o)2,

where k o and a are constants.
3.38. Find the spectrum oi wave numbers k of de Broglie waves

whose superposition forms the \vave function:

( a) ,h ( ) = ( eihox (in the interval l> x > -I);
'r x L0 (outside this interval);

(b) 'Ij.; (x) = eikox--a2x2 ,

where ko and a are constants.
Estimate the wave number interval in which the amplitude of

individual de Broglie waves appreciably differs from zero.

SCHRODINGER EQUATION.
PENETRATION OF A PARTICLE THROUGH A BARRIER

3.39. What solutions of the Schr6dinger time-dependent equation
are called stationary? Demonstrate that such solutions are obtained
when U depends on time implicitly.

3.40. How will the total wave function 0/ (x, t) describing sta­
tionary states change, if the origin of potential energy scale is shifted
by the certain value /),.U?

3.41. Solve the Schr6dinger time-dependent equation for the case
of a free particle moving in the positive direction of the x axis with
momentum p.

3.42. Demonstrate that the energy of a free moving particle can
be of any magnitude.

Fig. 7
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Fig. 6
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~lit a specified particle passed (for example, by means of an indica­
tor I) results in blurring of the pattern. For simplicity the diffraction
angles are assumed to be small.

3.27. Estimate the minimum error of determining the velocity
of an electron, proton, and uranium atom, if their coordinates are
known with uncertainty 1 f.!m.

3.28. Evaluate the indeterminancy of the velocity of an electron
.in a hydrogen atom assuming the size of the atom to be about
10-8 em. Compare the obtained value with the velocity of an electron
in the first Bohr orbit.

3.29. Estimate for an electron localized in the region of size l:
(a) the lowest possible kinetic energy, if I = 1.0.10-8 em; (b) the
,relative velocity uncertainty /),.v/v, if its kinetic energy T ~ 10 eV
and I = 1.0 ~lm.

3.30. A particle is located in a unidimensional potential well of
width l with infinitely high walls. Evaluate the pressure exerted by
the particle on the walls of the well at the lowest possible value
E min of its energy.

3.31. A particle with mass m moves in a unidimensional potential
field U (x) = xx2/2 (a harmonic oscillator with frequency ffi =
= If x/m). Evaluate the lowest possible energy of this particle.

3.32. On the basis of the uncertainty principle evaluate the
electron's binding energy in the ground state of a hydrogen atom
and the corresponding distance between the electron and the nucleus.

3.33. Evaluate the lowest possible energy of electrons in a He
atom and the corresponding distance between the electrons and the
nucleus.
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sin kl = + V /12/2ml2Uokl, k = V2mE//1;

x

Fig. 10
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of l2U0 at which t~ energy of the particle in the ground state is
equal to E = U 0/2. What is the probability of the particle being
outside the well? (c) The vatue of l2U 0 at which the second level
appears. What is the energy of the ground state? (d) The value of
12U0 at which the nth level appears. How many discrete levels does
the given well contain, if l2U 0 = 75fz2/m?

3.49. A particle of mass m is located in a potential field shown
in Fig. 10, where U 1 < U 2 • Find: (a) the equation defining the
energy eigenvalue spectrum of the particle in the region E < U1 ;

reduce that equation to the form

kl . Ilk . 11k
= nn - arcsin ,; - arcSin f '

J! 2mUI 1 2mU2

where n = 1, 2, ... , k = V2mE/fz;
(b) the value of U1 at which the first discrete level appears, if

U2 = 2U1•

3.50. Using the Schrodinger equation, find the energy of a harmonic
oscillator of frequency w in the stationary state (a) 'IjJ (x) = Ae-a2x2 ;

(b) 'IjJ (x) = Bxe-a2x2
, where A, B and a are constants.

3.51. The Schrodinger equation for a harmonic oscillator of
frequency w can be reduced to the form'lH + ('A - £2) 'IjJ = 0, where
£ = ax, a is a constant, 'A is a parameter whose eigenvalues are equal
to 2n + 1 (n = 0, 1, 2, ... ). Find the oscillator's energy eigen­
values.

3.52. Making use of the formula given in the introduction to
Chapter 3, find for the first three levels of an oscillator of mass m
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3.48. A particle of mass m is located in a symmetrical potential
field (Fig. 9). Find: (a) The equation defining the energy eigenvalue
spectrum of the particle in the region E < U 0; reduce that equation
t.o the form

. 11k V2mE
kl = mt - 2 arCSlll I ; k = Ill 2mUo .

where n is an integer. Solving this equation by graphical means,
demonstrate that the energy eigenvalues are discrete. (b) The value

x

Fig. 8

o

i/

demonstrate by graphical means that the energy eigenvalues of the
particle form a discontinuous spectrum; (c) the values of l2U 0 at
which the first and nth discrete levels appear. What is the total
number' of levels in the well for which l2U 0 = 75/12/m? (d) The value
of l2U 0 at which the energy of the only level is equal to E = U0/2.
What are in this case the most probable coordinate of the particle
and probability of the particle being outside the classical boundaries
of the field? (e) The discrete energy levels of the particle, if l2U 0 =

(25/18)n 2/1 2/m.

3.43. A particle of mass m is located in a unidimensional square
potential well with absolutely impenetrable walls (0 < x < l).
Find: (a) the energy eigenvalues and normalized eigenfunctions of
the particle; (b) the probability of the particle with the lowest energy
staying within the region l/3 < x < 2l/3; (c) the number of energy
levels in the interval (E, E + dE).

3.44. A particle of mass m is located in a two-dimensional square
potential well with absolutely impenetrable walls (0 < x < a.
0< y < b). Find: (a) the energy eigenvalues and normalized eigen­
functions of the particle; (b) the probability of the particle with the
lowest energy staying within the region 0 < x < a/3, 0 < Y < b/3;
(c) the energy values of the first four levels, if a = b = l; (d) the
number of states that the particle possesses in the energy interval
(E, E + dE).

3.45. A particle of mass m is located in a three-dimensional square
potential well with absolutely impenetrable walls (0 < x < a.
0< y < b, 0 < z < c). Find: (a) the energy eigenvalues and nor­
malized eigenfunctions of the particle; (b) the energy difference
between the third and fourth levels, if
a = b = c = l; (c) the number of
states corresponding to the sixth level
(the degree of degeneracy), if a = b = c;
(d) the number of states in the energy
interval (E, E + dE).

3.46. Demonstrate that at the point,
where the potential energy U (x) of a
particle has a finite discontinuity, the
wave function remains smooth, Le. its
first derivative with respect to coordi­
nate is continuous.

3.47. A particle of mass m is lo­
cated in the unidimensional potential
field U (x) whose shape is shown in Fig. 8. Find: (a) the energy
eigenvalues of the particle in the region E > U 0; (b) the equation
describing the energy eigenvalues of the particle in the region E <
< U 0; transform it into the form
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(c) the transparency coefficient D for the case E < U o' Simplify'
the obtained expression for D « 1; (d) the probability of an electron
and proton with E = 5.0 eV tunnelling through that barrier, if
U o = 10.0 eV and I = 1.0.10-8 em.

3.59. Find the transparency coefficient of a potential barrier
sho\\ll in Fig. 14 for a particle of mass m and energy E. Consider

the two cases: (a) E > U2; (b) U2 > E > U3' See that the obtained
expressions coincide with the solutions of Problem 3.58, (a) and
(e), when U 3 = 0.

3.60. Using formula (3.5), find the probability of a particle of
mass m and energy 4,tunnelling through the potential barrier shown
in (a) Fig. 15; (b) Fig. 16, where U (x) = Uo (1 - x 2/l2 ).

3.61. A particle of mass m and energy E tunnels through a
barrier of the form

{
Oat x< 0;

U (x)=
Uo/(1+xla) at x>=O.

where Ua is the barrier height (Fig. 17), a is a positive constant.
Using formula (3.5), demonstrate that the transparency coefficient
of that barrier is equal to

D;;:;; e- X (et-2<P.-s!n 2<p.) ,

if E < Uo, with 'X = (aUo/h.) V2m/E, <:Po = arcsin VE/Uo' Sim­
plify the obtained formula for the case E « Uo'

Instruction. When integrating, introduce the new variable cp
according to the formula sin2 <:p = E/U (x).
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and frequency w: (a) the eigenfunctions and their normalization
coefficients; (b) the most probable values of the oscillation coordi­
nate x. Draw the approximate graphs of the probability density func­
tion for x values in these states.

3.53. A particle in the ground state is located in the unidimension­
al potential fi~ld U (x) ex: x2 • What is the probability of the particle
being outside the classical limits of the field?

3.54. Provided the eigenfunctions and energy eigenvalues of a
harmonic oscillator are known, find the energy eigenvalues of a
particle of mass m moving in the unidimensional potential field
U (x) = 'Xx2/2 at x > °and U = 00 at x :< 0.

3.55. A particle of mass m moves in a three-dimensional potential

field U (x, y, z) = ~ (x2 + y2 + Z2), where 'X is the quasi-elastic

force constant. Determine: (a) the particle's energy eigenvalues~

(b) the degree of degeneracy of the nth energy level.
Instruction. Use the formulas for a unidimensional oscillator.
3.56. A particle of mass m and energy E approaches a square

potential barrier (Fig. 11) from the left-hand side. Find: (a) the

coefficients of reflection R and transparency D of the barrier for the
case E > U o' Make sure that the values of these coefficients do not
vary with the direction of incident particles; (b) the reflection coef­
ficient R, if E < Uo' For this case determine the effective penetra­
tion depth Xeff, i.e. the distance from the barrier boundary to the
point at which the probability of finding a particle decreases e-fold.
Calculate Xeff for an electron, if U 0 - E = 1.0 eV.

3.57. A particle of mass m and energy E approaches a square
potential well (Fig. 12). Find: (a) the coefficients of transparency D
and reflection R; (b) the values of E at which the particle would
freely pass that well. Demonstrate that it happens when I = n'A/2,
where 'A is the particle's wavelength in the well, n = 0, 1, 2, ....

3.58. A particle of mass m and energy E tunnels through a square
potential barrier (Fig. 13). Find: (a) the coefficients of transparency
D and reflection R for the case E > U o' See that the expressions
obtained coincide with the corresponding formulas of the previous
problem provided the sign of U 0 is reversed. Find D for E -+ U 0;

(b) the first three values of E at which an electron would freely tun­
nel through sueD a barrier, if U o = 10.0 eV and l = 5.0.10-8 cm~
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• Basic quantum-mechanical operators:

4
FUNDAMENTALS OF QUANTUM MECHANICS *

projection and square of momentum

total energy (the Hamiltonian)
,p2 112

H =-.)-+U=---- Ij2-LU'
~m 2m I ,

\.
I
!

projections of angular momentum

• Operator .4 is linear if

A(Cl'l'l +C2'1'2) = Cl AWl +c2A1j;2' (4.1)

Lx=YPz-ZPy, Ly=z/;x-xpz,

, " a
Lz=xpy-YPx= -i11--'a{jJ ,

square of angular momentum L2 =c L2 +£2 -L L2 = _11 2 y2;\ 11 I Z ~ it, (f'

\"here \'2 is the Laplace operator taking the following fcoordinates: arm in spherical

Table 4.2Table 4.1

V1'l .=_.._1_ _ a_ (sin O_a_) +_1_~
, 'I SlIl tt att, aft· sin 2 tt rN 2 ,

with v~, 'I designating the angle-dependent part of the Laplace operator.

• Eigenvalues and eigenfunctions of the operator b:
f=1(1+1)11 2

, 1=0,1,2, ... , (4.8)

Y/ m (tt, CP)=81Iml (tt) eim'l', m=O, ±1, ±2, ... , ±l. (4.9)

The functions 8 (tt) for s-, p-, and d~states are presented in Table 4.1 (accurate
except for normalization factor).

(4.4)

(4.3)

(4.2)

Cn = ) 'I''I'~ dx.'I' (x) = ~ cn'l'n (x);

• Operator A is hermitian (self-conjugate) if

) '1',.4'1'2 dx= ) 'l'2.4*'I'f dx,

where '1'1 and '1'2 are arbitrary functions.
• Expansion of the function 'I' into eigenfunctions'l'n which compose the dis­
crete spectrum of a certain operator:

'where Cl and C
2

are constants; '1'1 and '1'2 are arbitrary functions.

• Operators .4 and B are commutative if their commutator

where A is the corresponding operator; 'I' is the normalized wave function;
dT is a unit volume.
• Schrodinger equation in~ioperator form:

a1Jf 'iii -a-=H1Jf. (4.6)
~ t

(4.10)

R (p), P = r/rl

is 1, 0 e- P

2s 2, 0 (2- p) e- p/ 2

2p 2, 1 pe-p/2

3s 3, 0 (21-81p+2p2) e- p / 3

3p 3, 1 p(li-p)e-P/3

3d 3, 2 p2e- p/ 3,

State I n, I

0, 0

p {
1, () cos it
1, 1 sin ft

f
2 ° 3 cos2 {} --1,

d 2 1 sill {} cos {}

l
,

2, 2 sin2 ,~

State I I, m

• Schriidin,ger equation for the radial part of wave function 11 (r) in the central­
symmetry hold U (r):

a2R . 2 aR 2m ( • L2 \
or2 i-7~+7 E-u- 2111r 2 )R~=().

(4.5)

(4.7)dl a1 -L i ' ,
(jf=ijt I T [H. Al.

where [H, .4 1 is the commutator of operators; H is the Hamiltonian.

where H is the total energy operator (the Hamiltonian).

• Time derivative of operator 1:

• Mean value of a mechanical quantity A in a state '1':

* In this chapter all operators (except for the coordinates and functions
that depend on coordinates only) are marked with the sign"," over a letter.

'~'h:, fun,ctions R (~) for hydrogen-like atoms are given in Table 4.2 (accurate
exc~pt fo~' IwrmallzatlOn factor); the symbol rl in the table denotes the fir·t
Bohr radIUS. S
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A in A

(a) [H, xl = --;;: Px;

A A • fJU
(h) [H, Pxl = lnax- ;

A A 2 • au A ? fJ2U
(c) [H, pxl=2ln (J« Px+ n- fJx 2 '

4.9. Prove that if the commutator [A, Bl = 1, then

(a) [A, 132l = 2B; (b) [A, B3 l = 3B2; (c)[A2, B2l = 2 (A13 + EA.).
4.10. Check the following equalities involving commutators:

(a) [x, Pxl = in, [x, pyl = 0, [Px, Pul = 0;
A Of A. Df A fJ2f

(b) [f(x), pxl=in ax' [f (x), p~l~~ 2ln D~ Px+ n.2 ox2 ;

(c) [x 2 , [x, p~]] = - 4nh.

In the above equalities f (x) denotes an arbitrary function of a
coordinate.

4.11. Check the following commutation rules for the Hamiltonian
A

H in the potential field U (x):

4.12. The operator A commutes with operators Band C. Can one

infer that the operators Band Care commutative?

4.13. Prove the following theorems: (a) if the operators A and iJ
have their characteristic functions (eigenfunctions), such operators

commute; (b) if the operatoi'S A and 13 commute, they have common
eigenfunctions. The proof is to be carried Gut for the case when there
is no degeneracy.

4.14. Find the common eigenfunction of the following operators:

(a) x and Pi;; (h) Px, Pu' and pz; (c) Px and p~.
4.15. In a certain state 1):.4. a system possesses a definite value of

the mechanical quantity A. Does the quantity B also possess a definite

value in that state provided the corresponding operators A and B
are commutative?

4.16. Prove that if the operator .4 is hermitian, its eigenvalues are
real.

4.17. Prove that the following operators are hermitian: (a) Px;
(b) xPx; (c) p~; (d) iI. Instruction: note that in the infinity both wave
functions and their derivatives turn to zero.

4.18. Find the operator that is conjugate to the operator: (a) xPx;

(b) iPx.

QUANTUM-MECHANICAL OPERATORS

4.1. Check the following operator equalities:
d d

(a) dx x = 1+ x dx ;

d 1 d
(b) x 2 - -=x --1;

dx x dx

(
d )2 d d2

(c) 1 +"'d'; = 1+ 2 dx + dx2 ;

d 2 d d2

(d) (x + dx) = 1+ x2 + 2x "'d'; + dx2 ;

1 d )2 d 2 2 d.
(e) (7"'d'; x = dx2 + 7 dx ;

D fJ) 2 D2 iJ2 fJ2
(f) (iii + 7iii = Dx2 + 2 fJx Dy + oy2 •

4.2. Find the result of operation carried out by the operators
d2 (d) 2dx

2
x 2 and "'d'; x on the functions: (a) cos x and (b) eX.

4.3. Find the eigenvalue of the operator A corresponding to
the eigenfunction \[1.'1.' if:

A d2
(a) A= - dx 2 ' 1.JlA=sin2x;

(b) A= - ::2 + x 2
, lPA = e- x

'
j2

;

A d2 2 d sin 'Xx
(c) A = dx2 +7 dx' \1'.'1. =-x-'

4.4. Find the eigenfunctions ~1 and eigenvalues of the following
operators:

(a) - i :x' if~) (x) = ~1 (x +a); a is a constant;

d2

(b) - - if ,11 = 0 at x = 0 an d x = l.dx 2 , 'Y

4.5. Demonstrate that if the opera tors A and B are linear, the

operators A + Band AB are also line.ar. .
4.6. Prove the following commutative relatIOns:

(a) [A, ~ B;l = ~ L4, B;l; (h)[A, BCl = [A,Bl (; + B [A, C'].
4.7. Prove that if the operators A and B commute, then

(a) (A + B)2 = A. 2 + 2A.B + B2; (A + B) (A - B) = A. 2 - 13 2
;

(b) [(A. + E), (A - B)l = O.
48. Suppose A2 = ~ AI. Prove that if the operators Ai commute

with the operator B, the operators A2 and 13 also commute.
t
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A

operator T

4.19. Prove that if the operators A and B are hermitian and com­

mutative, the operator AB is hermitian.

4.20. Prove that if the operator A is hermitian, the operator An
is also hermitian (n is a positive integer).

4.21. Prove that if the operators A and iJ are hermitian, the oper-

ators A Band AB + BA are also hermitian.

4.22. Prove that if the operators A and B are hermitian and non­

commutative, the operator (a) [A, iJ] is non-hermitian; (b) i [A, B]
is hermitian.

4.23. Find the eigenvalues and normalized eigenfunctions of the

operators: (a) Lz ; (b) L~.

4.24. Find the eigenvalue of the operator £2 that corresponds to
its eigenfunction Y (8, cp) = A (cos '0' + 2 sin ,'t cos cp).

4.25. Prove that the operator Lz is hermitian. The proof is to be
carried out both in (a) polar and (b) Cartesian coordinates.

4.26. Prove that the operator L2 is hermitian, taking into account

that the operators Lx, L y' and L z are hermitian.
4.27. Check the following commutation rules:

(a) [x, Lx] = 0; (b) [y, Lx] = -itzz; (c) [z, Lx] itzy.

4.28. Prove the following commutation rules:

(a) [L,n Px] = 0; (b) [Lx, p) = ilipz; (c) [Lx, pz] -itzpy.

4.29. Using the commutation rules of the foregoing problem,
demonstrate that:

A A2 ( ) [A A2] 0 () [L x2, pA 2] = O.(a) [Lx, px] = 0; b Lx, P = ; c

4.30. Prove that the operator L2 and kinetic energy
commute.

4.31. Check the following commutation rules:

(a) [Lx, Ly ] = itzL z ; (b) [L y , L z ] = iliLx; (c) [L z, Lx] itzL y •

4.32. Using the commutation rules of the foregoing probl~m,

demonstrate that: (a) the operator £1 commutes with the operators

Lx, L y , and L; (b) [L+, L] = 2tzL z , where L+ = Lx + iL y and

L_ = Lx - iL y.
4.33. A spatial rotator can be pictured as a particle of mass f.!

moving at a permanent distance ro from a centre. Find the energy
eigenvalues of such a rotator, assuming the eigenvalues of the opera-

tor L2 to be known.
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MEAN VALUES AND PROBABILITIES

4.34. Prove that if a mechanical quantity A is described by the

hermitian operator A, then: (a) its mean value is real; (b) the mean

value of that quantity squared is (A 2) = ~ I A11) 1
2 dx.

4.35. Demonstrate that in a unidimensional case

(Px) = i: ~ (11) d;;: - '1;* ~~ ) dx.

4.36. Demonstrate that the mean value of the particle's momen­
tum projection equals zero provided its discrete spectrum is station-

ary. Instruction. Use the expression for the operator Px in terms of

the commutator of the two operators Ii and ;.
4.37. Find the mean kinetic energy of a particle in a unidimension­

al square potential well with absolutely impenetrable walls
(0 < x < 1), if the particle is in the state: (a) 1jJ (x) = A sin 2 (nx/1);
(b) 1jJ (x) = Ax (1 - x).

4.38. Calculate the mean values of kinetic and potential energies
of an oscillator with frequency co in the ground state 1jJ (x) = Ae-a2x2 ,

where a 2 = x/2tz co , x is the quasi-elastic force constant (U= xx2/2).
4.39. Calculate the mean values ((I1X)2) and ((l1px)2) and their

product for (a) a parti~le located in the nth level of a unidimensional
square potential well with absolutely impenetrable walls
(0 < x < 1); (b) an oscillator )n the ground state 1jJ (x) = Ae-a2x2 ;
(c) a particle in the state 1jJ (x) = Aeikx-a2x2.

4.40. Determine the mean value of a mechanical quantity, de-

scribed by the operator LL in the state 'p (cp) = A sin 2 cpo
4.41. Calculate the mean values ((l1cp)2) and ((I1L z)2) and their

product for a system in the state 1jJ (cp) = A sin cpo

4.42. Demonstrate that in the state 1jJ, where the operator Lz
has a definite eigenvalue, the mean values (Lx) and (L!J) are equal
to zero. Instruction. JVI ake use of the commutative relations given
in Problem 4.31.

4.43. Calculate the mean value of the squared angular momentum
in the state 1jJ ('0', cp) = A sin '0' cos cp.

4.44. The allowed values of projections of angular momentum on
an arbitrary axis are equal to mtz, where m = 1, 1 - 1, ... , -1.
Keeping in mind that these projections are equally probable and
all axes are equivalent, demonstrate that in the state with definite
value of 1 the mean value of the squared angular momentum is
(£2) = li 21 (1 + 1).

4.45. Prove that the eigenfunctions 'PI and 'P2 of the hermitian

operator A, that correspond to different eigenvalues A 1 and A 2 of
the discrete spectrum, are orthogonal.

4.46. Through direct calculations demonstrate the orthogonality

of eigenfunctions of: (a) the operator Ii in the case of a particle
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the Schrodinger time-dependent equation, demonstrate that

4.55. Prove the following operator equalities:

d A _ p; 8U .
(b) dt (xPx) - m-: x a:;- ,

.4.'-

d A2 (A 8U au A )
(c) dt (Px) = - Px di" + dX'" Px ..
4.59. Demonstrate that the time derivative of the operator Lx

is equal to the operator of projection of the moment of external
forces, Le.

4.56. Prove the validity of the following motion equations in the

operator form: (a) dx/dt = p"jm; (b) dpx/dt = -au/ax.
4.57. According to Ehrenfest' s rule the mean values of mechanical

quantities obey the laws of classical mechanics. Prove that when
a particle moves in the potential field U (x): (a) (dx/dt> = (Px )/m;
(b) (dpx/dt) = - (au/ax).

4.58. Prove that in the case of a particle moving in the potential
field U (x), the following operator equalities are valid:

d. 1 A A

(a) (F(X2)=m:(xpx+Pxx);

d (dA)(b) (F (A) = 7ft" .

(b) ~ (AS) = dA B-L A dB
dt dt' dt'

d A A dA dB
(a) (F (A+B) =--;u+llt;

dA 8A i A A AA
(a) 7ft"= iJt +r;(HA-AH);

d A A (8U 8U)
(FLx=Mx = - Y7iZ- Z fly .

4.60. A particle is in the state described by the eigenfunction '\jJ

of the operator A that depends on time implicitly. Demonstrate that
the corresponding eigenvalue A of that operator does not vary with

A A

time provided the operator A commutes with the Hamiltonian H.
4.61. What mechanical quantities (the energy E, projections of

momentum, projections and the square of angular momentum)
retain their values during the motion of a particle: (a) in the absence
of a field (free motion); (b) in the uniform potential field U (z) = az,
a being a constant; (c) in a central-symmetry potential field U (r);
(d) in a uniform variable fIeld U (z, t) = a (t) z'?

4.62. A particle is in a certain state 1Jf (x, t), with 1Jf (x, t) not

being an eigenfunction of the operator A. Knowing that the operator

A does not depend on time explicitly and commutes with the Hamil­

tonian H, demonstrate that: (a) the mean value of the mechanical
quantity A does not vary with time; (b) the probabilities of definite
,,'aiues of the mechanical quantity A are also independent of time.

39

I

4.51. Find out whether a wave function composed as a super­
position of stationary states, 1Jf (x, t) = 2:~jk (x) eiwk t , can be a
solution of the Schrodinger equation in both time-dependent and
time-independent forms.

4.52. A particle is located in a unidimensional square potential
well of width l with absolutely impenetrable walls. Find the wave
function of the particle at the moment t, if at the initial moment it
had the form 1f (x, 0) = Ax (l - x).

4.53. A system of two rigidly connected particles rotating in a
plane about its centre of inertia is referred to as a plane rotator.

A !i2 iJ2
The energy operator of such a rotator has the form H = 2/ . acp2 ,

where I is the system's moment of inertia. Assuming that the
rotator's wave function had the form Q) (lp, 0) = A cos2 lp, at the
initial moment, determine this function at any moment t.

4.54. Having calculated the time derivative of the mean value of

the mechanical quantity A described by the operator A by means of
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VARIATION OF THE STATE AND MECHANICAL
VALUES IN THE COURSE OF TIME

located in a unidimensional square potential well with absolutely

impenetrable walls; (b) the operator L z•
4.47. A system is in the state described by the normalized wave

function '\jJ (x) that can be expanded into the eigenfunctions of the

hermitian operator A, Le. '\jJ (x) = L Ck'\jJk (x). Assuming the
functions '\jJk to be normalized to unity, (a) derive the expression
defining the coefficients Ck; (b) demonstrate that the mean value of

a mechanical quantity is (A) = L A k I Ck 12 , where A k are the

eigenvalues of the operator A. What is the physical meaning of
I Ck 1

2 ?
4.48. A unidimensional square potential well with absolutely

impenetrable walls (0 < x < l) contains a particle in the state
'IjJ (x). Determine the probability of its staying (a) in the ground
state, if '\jJ (x) = A sin2 (nx/l); (b) in the nth level, if '\jJ (x) =
= Ax (l - x); calculate the probabilities for the first three levels.

A

4.49. Determine the allowed eigenvalues of the operator L z
together with their probabilities for a system in the state: (a)~; (lp) =
= A sin2 lp; (b) '\jJ (lp) = A (1 + cos lp)2.

4.50. Keeping in mind that the eigenfunctions of the wave number
1

operator k (I.: = p/tz) are 'lJ:k (x) = (2n)-2" eikx , find the probability
distribution of values of k: (a) for a particle located in the nth level
of a unidimensional square potential well of width l with absolutely
impenetrable walls; (b) for an oscillator in the state~; (x) = Ae-a2x2

•



CENTRAL-SYMMETRY FIELD. HYDROGEN ATOM

4.63. Transform the total energy operator for a particle in the
central-symmetry fIeld U (r) to the following form:

A A [2
H~~·Tr+-2'"+U(r).mr-

What form does the operator Tr take?
4.64. A particle of mass ~l moves in the central-symmetry poten­

tial fIeld U (r). Find: (a) the Schrodinger equations for the angle­
dependent and radial parts of the wave function ~) (r, 'fr, cp) A

= R (r). Y ('fr, cp). Assuming the eigenvalues of the operator L2
to be known, reduce the equation for the function R (r) to the forI?
of Eq. (4.10); (b) how the wave function depends on the aZI-
muth cpo . ,

4.65. A particle is located in a central-symmetry potentIal held
in the state 'p (r, 'fr, cp) c= R[ (r)'Y lm ({}, cp). What is the physical
meaning of the function [ Y 1m [2? Making use of Table 4.1, calculate
the normalization coefficients of the functions: (a) Yl,O; (b) Y 2,1'

4.66. A particle of mass m moves in a spherical-symmetry poten­
tial well with absolutely impenetrable walls (0 < r < ro)' Through­
out the well's interior U = O.

(a) Using the substitution 'P (r) = X (r)/r, find t~e energy eigen­
values and normalized eigenfunctions of the particle in s states
(l = 0).

(b) Calculate the most probable value rpr for the ground st~te

of the particle, and the probability of the particle being in the regIOn
r < rpr. Draw the approximate graphs of the functions ~)2 (r) and
r21;2 (r) in this state. What is the physical meaning of these func­
tions?

(c) Find the radial part R I (r) of the wave function describing the
p state of the particle (l = 1). To do this, differentiate the equat~on

defining the function R 0 (r) for s states and compare the expreSSIOn
obtained with the equation defining the function R I (r).

(d) Calculate the energy of the first p level and compare it w~th

the ground state energy. Draw the approximate graph of the functIOn
r 2Ri (r) for the first p level.. . .. . .

4.67. Using the results obtamed m the foregomg problem fmd.
(a) the mean values (r), (r 2), and «~r)2) for a particle located in ~he

nth s level (l = 0); (b) the mean value of kinetic energy of a partIcle
in the state 'P (r) = A (r~ - r2); (c) the probability di~tributi~n of
various values of wave number k in the ground state, If the eIgen-

functions of the operator k are known to have the form 'Pk (1') =
= (2n) -3/2 eikr .

4.68. A particle of mass m is located in a spherical-symmetry
potential field: U (r) = 0 at r < ro and U (r) = U 0 at r> roo

(a) Using the substitution 'P (r) = X (r)/r, derive the equation
defining the energy eigenvalues of the pal,tide in s states (l = 0)
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in the region E < U0; reduce this equation to the form

V n2 k k = If 2mE
sin kro= + 'J .2U ro, h

~mlo 0

(b) Make sure that the given well not always has discrete levels
(bonded states). Determine the interval of values of r~Uo at which
the well possesses only one s level.

(c) Assuming r~U0 = 8n2fz2/27m, calculate the most probable value
rpr for the particle in the s state and the probability of the particle
being in the region r > roo

4.69. Reduce the equation describing the radial part of the wave
function of an electron in the Coulomb field of a nucleus Z to a non­
dimensional form. As units of measurement use the atomic unit of
length (the first Bohr radius) and the atomic unit of energy (the
binding energy of an electron in a hydrogen atom).

4.70. Using the substitution R (r) = X (r)/r, find the asymptotic
form of the radial part R (r) of the wave function for bonded states
of an electron in the Coulomb field of a nucleus: (a) at long and
(b) short distance from the nucleus.

4.71. An electron in a hydrogen atom is in the stationat'y state
described by the spherical-symmetry wave function 11) (r) =

= A (1 + ar) eCu
, wher,e A, a, and a are constants. Find: (a) (using

the Schr6dinger equatIOn) the constants a, a, and the energy of the
electron; (b) the normalization coefficient A.

4.72. For an 1s electron in a 'hydrogen atom find: (a) the most
probable distance rpl from the nucleus and the probability of the
electron being in the region r < r pr ; (b) the probability of its being
outside the classical borders of the field.

4.73. For an 1s electron in a hydrogen atom calculate the mean
values of: (a) the distance from the nucleus (r), as well as (r 2

) and
square variation «~r)2); (b) the in tel'action force and potential
energy; (c) the kinetic energy and root mean square velocity.

4.74. For 2p and 3d electrons in a hydrogen atom calculate:
(a) the most probable distance from the nucleus; (b) the mean square
variation «~r)2).

4.75. Find the mean electrostatic potential developed by an 1s
electron at the centre of a hydrogen atom.

4.76. Calculate the mean electrostatic potential at the distance r
from the nucleus of a hydrogen atom in the ground state. Instruction:
to find the potential cp e developed by an "electron cloud", one should
integrate Poisson's equation \72cp e = -4np twice.

4.77. Find the probability distribution of values of wave number k
for an electron in a hydrogen atom in the ground stale, if the eigen-

functions of the operator k are known to have the formlj;k (1') =
= (2n) -3/2 eikr .

1



,

(5.6)
SPECTRA. ELECTRON SHELL OF ATOMS

• Probabilities of .r~diation transitions betll'een levels 1 and 2 (E 2 > E 1 ), i.e.
the .nu~nber?f transltlon~p~r 1 s per one atom (Z/N), for the cases of spontaneous
radiatIOn. lllduced radiatIOn, and absorption:

ZSP/N - A' Zind/N B .
21 2- 21! 21 2= 21 ll w,

ZaIJs/ N 1 = B 1o u
W

,
12 -

,,:hereA 21' .n 2,1' B 12 are the ~instein coefficients; Uw is the volume spectral den­
Sity of radiatIOn correspondlllg to frequency W of transition bet\veen the given
levels.

where gl and g2 are the statistical weights (degeneracies) of the levels with
energies E 1 and E 2 •

Fig. 19

I j
K-r'T""T----- 01/2

1Jp

Fig. 18

• Relation between the Einstein coefficients:

THE STATE OF ELECTRONS IK AK ATOM

.5.1. Find t!le iO~lization potential and first excitation potential
of aNa atom III wlndl the quantum defects of the basic term 38 and
the term 3P are equal to 1.37 and 0.88 respectively.

{.!1 n 2c3

B 21 =-.- B12=~ A 2l . (5.7)
g2 flW

• Relation between the mean lifetime T and the \\'idth r of a level:
T·r ~ n.

• X-ray term diagram is sho\n1 in Fig. 19.
• Moseley's law for 1\« lines: .

3
Wl\«=t;R*(Z-G)2, (5.8)

where R* is the [{ydlwrg constant: Z is the atomic number; (J is the correction
constant (to be assumed equal to unity whrn solving the problems).

(5.5)

(5.2)

(5.1)

T

L = 0, 1, 2,' 3, 4, 5, 6, , ..

T= RZ2 -L a
2
RZ" ( 2 _~) (5.3)

'n" I 11 3 1+1,2 4n '

where Z is the charge of nucleus (in e units); a is the fmc structure constant; n
and i are quantum numbers (the principal quantum number and the number cor­
responding to the total angular momentum).
• Mechanical moments of an atom (orbital, spin, and total ones respectively):

PL=nlI L(L+l); ps=ny8(8+1); PJ=nlI J(J+l). (5.4)

• In the problems of this chapter the inter-moml'ntum coupling is assumed to
be normal, L - 8 (spin-orbital coupling).

• Hund rules:
of the terms given by electrons of given electronic configuration, till' ones

with greatest value of 8 have the least energy, and of these the one with the
greatest L is the lowest;

of the basic (normal) term J = i L - 8 [. if the shell is less than half­
filled, and J = L + 8 in the remaining cases.
• Electrons \vilh equal quantum numbers 11 and I are referred to as equivalent.
• Boltzmann's distribution la\v

symbol: 8, P, D, F, G, H, I, ...
'. Selection rules for quantum numbers 8, L, and J:

/1,.8 = 0; /l,.L = ±1; M = 0, ±1; J = 0 -;:4 J = O.

• Terms of an atom (ion) with one valence electron:

RZ~ff

(n-/I,.)" ,

where R is the Rydberg constant; Z~ff is the effective charge (in e units) of the
atomic skeleton (ion) in whose field the outer electron moves; n is the principal
quantum number of the valence electron; /I,. is the quantum defect. The diagram
,of levels of such an atom (ion) is shown in Fig. 18 (the fine structure is ne­
glected).
• Dirac's equation for the fine structure (If levels in an atom (ion) with one
electron:

• Spectral labeling of terms: x{L}J, where % is the multiplicity (% = 28 + 1);
L, 8, and J are quantum numbers (corresponding to orbital, spin, and total
moments respectively):
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5.2. Calcul~e the quantum defects of S, P, and D terms for a
Li atom, if the binding energy of the valence electron in the ground
state is known to be equal to 5.39 eV, the first excitation potential
to 1.85 eV, and the wavelength of the main line of the diffuse series
to 0.610 flm. Which of the mentioned terms is the closest to the
hydrogen-like ones and what is the reason for that?

5.3. Find the binding energy of a valence electron in the ground
state of a Li atom, if the wavelength of the main line of the sharp
series and the short-wave cu t-off wavelength of that series are equal
to 0.813 and 0.349 ~tm respectively.

5.4. How many spectral lines allowed by the selection rules
appear in transition of Li atoms to the ground state from the state:
(a) 4S; (b) 4P?

5.5. Calculate the quantum defects of Sand P terms and the
wavelength of the main line of the sharp series in a Be+ ion, if the
wavelengths of the main line of the principal series and )ts short­
wave cut-off are known to be equal to 3210 and 683 A respec­
tively.

5.6. The terms of atoms and ions with one valence electron can
be written in the form T = R (Z - a)2/n2, where Z is the charge of
nucleus (in e units); a is the screening correction; n is the principal
quantum number of the valence electron. Using this formula, cal­
culate the correction a and quantum number n of the valence electron
in the ground state of a Li atom, if the ionization potentials of Li
and Be+ are known to be equal to 5.39 and 17.0 V, the correction a
being the same for both.

5.7. Find the splitting (in eV's) of the level 4P in a K atom, if
the wavelengths of the resonance line doublet components are known
to be equal to 7698.98 and 7664.91 A. Compare the value obtained
with the resonance transition energy.

5.8. The main line of the sharp series of monatomic cesium is
a doublet with the wavelengths of 14 695 and 13 588 A. Find the
intervals (in cm -1) between the components of the subsequent lines
of this series.

5.9. \Vrite out the spectral designations of electronic terms in a
hydrogen atom for n = 3. How many fine structure components have
the level of a hydrogen atom with the principal quantum number n?

5.10. For a He+ ion calculate the intervals (in cm- I ) between:
(a) the extreme fine structure components of the levels with n =

= 2, 3, and 4; (b) the neighbouring fllle structure components of the
level with n ~cc 3.

5.11. Calculate the difference in wavelengths of doublet compo­
nents of the line 2P - 1S for a hydrogen atom and a He+ ion.

5.12. What hydrogen-like ion possesses the doublet of the main
line of the Lyman series, for which the difference in wave numbers
is equal to 29.6 cm -1?

5.13. For He+ ions determine the number of fme structure com­
ponents and the interval (in cm- I units and wavelengths) between
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the extreme components of the main line of: (a) the Balmer series'
(b) the Paschen series. '

5.14. ,:\,hat mu~t be the resolving power of the spectroscope capable
~f observlTlg .the hne structure of the main line of the Balmer series
m monatomiC hydrogen?

5.15. Find allowed values of the total angular momenta of elec­
tron shells of atoms in the states 4p and 5D.

5.16. Write out allowed terms of atoms possessing besides filled
shells: (a) two electrons, sand p; (b) two electrons, p and d; (c) three
electrons, s, p, and d.

5.17. How. n,tany different types of terms can a two-electron
system, COI~sistmg of d and f electrons, possess?
. 5.18: .Wnte out allowed types of terms for the atom possessing,
m additwn to filled shells, two p electrons with different principal
quantum numbers.

5.19. Determine allow~d multiplicity of: (a) the D
3

/
2

term;
(b) the terms of atoms Li, Be, B, and C, if only the electrons of
outermost unfilled subshells get excited.

5.20. Find the greatest possible total angular momentum of an
electron sh~ll .o~ an atom in F state, if it is known that five terms of
equal multipliCity, but with different values of quantum number J
correspond to that state. '

5.21. ~he numbat' of allowed values of the quantum number J
for two differe~t atoms i~ the P and D states is the same and equal to
three. Determme the spm mechanical moment of the atoms in these
states.
. 5.22. Find the angle between the spin and total angular momenta
m the vector model of the atom: (a) being in the 3D state with the
?,rea~est p~s~ible value of the total angular momentum; (b) possess­
mg .m addition to filled subshells three electrons (p, d, and f) and
havmg the total angular momentum that is the greatest possible
for this confIguration.
. 5.23. An ~tom is in the 4F state and possesses the greatest pos­

SIble mechamcal moment. Determine the degeneracy of that state in
terms of J. Wh.at is the physical meaning of the value obtained?

5.24. Dete~mi~e the greatest possible orbital angular momentum
o.f an atom bemg. m the state whose multiplicity is five and degeneracy
(m terms,?f J) is seven. Indicate the spectral symbol of that state.

5.25 .. Fmd the greatest possible angle between the spin and total
mechal1lcal moments in the vector model of the atom beinO' in the
~tat~ whose multiplicity is three and degeneracy (in ter;s of J)
is hve.

.5.26. De~ermine the number of allowed states for: (a) an atom
With the given values of quantum numbers Land S; (b) a two­
~lectro~l system composed of p and d electrons; (c) an electron con­
figura t IOn nd3 •

5.27. Find the number of electrons in the atoms whose shells are
filled as follows: (a) the K and L shells and the 3s subshell are filled
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and the 3p subshell is half-filled; (h) the K, L, Ai shells and 4s, 4p.
and 4d subshells are all filled. What are these atoms?

5.28. Find the maximum number of electrons possessing in an
atom the fo.llowing equal quantu~ numbers: (a) nand l; (h)- n.

5.29. Usmg the Hund rules, wnte the electron configurations and
find the basic term of the atoms: (a) C and N; (h) Sand Cl. The
electron configurations of these atoms correspond to the regular
filling of electron shells.

5.30. J'daking use of the Hund rules, find the basic term of the
atom whose unfilled subshell has the electron configuration" (a) nd2.
(h) nd3• • ,

5.31. Determine the basic term of the atom whose outer shell
is exactly half-filled with five electrons.

5.32. Find the degeneracy of the atom in the around state if the
electronic configuration of its unfilled subshell d' nd6 • '

5.33. Find allowed types of terms for an atom whose unfilled
subshell has the electronic configuration: (a) np2; (b) np3; (c) nd2.

5..34. There are two electronic configurations, one of which pos­
sessmg the same number of equivalent electrons that are required to
complete the subshe11 of t!le other. Using the following examples,
demonstrate that such paIrS of electronic conficrurations have the
identical sets of allowe~ types of terms: (a) pI and p5; (h) p2 and p4;
(c) d 1 and d9

• Explam this fact.
5.35. Write allowed types of terms for the following electronic

configurations: (a) ns1, n'p2: (h) np1, n'p2. Here n =1= n'.

INTENSITY AND WIDTH OF SPECTRAL LINES

5.36. Find the ratio of the number of atoms of gaseous lithium
in the 2P state to that in the ground state at a temperature of T =
= 3000 K·o The wavelength of the resonance line (2P - 28) is
'A = 6708 A.

5.37. What fraction of hydrogen atoms is in the state with the
pr~ncipal quantum number n = 2 at a temperature of T = 3000 K?

;).38. Demonstrate that the number of atoms excited to a certain
level diminishes with time as N = N Oe-IIT; where l' is the mean
lifetime of the atom on that level. '

5.39. The intensity of a resonance line diminishes by a factor of
1'] = 65 ov.er a distance l = 10 mm along the beam of atoms moving
at a velocIty v = 2.0.103 m/s. Calculate the mean lifetime of atoms
in the resonance excitation state. Evaluate the level's width.

5.4~. R.arefied mercury vapour whose atoms are in the ground
state IS lIghted by a ~ercury lamp emitting a resonance line of
wavelength 'A = 2536.5 A. As a result, the radiation power of the
mercury vapour at that wavelength turns out to be I = 35 mW.
Find the number of atoms in the resonance excitation state whose
mean lifetime is l' = 1.5.10-7 s.

5.41. A sample of gaseous lithium containing N = 3.0.1016 atoms
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is heated to a temperature of T = 1500 K. In this case, the power
emitted at the resonant line's wavelength 'A = 6708 A (2P - 28) is
equal to I = 0.25 W. Find the mean lifetime of Li atoms in the
resonance excitation state.

5.42. A system of atoms is in thermodynamic equilibrium with
its radiation at temperature T. Suppose that the transition between
the two atomic energy levels, E 1 and E 2' with statistical weights gt
and g2 produces the radiation of frequency w, the Einstein coefficients·
being A 21 , B n , and B 12 • Recalling that at equilibrium the numbers
of direct and reverse transitions (E 1 +± E 2 ) per unit time are equal,
find the expression for volume spectral density of thermal radiation
energy: (a) with allowance made for induced emission; also find
the relation between the Einstein coefficients; (h) disregarding the
induced emission. Under what conditions can it be done?

5.43. Atomic hydrogen is in thermodynamic equilibrium with its
radiation. Find: (a) the ratio of probabilities of induced and spon­
taneous radiations of the atoms from the level 2P at a temperature of
T = 3000 K; (h) the temperature at which these probabilities
become equal.

5.44. A beam of light of frequency w, equal to the resonant fre­
quency of transition of atoms of gas (nw » kT), passes through that
gas heated to temperature T. Taking into account induced radiation.
demonstrate that tlltJ absorption coefficient of the gas varies as

x (T) = X o(1- e-1<iiJ/hT) ,

where Xo is the absorption coefficient at T = 0 K.
5.45. Under what conditions can light passing through matter be

amplified? Find the ratio of the populations of levels 1D 2 and 1p}.
(ED> E p ) in atoms of gas at which a beam of
monochromatic light with a frequency equal to
the frequency of transition between these levels
passes through the gas without attenuation.

5.46. Suppose that a quantum system (Fig. 20)
is excited to level 2 and the reverse transition
occurs only via level 1. Demonstrate that in this
case light with frequency W 21 can be amplified, if
the condition glA10> g2A21 ig satisfied, where
gl and g2 are the statistical weights of levels 1
and 2 and A 10 and A 21 are the Einstein coeffi­
cients for the corresponding transitions.

5.47. Let q be the number of atoms excited to level 2 per unit
time (Fig. 20). Find the number of atoms in level 1 after the time
interval t following the beginning of excitation. The Einstein coeffi­
cients A 20 , A 21 , and A 10 are supposed to be known. The induced
transitions are to be ignored.

5.48. A spectral line 'A = 5320 A appears due to transition in an
atom between two excited states whose mean lifetimes are 1.2·10-&
and 2.0.10-8 s. Evaluate the natural width of that line, ~'A.
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5.55. Proceeding from Moseley's law, calculate the wavelengths
and energies of photons corresponding to the K a line in aluminium
and cobalt.

5.56. Determine the wavelength of the K a line of the element of
the Periodic Table, beginning from which the appearance of the L
series of characteristic X-ray radiation is to be expected.

5.57. Assuming the correction a in Moseley's law to be equal to
unity, find:

(a) to what elements belong ~he K a lines with the wavelengths of
1.935, 1.787, 1.656, and 1.434 A; what is the wavelength of the K a
line of the element omitted in this sequence;

(b) how many elements there are in the sequence between the
elements whose K a line wavelengths are equal to 2.50 and 1.79 A.

5.58. The correction in .Moseley's law differs considerably from
unity for heavy elements. Make sure that this is true in the case of
tin, cesium, and tungsten, whose K a line wavelengths are equal to
0.492, 0.402, and 0.210 A respectively.

5.59. Find the voltage applied to an X-ray tube with nickel anticath­
ode, if the wavelength difference between the K a line and the short­
wave cut-off of the continuuus X-ray spectrum is equal to 0.84 A.

5.60. When the voltage applied to an X-ray tube is increased from
10 to 20 kV, the wavelength in terval between the K a line and the
short-wave cut-off of the continuous X-ray spectrum increases three­
fold. 'What element is used as the tube anticathode?

5.61. Ho\v will the X-ray radiation spectrum vary, if the voltage
applied to an X-ray tube increases
gradually? Using the tables of the
Appendix, calculate the lowest voltage
to be applied to X-ray tubes with
vanadium and tungsten anticathodes,
at which the K a lines of these ele­
ments start to appear.

5.62. What series of the character­
istic spectrum are excited in molyb­
denum and silver by Ag K a radiation?

5.63. Figure 21 shows the K absorption edge of X-ray radiation and
the K a and K f1 emission lines.

(a) Explain the nature of the abrupt discontinuity in absorption.
(b) Calculate and plot to scale the diagram of K, L, and M levels

of the a!om for which 'AKa = 2.75 A, 'AKf:l=2.51 A, and 'A K =
= 2.49 A. Of what element is this atom? What is the wavelength of
its La emission line?

5.64. Knowing the wavelengths of K and L absorption edges in
vanadium, calculate (neglecting the fine structure): (a) the binding
energies of K and L electrons; (h) the wavelength of the K a line
in vanadium.

15.49. The distribution of radiation intensity within a spectral
line with natural broadening takes the form

('V/2)2
J"l-= J o (W- UlO)2+(y/2)2 •

where J 0 is the spectral intensity at the line's centre (at w = wo);
'\' is the constant which is characteristic for every line (e.g. when an
excited state relaxes directly down to the ground state, '\' = 111;,
T being the mean lifetime of the excited state). Using this formula,
find: (a) the naturallinewidth c5w, if the value of '\' is known; (h) the
mean lifetime of mercury atoms in the 61P state, if the transition to
the ground state is known to result in emission of a line 'A = 1850 A
with natural width c5'A = 1.5.10-4 A.

Note. The linewidth is the width of the line's contour measured at
half its height.

5.50. Making use of the formula of the foregoing problem: (a) dem­
onstrate that half the total intensity of a line is confined within
its linewidth, that is, within the width of line's contour at the half
of its height; (h) find the total intensity of a line whose natural width
is c5w and spectral intensity at the centre J o'

5.51. The distribution of radiation intensity in a spectral line
with Doppler's broadening takes the form:

J - J e- a ("'-"'o)2/"'~' a = mc2 j?kT
OJ - 0 ,. o..J,

where J 0 is the spectral intensity at the line's centre (a_t w = wo);
mis the mass of the atom; T is the temperature of gas, K.

(a) Derive this formula, using Maxwell's di.stribut~on. .
(h) Demonstrate that the Doppler width of lIne 'An, l.e. the WIdth

of line's contour at the half of its height, is equal to

c5'A DoP = 2'AoV (In 2)la.

5.52. The wavelength of the Hg resonance line is 'A = 2536.5 A.
The mean lifetime of the resonance level is T = 1.5.10-7 s. Estimate
the ratio of the Doppler broadening of that line to its natural width
at a temperature of T = 300 K.

5.53. At what temperature is the Doppler broadening of each
component of the spectral doublet 22 P - 128 of atomic hydrogen
equal to the interval between these components?

5.54. To obtain spectral lines without Doppler's broadening,
a narrow slightly divergent beam of excited atoms is used, the obser­
vation being performed at right angles to the beam. Estimate the
beam apex angle in the case of sodium atoms, if the Doppler broad-
ening of the resonance line 'A = 5896 A is ten times one tenth of its
natural width, the velocity of atoms is 1000 mis, and the mean life­
time of resonance excitation state is 1.G·1O-8

S.
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where flB is the Bohr magneton, g is the Lande splitting factor.
• Zeeman splitting of spectral lines:

-"w = (m]g] - 1Il 2g 2 ) flBE/n, (6.2)

,vht're Ill; and ~; are the magnetit: quantum numbers and the Lande factors of
the t:orrespondmg terms, E is the magnetic induction.

! ~ef)~an component notation: Jl-component (~m = 0); a-component (!lm =

• Selection rules for quantum numbers (in addition to those given in the
Introduction to the foreMPinll' chapter):

-"ms = 0; -"!ilL = 0, ±1; c.m J = 0, ±1; (6.3)

if ~J = 0, the transition nl J = 04- lnJ = 0 does not take place.
e Lannor precession frequency:

,
\

(6.1)

(6.4)

g=1+ J(J+1)+S(S+1)-T,(L+-l)
2J (J +- 1)

fl= g V J (J -I- 1) flB;

ATOM IN A MAGNETIC FIELD

6

• Magnetic moment of an atom:

wL = eB/2I1lc,

where e is the elementary charge, m is the electron mass.
• Diamagnetic susceptibility of N isolated atoms:

Z
. _ ,Ve 2

"1 2x- - 6mc 2 L: (r i ), (6.5)
i~d

where (rV is the mean squared distance between an ith electron and an atomic
nudeus.

• Paramagnetic susceptibili ty in a weak magnetic field:

X = aiT; a = Nfl2/3k, (G.6)

w~ere T is the ~bsolut() temp?rature, a is the Curie constant, N is the number
of molecules, fl IS the magnetIC moment of a rnolet:ule, k is the Boltzmann con­
stant.

1
I

5.65. Find the binding energy of an L electron in titanium, if
the wavelength difference between the first line of the K series and its
absorption edge is f...'A. = 0.26 A.

5.66. In the first approximation, the X-ray radiation terms can be
described in the form T = R (Z - a}2/n\ where R is the Rydberg
constant, Z is the atomic number, a is the screening correction, n is
the principal quantum number of a distant electron. Calculate the
correction a for the K and L terms of titanium whose K absorption
edge has the wavelength 'A. K = 2.49 A.

5.67. Find the kinetic energy of electrons ejected from the K shell
of molybdenum atoms by Ag K a radiation.

5.68. Carbon subjected to Al K a radiation emits photoelectrons
whose spectrum comprises several monoenergetic groups. Find the
binding energy of the electrons ejected from carbon atoms with the
kinetic energy of 1.21 keY.

5.69. On irradiation of krypton atoms with monochromatic X-rays
of wavelength 'A., it was found that in some cases the atoms emit
two electrons, namely, a photoelectron removed from the K shell and
an electron ejected from the L shell due to the Auger effect. The
binding energies of the K and L electrons are equal to 14.4 and
2.0 keV respectively. Calculate: (a) the kinetic energies of both elec-
trons, if 'A. = 0.65 A; (b) the value of 'A. at which the energies of both
electrons are equal.

5.70. (a) Demonstrate that the emission spectra of characteristic
X-ray radiation consist of doublets.

(b) Why does the K absorption edge consist of a single discontinu­
ity whereas the L absorption edge is triple and M absorption edge
consists of five discontinuities?

5.71. (a) Indicate the spectral symbol of an X-ray term in an
atom with the electron (l = 1, j = 3/2) removed from one of its
closed shells.

(b) Write the spectral designations of allowed X-ray terms of an
atom in which one electron is removed from the L shell; from the
M shell.

5.72. Determine the number of spectral lines caused by the tran­
sitions between the K and L; K and M; Land M shells of an atom.

5.73. Using the tables of the Appendix, calculate: (a) the wave­
lengths of K a line doublet in tungsten; (b) the difference in
wavelengths of K a line doublet in lead.

5.74. Using the tables of the Appendix, calculate the binding
energy of is, 2s, 2Pl/2' and 2PS/2 electrons in a uranium atom.

MAGNETIC PROPERTIES OF AN ATOM.
ZEEMAN EFFECT

~.1. Taking ~nto account that the magnetic-to-mechanical moment
ratIO for the spm angular momentum is twice as large as that for the
orbital one, derive formula (6.1) by means of the vector model.
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6.2. Calculate the Lande factor for the atoms: (a) with one valence
electron in the S, P, and D states; (b) in the 3p state; (c) in the S
states; (d) in the singlet states.

6.3. Write the spectral symbol of the term with: (a) S = 1/2,
J = 5/2, g = 617; (b) S = 1, L = 2, g = 4/3.

6.4. Find the magnetic moment !-t and the allowed values of the
projection !-t R of an atom in the state: (a) IF; (b) 2D 3/2'

6.5. The maximum value of projection of the magnetic moment of
an atom in the D 2 state is equal to four Bohr magnetons. Determine
the multiplicity of that term.

6.6. Determine the allowed values of the magnetic moment of an
atom in the 4p state.

6.7. Calculate the magnetic moment of a hydrogen atom in the
ground state.

6.8. Demonstrate that the magnetic moments of atoms in the
4D l / 2 and 6G3/ 2 states are equal to zero. Interpret this fact on the
basis of the vector model of an atom.

6.9. Find the mechanical moments of atoms in the 5F and 7H
states, if the magnetic moments in these states are known to be equal
to zero.

6.10. Using the Hund rules, calculate the magnetic moment of an
atom in the ground state, in which the unfilled subshell has the elec­
tronic configuration: (a) np5; (b) nd3 •

6.11. Using the vector model and the relation dJ/dt = M, where
J is the momentum of an atom and 1\1 is the mechanical moment of
external forces, show that the precession angular velocity of the
vector J in the magnetic field B is equal to CD = g~IBB/ti, g being the
Lande factor.

6.12. Find the angular precession velocities of mechanical moments
'of an atom in a magnetic field of B = 1000 G, if the atom is: (a) in
the Ip, 2P 3 / 2 , 5Fl states; (b) in the ground state and its unfilled sub­
shell has the electronic configuration np4. (Use the Hund rule.)

6.13. The mechanical moment of an atom in the 3F state pre­
cesses in a magnetic field of B = 500 G at angular velocity CD = 5.5 X
X 109 S-I. Determine the mechanical and magnetic moments of the
atom.

6.14. Using the vector model, explain why the mechanical moment
of an atom in the 6Fl / 2 state precesses in magnetic field B at angular
velocity (l) whose vector is directed oppositely to vector B.

6.15. An atom in the 2P 1 / 2 state is located on the axis of a circu­
lar loop carrying a current i = 10.0 A. The radius of the loop is
R = 5.0 cm, the atom is removed from the centre of the loop by a
distance z = 5.0 cm. Calculate the maximum value of the interaction
force between the atom and the current.

6.16. In the Stern-Gerlach experiment a narrow beam of Ag atoms
(in the ground state) passes through a transverse strongly inhomoge­
neous magnetic fleld and falls on the screen (Fig. 22). At what value
of the' gradient of the magnetic field is the distance between the ex-
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treme components of the split beam on the screen equal to i) = 2.0 mm
if tt = 10 cm, b = 20 cm, and the velocity of the atoms v = 300 m/s?

6.17. A narrow beam of atoms passes through a strongly inhomo­
geneous magnetic field as in the Stern-Gerlach experiment. Deter­
mine: (a) the maximum values of projections of magnetic moments'of
the atoms in the 4F, 6S, and aD states, if the beam splits into 4, '6,
and 9 components respectively; (b) how many components are observed
when in the beam the atoms are in the 3D 2 and aF1 states.

6.18. In the Stern-Gerlach experiment vanadium atoms in the
ground 4F3/2 state were used. Find the distance betwpen the extreme

Fig. 22

components of the split beam on the screen (see Fig. 22), if a = 10 cm,
b = 20 em, iJBli)z = 23 G/cm, and the kinetic energy of the atoms is
T = 0.040 eV.

6.19. An atom is located in the magnetic fwld B = 3.00 kG.
Determine: (a) the 1<@tal splitting (in em-I) of the ID term; (b) the
spectral symbol of the singlet term whose total splitting equals
0.84 cm- l .

6.20. Plot the diagram of allowed transitions in a magnetic field
between the following states: (a) ID --+- Ip; (b) IF --+- ID. How many
components are there in the spectral line corresponding to each of
these transitions?

6.21. A spectral line A = 0.612 !-tm is caused by the transition
between two singlet terms of an atom. Determine the interval ~A.
between the extreme components of that line in magnetic field
B = 10.0 kG.

6.22. The interval between the extreme components of a spectral
line A = 5~50 A exhibiting the normal Zeeman effect is equal to
~A. = 0.22 A. Find the interval (in eV units) between the neighbour­
mg sublevels of the Zeeman splitting of the corresponding terms.

6.23. ~ spectral instrument with a resolving power A/i)A =
= 1.0 ·10° is used in observing the components of a spectral line

'A, = 5360 A caused by the transition between the two singlet atomic
terms. At what minimum magnitude of magnetic fwld can the
components be resolved, if the observation line is: (a) parallel to,
(b) at right angles to the magnetic field direction?

6.24. In the case of the anomalous Zeeman effect a magnetic field
is regarded as weak, if the magnetic splitting of a term is considerably
less than the natural multiplet splitting. Find: (a) at what value of
magnetic field the interval between the neighbouring components of
the 32P 1/ 2 and 32P 3/ 2 terms of a Na atom is equal to 1/10 of the

,

52

:.' \

53



natural splitting of the 32P state, if the wavelengths of the Na reso­
Il ance line doublet are 589.5.93 A (2P 1/2 -+- 281/ 2 ) and .5889.96 A.
(2P a/ 2 -+- 281/ 2); (b) the same for Lhe 2P1/ 2 and 2P 3/ 2 terms of a hydro­
gen atom in the 22P state, recalling that the natural splitting is
defined by the Dirac equation for the fllle structure; (c) the same for
the?P1/ 2 and 2P 3/ 2 terms of a He+ ion in the 22P state. Compare the
result with that obtained for a hydrogen atom.

6.25. Using the expression for the magnetic moment of an atom,
derive the formula for spectral line splitting in the case of the anom­
alous Zeeman effect in a weak magnetic field.

6.26. What kind of the Zeeman effect, normal or anomalous, is
observed in a weak magnetic field in the case of spectral lines:

(a) 1p-+- 18, 2D 5/ 2-+- 2P 3/ 2; 3D 1-+- 3p o, 515-+- 5H,,;

(b) of the atoms II, He, Li, Be, B, and C?

6.27. Draw the diagram of allowed transition between the %P 3/2
and 281/ 2 terms in a weak magnetic fIeld. For the corresponding
spectral line calculate: (a) the shifts of the Zeeman components in
~lB Brli units; (b) the interval (in cm -1 units) between the extreme
components, if B = 5.00 kG.

6.28. Find the minimum resolving power 'A/6'A of a spectral instru­
ment capable of resolving the Zeeman structure of the Na spectral
line .5890 A. (%P'J/2-+- %81 / 2 ) in magnetic field B = 2.0 kG.

6.29. Draw the diagram of allowed transitions in a weak magnetic
field and calculate the displacements (in ~lBBlli units) of the Zeeman
components of the spectral line: (a) 2D 3/ 2 -? 2P 3/ 2; (b) 2D 5/ 2 -+- 2P 3/ 2·

6.30. Calculate the displacements (in ~lBBlli units) in a weak
magnetic field of the Zeeman n components of the spectral line:
(a) 3D 3 -+- 3P 2; (b) 3D 2 -+- 3P 2.

6.31. Using the vector model, demonstrate that in a strong magnet­
ic field, when the L - 8 coupling breaks up completely, the magnet­
ic interaction energy is equal to !1EB = (mL + 2m",) ~BB. Prove
that this leads to the normal Zeeman effect.

6.32. At what value of magnetic field will the interval between (J'

components of the Li resonance line exceed ten-fold the value of
natural splitting of that line? The wavelengths of the doublet of that
line are equal to 6707.95 and 6707.80 A..

6.33. Show that the frequency of transition between the neighbour­
ing sublrwels of the Zeeman term splitting coincides with the fre­
quency of precession of an angular momentum of atom in a magnetic
field.

6.34. The magnetic resonance occurs when a substance consisting
of atoms with inherent magnetic moments is exposed to two magnetic
fIelds: the stationary field B and the weak variable field B OJ directed
perpendicular to the former one. Demonstrate that the sharp energy
absorption maxima are observed when the frequency of the variable
field is equal to (i) = g~lBB Iii.
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6.35. A gas consisting of atoms in the 2D 3/2 state is exposed to
the joint action of the stationary magnetic field B and the variable
field B v directed transversely to the stationary one and having
a frequency of 2.8.109 Hz. At what value of magnetic induction B
does the resonance energy absorption occur?

6.36. Find the magnetic moment of Ni atoms in the 3F state that
exhibit the resonance energy absorption under the combined action
of the stationary magnetic field B = 2.00 kG and the variable fIeld B v

which is perpendicular to the stationary one and has a frequency
v = 3..50.109 Hz.

DIA- AND PARAMAGNETISM

6.37. Calculate the magnetic moments of He and Xe atoms in
a magnetic field of B = 10.0 kG. Their diamagnetic susceptibilities
are equal to -1.90 and -43.0 (in 10-6 cm3/mol units) respectively.

6.38. A small sphere of diamagnetic material is slowly moved
along the axis of a current-carrying coil from the region where the
magnetic field is practically absent to the point at which the field has
the value B. Demonstrate that the work performed in the process
is equal to A = -xVB%/2, where X is the magnetic susceptibility of
a unit volume of tiro diamagnetic material, V is the volume of the
sphere.

6.39. Find the force that the circular loop of radius R = 5.0 cm,
carrying a current I = 10 A, exerts on a Ne atom located on the
axis of the loop at a distance z = 5.0 cm from its centre. The dia­
magnetic susceptibility of neon is X = -7.2.10-6 cm3/mol.

6.40. Using the expression for the Larmor precession frequency.
show that the diamagnetic susceptibility of a monatomic gas is
X ~ -Ze2N(r2)/6mc2, where Z is the atomic number, N is the
number of atoms, (r2 ) is the mean squared distance between the
nucleus and the electrons.

6.41. Calculate the molar diamagnetic susceptibility of atomic
hydrogen in the ground state. Its wave function takes the form
'\jJ (r) = (nr~)-1/2e-r/r1, where r 1 is the first Bohr r~dius: .

6.42. Recalling that the outer electrons are pnmarIly responSIble
for diamagnetic properties of an atom (why?), evaluate the radii of
outer electron shells in He, Na+, and CI-, whose diamagnetic suscep­
tibilities are equal to -1.9, -6.1, and -24.2 respectively (in
10-6 cm3/mol).

6.43. An atom with spherical-symmetry charge distribution is
located in the magnetic field B. Express the magnetic induction B fl

at the atom's centre, caused by the precession of electron shell, via
the electrostatic potential Vo developed by the electron shell at the
same point.

6.44. When a paramagnetic gas is located in the magnetic field B
at the temperature T, then in the absence of spatial quantization the
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mean value of projectin of the molecule's magnetic moment 7

where 00 = Vxht is the vibration frequency, x is the quasielastic force constant,

(7.3)

(7.1 )

(7.2)
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DIATOMIC MOLECULES

• Rotational energy of a diatomic molecule
E J = hBJ (J + 1); B = n/21,

• Interaction energy as a function of the distance between the nuclei of a
diatomic molecule is shown in Fig. 23, where D is the dissociation energy.
• Mean energy of a quantum harmonic oscillator

where B is the rotation constant, I is the molecule's moment of inertia, J is
the rotation quantum number, J = 0, 1, 2, ...

J selection rule: tJ.J = ±1.
• Vibrational energy of a diatomic molecule

I.l is the reduced mass of a molecule,. v is the ~otation quantum numb.er, vl~
=0, 1, 2, ... , x is the anharmoniClty coeffiCIent (x = 0 for harmolllc oSCIl­
lator).

v selection rule:

I 1 )(Ill') = ilL (a) = Il ~ coth a--;; ;

where /l is the molecule's magnetic moment, L (a) is Langevin's
function.

(a) Derive this expression, using Botzmann's distribution law.
Plot the graph L (a).

(h) See how this formula transforms in the case of a weak (a~ 1)
and a strong (a» 1) magnetic field.

6.45. The magnetic moment of a mole of a certain paramagnetic
gas in a weak magnetic field B = 100 G at T = 300 K is equal to
1.5.10-8 J I(G· mol). Determine the Curie constant relating to one
mole of gas, and the magnetic moment of a molecule.

6.46. Determine the paramagnetic susceptibility of 1 cm3 of gas
consisting of O2 molecules with magnetic moments 2.8 /lB in a weak
magnetic field. The gas is under normal pressure and temperature.

6.47. A paramagnetic gas consisting of atoms in the 281/ 2 state
is in a magnetic field B = 25 kG at a temperature of T = 300 K.
Calculate the ratio 'Y] = I1NIN, where I1N is the difference in the
number of atoms with positive and negative projections of magnetic
moments on the field direction, N is the total number of atoms.
Perform the calculations: (a) with allowance made for the spatial
quantization; (h) in classical terms, i.e., ignoring the spatial quan­
tization.

6.48. Find the magnetic moment of a paramagnetic gas consisting
of N atoms in the 281/ 2 state at the temperature T in the magnetic
field B. Simplify the obtained expression for the case /lB ~ kT.

6.49. A paramagnetic gas is in a magnetic field B = 20.0 kG at
a temperature of T = 300 K. Taking into account the spatial quan­
tization, calculate the ratio 'Y] = I1NIN (see Problem 6.47). Perform
the calculation for the cases when the atoms are in the state: (a) Ip;
(h) 2P3/2'

6.50. Demonstrate that in a weak magnetic field the mean pro­
jection of the magnetic moment of an atom (with the allowance
made for the spatial quantization) (/l B) = /l2BI3kT, where /l =
= gV J (J + 1) /lB.

6.51. A paramagnetic gas consists of Li atoms in the ground state.
Calculate: (a) the Curie constant for one mole of that gas; (h) the
magnetic moment of 1 g of that gas at a temperature of 300 K in
a magnetic field B = 1.00 kG.

6.52. Calculate the paramagnetic susceptibility of 1 g of mon­
atomic oxygen in a weak magnetic field at the temperature 1600 K.
The atoms are in the ground sp 2 state.

• Fig. 24 illustrates the diagram describing the emergence of red (a) and violet
(b) satellites in the Raman scattering of light.
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ROTATIONAL AND VIBRATIONAL STATES

7.1. Using the tables of the Appendix, find for H 2 and NO mole­
cules: (a) the energy required for their promotion to the first rota­
tional level (J = 1); (b) the angular rotation velocity in the state
with J = 1.

7.2. For an HCI molecule find the rotational quantum numbers J
for two neighbouring levels whose energies differ by 7.86.10-3 eV.

7.3. Determine the angular momentum of an oxygen molecule in
the state with rotational energy 2.16.10-3 eV.

7.4. Find the temperature values at which the mean kinetic
energy of translation of H 2 and N 2 molecules is equal to their rota­
tional energy in the state with quantum number J = 1.

7.5. Taking into account the degeneracy g of rotational levels
(g = 2J + 1), calculate the ratio of hydrogen molecules being in
true rotational states with J = 1 and J = 2 at the temperature
T = 300 K.

7.6. Find the quasielastic force constants for H 2 and CO mole­
cules.

7.7. The potential energy of interaction of atoms in a diatomic
molecule can be described approximately by the following formula

where r 0 is the equilibrium nuclear separation, U 0 is the depth of
the potential well, a is the intrinsic molecular constant. Calculate
the values U o and a for a hydrogen molecule.

7.8. For a hydrogen molecule calculate: (a) the classical vibra­
tion amplitude corresponding to the zero vibrational energy; (b) the
root-mean-square value of the vibration coordinate x in the ground
state which is described by the wave function '\jJ (x) ex: e-0h2

/
2

,

where a 2 = ftwln; ft is the reduced mass, w is the vibration fre­
quency.

7.9. Find the energy required to promote an H 2 molecule from the
ground state to the first vibrational level (v = 1). How much higher
is this energy as compared to that required to promote the given mole­
cule to the first rotational level (J = 1)?

7.10. Determine the temperature at which the mean kinetic energy
of translation of Cl 2 molecules is equal to the energy required to
promote these molecules from the ground state to the first vibra­
tional level (v = 1).

7.11. For an OH molecule find the difference in energies of the
states with quantum numbers v' = 1, J' = 0 and v = 0, J = 5.

7.12. For an HF molecule calculate the number of rotational
levels located between the ground and first vibrational levels.

7.13. Determine the greatest possible vibrational quantum number,
the corresponding vibrational energy, and dissociation energy of
a diatomic molecule whose natural vibration frequency is wand
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anharmonicity coefficient x. Calculate these quantities for an II 2

molecule.
7.14. Calculate the anharmonicity coeffIcient for a Cl 2 molecule,

if its natural vibration frequency and dissociation energy are
known.

7.15. Calculate the difference in dissociation energies of heavy
and light hydrogen molecules, D2 and H 2 , if the vibration frequency
of an H oJ molecule is known.

7.16. Find the ratio of HBr molecules being in purely vibrational
states (without rotation) with quantum numbers v = 2 and v = 1
aliT = 910 K. At what temperature will that ratio be equal to 1 : 10?

7.17. Taking into account the degelo18racy of rotational levels (see
Problem 7.5), determine the ratio of the number of hydrogen mole­
cules in the states with quantum numbers v' = 1, J' = 0 to those
with v = 0, J = 5 at T = 1500 K.

7.18. Derive formula (7.3).
7.19. Using formula (7.3), calculate the temperature at which:

(a) the mean vibrational energy of a Cl" molecule is twice the zero
vibrational energy; (b) the level corresponding to the mean vibra­
tional energy of an O2 molecule coincides with the fifth rotational
level of that molecule (J = 5, v = 0).

7.20. Proceeding from formula (7.3) derive the expression for
molar vibrational lfeat capacity of diatomic gas at constant volume.
Find the approximate forms of that expressiol'l for low and high tem­
peratures (kT«nw and kT~nw).

7.21. Using formula (7.3), calculate the molar vibrational heat
capacity at constant volume for a gas consisting of Cl 2 molecules
at temperatures of 150, 300, and 450 K. Plot the approximate graph
of CviIJ (T).

MOLECULAR SPECTRA. RAMAN EFFECT

7.22. Demonstrate that the intervals (expressed in terms of wave
numbers) between the neighbouring spectral lines of the true rota­
tional spectrum of a diatomic molecule are of the same value. Find
the moment of inertia of a CH molecule and the distance between
its nuclei, if the intervals between the neighbouring lines of the
true rotational spectrum of these molecules are equal to ~:; =
= 29.0 cm- I .

7.23. The wavelengths of two neighbouring lines of the true rota­
tional spectrum of HCl molecules are equal to 117 and 156 ~lm.

Determine: (a) the rotational constant B' in cm-I units and the mo­
ment of inertia of these molecules; (b) the rotation quantum numbers
of the levels between which occur the transitions corresponding to
these lines.

7.24. Determine by what amount the angular momentum of a CO
molecule changes OR emission of a spectral line ')., = 1.29 mm belong­
ing to the true rotational spectrum .
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7.25. How many lines are there in a true rotational spectram
of an OH molecule?

7.26. In the vibration-rotation absorption spectrum of HBr mole­
cules, the wavelengths of the zero lines corresponding to forbidden
transitiollls (f'..J = 0) between the ground level and the closest vibra­
tional levels (v = ° and v' = 1, 2) are equal to 2.559.3 and
5028.2 cm -1. Determine the vibration frequency and anharmonicity
coefficient of these molecules.

7.27. Consider the vibration-rotation band of spectrum of a dia­
tomic molecule for which the selection rule f'..J == +1 is valid. Show
that if the rotational constant is the same for the states between
which the transition occurs, the spectral line frequencies of the band am

(t) = (t)o + 2Bk; k = 1, 2, 3, ... ,

where (t)o is the frequency of the zero line forbidden by the J selectiolll
rule, B is the rotational constant.

7.28. Calculate the moment of inertia and anharmonicity coeffici­
ent of an HF molecule, if the wave numbers of four consecutive­
spectral lines of rotational structure of vibration band are equal to­
3874, 3916, 4000, and 4042 cm -1. These lines are known to corre­
spond to the transitions f'..J = +1 and v' = 1--+ v = 0. The Yibra­
tion frequency of the given molecule corresponds to the wave num­
ber ~ = 4138.5 cm -1. The rotational constant is assumed to be equal
for all levels.

7.29. Find the fractional isotope shift (f'..JJA) of lines in the true
rotational speetrum of the mixture of H35Cl and H37Cl molecules.

7.30. Consider the spectral line caused by the transition v' == 1,.
J' = 0--+ v = 0, J = 1 in CO molecules. Calculate in terms of wave
numbers the isotope shifts f'..~ib and f'..~ot of vibrational and rota­
tional components of the line (v = VVib - Vrot) and their ratiO'
for the mixture of 120 60 and 120 70 molecules. The anharmonicity
is to be neglected.

7.31. Find the vibration frequency and quasielastic force constant
of an S2 molecule, if the wavelengths of the red and violet satellites~

closest to the fixed line, in the vibrational spectrum of Raman scat­
tering are equal to 3466 and 3300 J\. The anharmonicity is to be
neglected.

7.32. Determine the vibration frequency of an HF molecule, if
in the vibrational spectrum of Raman scattering the difference in
wavelengths of the red and violet satellites, closest to the fixed line~

is equal to f'..A, = 1540 A. The wavelength of the incident light is
A, = 4350 A. The anharmonicity coefficient of the molecule is x =
= 0.0218.

7.33. Find the ratio of intensities of the violet and red satellites,.
closest to the fixed line, in the vibrational spectrum of Raman scat­
tering by Cl 2 molecules at a temperature of T = 300 K. By what
factor will this ratio change, if the temperature is doubled?
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7.34. Suppose that for certain molecules the selection rule for

-the rotational quantum number is f'..J = +1. Demonstrate that
the rotational spectrum of Raman scattering of these molecules obeys
the selection rule f'..J = 0, +2.

7.35. In the rotational spectrum of Raman scattering the fre­
quencies of red and violet satellites of diato~ic molecules (with the
.selection rule being f'..J = 0, +2) are descnbed by the formula

(t) = (t) 0 + 2B (2k + 1); k = 1, 2, 3, . . .,

where (t)o is the fixed line frequency and B rotational constant.
(a) Derive this formula. .
(b) Determine the moment of inertia and the nuclear separa~lOn

in an O
2

molecule, if the difference in wave numbers of the two neIgh-
bouring red satellites is equal to 5.8 cm-1. .,

7.36. In the rotational spectrum of Raman scattermg of lIght
with wavelength A, = 5461 A the difference in wavelengths of the

o "
,red and violet satellites, closest to the fixed line, equals f'..A, = 7.2 A
for N molecules. Bearing in mind the selection rule f'..J = 0, +2,
.find the rotational constant B' in cm -1 units and moment of inertia
.vf these molecules.



8 I • Debye equation for molar vibrational energy of a crystal:

CRYSTALS
9/T

E=9R8[..!.+(-.!..\4 r ~J-';
8 8) J eX-l

6

8= f!Wmax
k '

(8.5)
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Fig. 25

(8.6)

where R is the universal gas constant, 8 is the Debye characteristic tPrtl\wraLure,
Wmax is the maximum vibration frequency calculated from thp condition that
the total number of vibrations is equal to the numbpr of vibrational degrpes of
freedom in a crystal.

Molar vibrational heat capacity of a crystal at T «:: 8:

CRYSTALLINE STRUCTURE. X-RAY DIFFRACTION
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8.1. Knowing the density and crystal type, determine the lattice
constant of sodium and copper.

8.2. Find the density of NaCI and CsCI crystals (see Fig. 25).
8.3. Derive formula (8.1).
8.4. Knowing the lattice constant a, calculate the interplanar

distances d100 ' dno , dJ11 and their ratios for: (a) simple; (h) space­
centered; (c) fac!f':centererl cubic lattices.

8.5. Calculate the periods of identity along the straight lines [111]
and [011] in the crystalline lattice of AgBr whose density is 6.5 g/cm3 •

The lattice in question is of the cubic NaCI type.
8.6. Determine the ratio of periods of identity along the direc­

tions [100l, [110l, and [111] for the simple, space-centered, and face­
centered cubic lattices.

8.7. Determine the structure of an elementary cell of a crystal
belonging to the cubic system with 4-fold symmetry axis, if the inter­
planar distance for the set of planes (100) is known to be equal to
d1 = 1.58 A and for the planes (110) d2 = 2.23 A. The density of
the crystal is 19.3 g/cm3 •

8.8. A parallel X-ray beam with the wavelength A falls in an
arbitrary direction on a plane rectangular net with periods a and b.
What pattern will be observed on a screen positioned parallel to
the plane net? Find the directions to the diffraction maxima.

8.9. A plane X-ray beam falls on a three-dimensional rectangular
lattice with periods a, b, c. Find the directions to the diffraction
maxima, if the incident beam direction is parallel to the edge a of
the elementary cell. For which wavelengths will the maxima be
observed?

8.10. A plane X-ray beam falls in an arbitrary direction on a sim­
ple cubic lattice with constant a. At which wavelengths are the dif­
fraction maxima observable?

8.11. Using a simple cubic lattice as an example, demonstrate
that Bragg's equation follows from Laue's equations.

Lattice
constant

NoGL,/ ../ ./
./ ./ ../

../ ./ ../
./

../ ./ ../
../ ./ ./

a

f' Period of identity is a distance between the neirrhbourin<' identical atoms
along a certain direction in a lattice. b 0

• Interplanar distance in a simple cubic lattice

d=a! Vh~+k2+L~, (8.1)

where a is the lattice constant, h, k, 1 are the Miller indices of Lhe considered
system of planes.
I; Bragg's equation

2d sin 1'} = IlA, (8.2)

where 1'T .is the glancing .angle, Il is tl~e refl~ction order, 'A is the wavelength.
" C~ndltIOns under WhICh the reflectIOns of the nth order are possible from the
set of planes.(h*k*I*), whe.re h* =, nh, k* =:= nk, 1* = nl: in the case of space­
centered la~tlc? tfle sum of h*, k*, and 1* IS even; in the case of face-centered
lattIce the mdlces h*, k*, and 1* must possess parity.

• Bor~-La~l(~e forn~ula, defming' the bindillg energy of ionic crystals as related
to a pall' of IOns of opposi te charge

U=-aL+L, a={ 1.748 for a NaCI type lattice (8.3)
r rn 1.763 for a CsCI type lattice,

where q is the ionic charge, l' is the smallest distance between the ions of opposite
charge, a, ~, and n are constants (a is the Madelung constant). The structure of
NaCI and CsCI crystals is illustrated in Fig. 25.
• Compressibility (due to hydrostatic pressure)

K = -~ dV (8.4)
V dp'

where V is the volume of a crystal, p is the pressure.



photographic camera of radius 57.3 mm. The incident beam direction
is perpendicular to the rotation axis (the camera's axis). The X-ray
pattern comprises the system of maxima distributed over the layer
lines (Fig. 26). Determine the type of the metal's cubic lattice
(space- or face-centered) and fwd its constant a, if the distance be­
tween the layer lines n = 2 and n = -2 is equal to 65.0 and
23.5 mm respectively, the rotation being performed a bout directions
[110] and [111].

8.17. What orders of monochromatic X-ray reflection will disap­
pear on transition from the simple cubic lattice to space- and face­
centered ones? The lattice constants are assumed to be equal in all
three cases. Consider the reflections from the planes (100), (110),
and (111).

8.18. Find the values of the l\liller indices h, k, l for the planes
that provide the reflections forming the first five lines in a Debye
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8.12. Find the lattice constant for AgBr (of a NaCllattice type),
if the K a line of vanadium is known to form the first-order reflection
from the set of planes (100) with glancing angle \t = 25.9°.

8.13. Calculate the wavelength of X-rays forming the second­
order reflections from the set of planes (100) in a NaCI crystal (see
Fig. 25) with glancing angle 'fr. = 25.0°. Find also the angle at which
these X-rays form the highest order reflections from the given set
of planes.

8.14. ANaCI single crystal (see Fig. 25) is photographed by Laue's
method along the four-fold axis (z axis). The photoplate is located
at a distance L = 50 mm from the crystal. Find for the maxima corre­
sponding to reflections from the planes (031) and (221): (a) their dis­
tances from the centre of Laue's diagram; (b) the wavelengths of
X-rays.

8.15. A beam of X-rays of wavelength A falls on a NaCI crystal
(see Fig. 25) rotating about the four-fold symmetry axis, with the
incident beam direction being at right angles to the rotation axis.
Determine the value of A if the directions to the maxima of the sec­
ond and the third order formed by the set of planes (100) make an
angle ex = 60°. 0

8.16. A beam of X-rays with a wavelength A = 0.71 A falls on
a rotating single crystal of metal located on the axis of cylindrical

powder photograph of the face- and space-centered cubic lattices.
8.19. Calculate the magnitude of diffraction angles 2\t for the

first five lines in a Debye powder photograph of: (a) aluminium and
(b) vanadium, if A = 1.54 j\.

8.20. Determine the reflection indices h*, k*, l* and the corre­
sponding interplanar distances for three lines in Debye powder pho­
tograph of aluminium whose diffraction angles (2\t) are equal to
17°30', 33°50', and 54°20', when A = 0.71 A.

8.21. A narrow beam of electrons with an energy of 25 keY passes
through a thin polycrystalline fIlm and forms a set of diffraction
rings on a flat screen fixed at a distance L = 20.0 em from the fIlm.
The diameter of the first ring is D = 13.1 mm. Calculate the lattice
constant. The lattice is known to be a space-centered cubic
one.

8.22. In an electron diffraction photograph of a polycrystalline
film with cubic lattice, the diameter ratio of the first two diffraction
rings is 1 : 1.4. Taking into account that the diameters of these rings
are considerably smaller than the distance between the film and
the screen, determine the type of the lattice (face- or space-centered).

BINDING ENERGY. HiAT CAPACITY OF CRYSTALS

8.23. Calculate the Madelung constant for a unidimensional crys­
tal, that is, a chain of ions with alternating positive and negative
charges. In calculations use the expansion of the function In (1 + x)
into a series.

8.24. Using formula (8.3), find: (a) the expression for the binding
energy of ionic crystal at equilibrium; (b) the refractive index n of
NaCI and CsCI crystals (see Fig. 25) whose binding energies at equi­
librium are equal to 765 and 627 kJ Imol respectively.

8.25. A NaCI crystal with compressibility K = 3.47.10-11 Pa-1

was hydrostatically compressed so that its volume diminished by
1.0%. Find: (a) the pressure to which the crystal was subjected;
(b) the increment of the volume density of crystal's binding energy.

8.26. The compressibility of a NaCI crystal at equilibrium (see
Fig. 25) is equal to K = 3.47.10-11 Pa -1. Using formula (8.3), cal­
culate: (a) the refractive index n; (b) the binding energy of a mole of
this crystal at equilibrium.

8.27. Calculate the values of the same quantities as in the fore­
going problem for a CsCI crystal (see Fig. 25) whose compressibility
is K = 5.10.10-11 Pa-1•

8.28. A NaCI crystal (see Fig. 25) whose compressibility is equal
to K = 3.47.10-11 Pa -1 at equilibrium was subjected to omnidirec­
tional tension. Using formula (8.3), find how the distance between
the ions increases when the crystal becomes expanded up to the theo­
retical tensile strength value (at which the negative pressure reaches
the highest magnitude). What is the magnitude of that pressure?
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8.40. Figure 27 illustrates the temperature dependence of the heat
capacity of a crystal (according to Debye). Gel is the classical heat
capacity, 8 is the characteristic temperature. Using this graph,
find:

(a) the characteristic temperature for silver, if its molar heat
capacity equals 15 J·K -1· mol-1 at T = 65 K;

(h) the molar heat capacity of aluminium at T = 100 K, if it
equals 22.5 J·K-1· mol-1 at T = 280 K;

(c) the highest vibration frequency romax for copper whose heat
capacity at T = 125 K differs from the classical value by 25%.

8.41. Evaluate the maximum values of energy and momentum
of a phonon (acoustic quantum) in aluminium.

•
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8.35. Assuming the propagation velocities of longitudinal and
transverse vibrations to be independent of frequency and equal to
v I and Vt respectively, find the number of vibrations dZ in the
frequency interval (ro, ro + dro) and the characteristic temperature 8:
(a) of a two-dimensional crystal (a plane net consisting of N identical
atoms); the area of the plane net is S; (b) of a three-dimensional
crystal (a cubic lattice of N identical atoms and volume V).

8.36. Calculate the characteristic temperature for iron in which
the propagation velocities of longitudinal and transverse vibrations
are equal to 5850 and 3230 mls respectively.

8.37. Using the Debye equation, calculate: (a) the ratio !J.EIEo•
where !J.E is the energy required to heat a crystal from 0 K up to B;
Eo is the zero vibration[ll energy; (b) the energy required to heat
a mole of aluminium crystal from 8/2 up to 8.

8.38. Using the Debye equation, calculate the molar heat capacity
of a crystal lattice at temperatures 8/2 and 8. By how many percents
does the heat capacity at temperature 8 differ from the classical
value?

8.39. Calculate the characteristic temperature and zero vibration­
al energy (in units of J Imol) for silver, if its heat capacity at tem~

peratures 16 and 20 K is known to be equal to 0.87 [Ind 1. 70 J . K -1 ><
X mol-1 respectively."",

8.29. Along with formula (8.3), another expression for binding
energy of ionic crystal is frequently used:

U = _aq2/r + Ae-r/ p ,

where a and q have the same meaning, A and p a~e certain ne~ c?n­
stants. Using that formula, find: (a) the expressIOn for the bmdmg
energy of an ionic crystal at equilibri:Im;. calculate the con~~an~ p f~r
a NaCI crystal (see Fig. 25) whose bmdmg energy at .equ.Ihbrmm IS
equal to 765 kJ Imol; (b) the expression for compressIbIhty of crys­
tals with the NaCI type of the lattice at equilibrium. .

8.30. Determine the vibrational energy and heat capacIty of a crys­
tal at the temperature T, treating ea~h atom of the lattice as. a quan­
tum harmonic oscillator and assummg the crystal to conSIst of N
identical atoms vibrating independently with the same frequency ro.
Simplify the obtained expression for heat capacity for the cases
kT» liro and kT~ liro. .

8.31. Consider a unidimensional crystal model, a cham of N
identical atoms, whose extreme atoms are stationary .. Let ~ be the
chain's period, m the mass of an atom, :' the ~uaSIelastIc force
constant. Taking into account only the mteractIOn betw~en t~e
neighbouring atoms, find: (a) the oscillation equation of thIS cham
and the spectrum of characteristic values of the wave number k;
(b) the frequency dep~ndenceof t~e wave n,umber ~nd t~e total num­
ber of allowed vibratIOns; determme the hIghest vIbrat~on frequency
and the corresponding wavelength; .(c) the phase ve~o.cIty as a func­
tion of the wave number and the ratIO of phase velocItIes correspond­
ing to the longest and shortest wa:el~ngths; (d) the nUI?ber of
characteristic vibrations of the cham m the frequency mterval
(ro, ro + dro). .....

8.32. Assuming the propagatIOn velocIty of vIb~a~IOns t.o be mde-
pendent of frequency and equal to v, find for a ullldImensIOnal crys­
tal that is the chain of N identical atoms and length L: (a) the num­
ber' of lon~itudinal vibrations in the frequency interval ~ro, ~ +
+ dro); (b) the characteristic temperature 8; (c) the molar vI~ratI~n­
al energy and molar heat capacity at. the temperature T; sImphfy
the expression obtained for heat capacIty for the cases when T» B
and T ~ 8. . I .

8.33. Assuming the propagation velocity of transverse and ongI-
tudinal vibrations to be the same, independent of frequency, and
equal to v, fmd for a two-dimensio~al crystal, th~t is, a square plane
net consisting of N atoms and havmg the area S. (a) the number of
vibrations in the frequency interval (ro, ro + dro); (b) the character­
istic temperature 8; (c) the molar vibrational energy. and mo~ar heat
capacity at the temperature T; simplify the expressIOn obtamed for
the heat capacity for the cases when T» 8 and T ~ 8..

8.34. Find the values of the quantities of the foreg?mg pr~bl~m
from a three-dimensional crystal, that is, a cubic lattIce consIstmg
of N identical atoms. The volume of the lattice is V.
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METALS AND SEMICONDUCTORS

9

• Concentration of free electrons with energies falling into the interval (E, E +
+ dE)

(9.1)VEdE
(E-E)/hT '

1+e J

y2m3

n (E) dE = f (E) g (E) dE = n:2fi 3

FERMI DISTRIBUTION

9.1. Using the uncertainty principle, fwd the number of free elec,
trons whose kinetic energies fall within the interval (T, T + dT) in
a metal at 0 K. The metal is shaped as a rectangular parallelepiped
of volume V. The number of quantum states is to be determined
under the assumption that only those states can be physically distin­
guished whose electron momentum projections differ at least by
/1px = 2nli/lx, lx being the edge of the parallelepiped (similarly,
for /1P!I and /1p z)·

9.2. Using the Fermi distribution, derive an expression for the
highest kinetic energy Tmax of free electrons in a metal at OK, if their
concentration is equal to n. Calculate T max for silver, assuming one
free electron to correspond to each atom.

9.3. Using the Fermi distribution, find at 0 K: (a) the mean ki­
netic energy of free electrons in a metal, if their highest kinetic energy
T max is known; (b) the total kinetic energy of free electrons in 1 cm3

of gold, assuming one free electron to correspond to each atom.
9.4. What fraction of free electrons in a metal at 0 K has a kinetic

energy exceeding half the maximum energy?

where f (E) = [1 + e(E-Ej)/hT j _1 is called the Fermi-Dirac function, g (E)
is the density of states, E j is the Fermi level. For metals

Ej= Ejo [ 1- ~; ( ~~o tJ; Ejo= ;~ (37l 2n)2/3,

where E jo is the Fermi level at 0 K, n is the concentration of free electrons.
In the above formulas the energies E and E j are counted off the bottom of

the conduction band.
• Hall coefficient ~r a semiconductor

E1. 1 neb~-nhb~
R=--=- (9.2)

jB' ec (nebe+nhbh)2

where e is the electronic charge, ne and nh are the concentrations of electrons and
holes, be and bh are their mobilities, B is the magnetic induction.

8.42. In a crystal consisting of N identical atoms the number of
phonons in the frequency interval (ffi, ffi + dffi) at the tempera­
ture T is equal to

( !i)3 0)2 dO)
n (ffi) dffi = 9N k6 hw/hT •

. e -1

where 8 is the characteristic temperature of the crystal.
(a) Derive this expression, using the formula for dZw obtained

in the solution of Problem 8.34.
(b) Determine the most probable values of energy and frequency

of phonons at the temperature 8/2.
(c) Find the temperature, beginning from which the most proba­

ble frequency of phonons becomes equal to their maximum frequency.
The temperature 8 is assumed to be known.

(d) Find the character of temperature dependence of the total
number of phonons when T« 8 and T ~ 8.

8.43. The scattering of light by a transparent solid can be treated
as a scattering of photons by phonons, assuming that photons possess
the momentum nffilc' in a substance, where c' is the velocity of light
in that substance. Using the laws of conservation of energy and mo­
mentum, demonstrate that the light scattered through angle it con­
tains, in addition to the fixed component, two more components with
fractional shift /1ffi/ffi = 2 (vic') sin (it/2), where ffi is the incident
light frequency, and v the sonic velocity in the substance.

8.44. At cryogenic temperatures some substances (e.g. paramag­
netic salts) possess a heat capacity C i which exceeds a lattice heat ca­
pacity Clat many-fold. The heat capacity Ci has been found depend­
ing on internal degrees of freedom, in particular, on the interaction
of spins with intracrystalline fields. Assuming that each atom inde­
pendently orients its spin either parallel or antiparallel to a certain
direction and the difference in energies of the atom in these states
equals /1E, find: (a) the temperature dependence of C i ; (b) the value
of the ratio kTI/1E at which C i reaches a maximum; (c) the ratio
Cz maxlClat for the case when Ci max corresponds to a temperature
T = 81100; 8 is the characteristic temperature.
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9.5. Calculate the temperature of an ideal gas consisting of parti­
cles whose mean kinetic energy is equal to that of free electrons in
copper at 0 K. Only one free electron is supposed to correspond to
each copper atom.

9.6. Calculate the interval (in eV units) between the neighbouring
levels of free electrons in a metal at 0 K near the Fermi level if the
volume of the metal is V = 1.00 cm3 and the concentration 'of free
electrons is 2.0.1022 cm-3.

9.7. ~he differe~ce in the values of F j and E JO is frequently ne-
g~ecte~ m calculatiOns. Evaluate by how many percents E j and E jo

dIffer m the case of tungsten at the temperature of its melting. As­
sume that there are two free electrons per each atom.

9.8: For a metal at 0 K whose free electrons can reach the highest
velocIty Vm, find the mean values of: (a) the velocity of free electrons;
(b) the reciprocal of their velocity, 1/v.

9.9. Calculate the most probable and mean velocities of free
electrons in copper at 0 K, if their concentration is 8.5.10

22
cm-

3
.

9.10. Using a simple cubic lattice as an example demonstrate
that, ~f one free electron corresponds to each atom, the shortest de
B:oglle wavelength of such electrons is approximately double the
dIstance between the neighbouring atoms.

9.11. Derive the function defining the distribution of free electrons
over the de Broglie wavelengths in a metal at 0 K. Draw the graph.

9.12. The mean energy of free electrons in a metal at the tempera-
ture T is equal to

(EJ = ~ E jo [1 + 51~2 ( ;~J2J.

Using this formula, fmd for silver with free electron concentration
6.0.1022 cm-3: (a) the ratio of heat capacities of an electron gas and
a crystal lattice at a temperature of T = 300 K; (b) the temperature
at which the heat capacity of electron gas equals that of the lattice.

9.13. The free electron concentration in metallic sodium is n =
==2.5.1022 cm-3. Find the electron gas pressure p; demonstrate that
p = (2/3) E, where E is the volume density of its kinetic energy.

9.14. The number of free electrons in a metal which fall within
velocity interval (v, v + dv) is defined as follows:

n (v) dv ~= 2 ( ;n r 1+ /;~Ej)/kT ; dv = dvx dv y dvz·

(a) Derive the above expression from formula (9.1).
(b) Find the concentration of electrons whose velocity projec­

tions fall within interval (vx, V x + dvx) at 0 K, if the highest velocity
of free electrons is equal to Vm'

9.15. Using the formula of the foregoing problem, prove that,
when two different metals are in contact, their Fermi levels reach the
same height.
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9.16. Using the formula of Problem 9.14, show that the number of
electrons leaving a metallic surface (due to thermionic emission)
of 1 cm2 are per 1 s with the velocities falling within interval (v, v +
+ dv) is equal to

v (v) dv = 2n (m/2nh)3 e-(A+Te)/kTv3 dv,

where T e is the kinetic energy of the electron, A is the work func­
tion. Take into account that A 3> kT.

9.17. Using the formula of the foregoing problem, find: (a) the
mean kinetic energy of thermionic emission electrons; (b) the therm­
ionic current density; (c) the work function, if the increase in tem­
perature from 1500 K to 2000 K leads to the increase of thermionic

current 5.0.103 times.9.18. Having determined the concentrations of free electrons
and holes, demonstrate that at sufficiently low temperatures the
Fermi level in an impurity-free semiconductor is in the middle of

the forbidden band.9.19. At sufficiently low temperatures the concentration of free
electrons in a semiconductor of n type is

n
e
=,V 2no(mkT /2nh2)3/" e-/',E/2kT ,

4"

where no is the concentration of donor atoms and f'..E their activa-

tion energy. •
(a) Derive this expression using the Fermi distribution.
(b) Find the location of the Fermi level.

PROPERTIES OF METALS AND SEMICONDUCTORS

9.20. The electric conductance of a metal (J = ne
2
1:/m, where n is

the free electron concentration; e and m are the electronic charge and
mass; 1: is the relaxation time which is related to the electron's mean
free path as ()..,) = 1: (v); (v) is the mean velocity of electrons.
Calculate 1:, (f,) and the free electron mobility, if n = 8.5.10

22
cm-

3

and resistivity P ~~ 1.60.10-6 Q. cm. Compare the obtained value of
()..,) with the interatomic distance in copper.

9.21. Find the refractive index of metallic sodium for electrons
with kinetic energy T = 135 eV. Only one free electron is assumed
to correspond to each sodium atom.

9.22. Suppose that due to a certain reason the free electrons shift
by the distance x at right angles to the surface of a flat metallic layer.
As a result, a surface charge appears together with restoring force which
brings about the so-called plasma oscillations. Determine the fre­
quene,y of these oscillations in copper whose free electron concentra­
tion is n = 8.5.1022 cm-3. How high is the energy of plasma waves in

copper?9.23. Experiments show that alkali metals are transparent to
ultraviolet radiation. Using the model of free electrons, fmd the
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9.31. A sample of n-type germanium has a resistivity P =

= 1.70 Q·cm and a Hall coefficient R = 7.0.10-17 CGSE at the
temperature T = 300 K. Find: (a) the concentration and mobility
of conduction electrons; (b) their mean free path.

9.32. In the Hall effect measurements a plate of width d = 1.0 cm
and length l = 5.0 cm made of p-type semiconductor was placed in
the magnetic field B = 5.0 kG. A potential difference U = 10.0 V
was applied across the edges of the plate. In this case the Hall field
is V = 0.050 V and resistivity P = 2.5 Q. cm. Determine the Hall
coefficient, concentration of holes and hole mobility.

9.33. Having considered the motion characteristics of electrons
and holes in a semiconductor carrying a current and placed in an
external magnetic field, find the Hall coefficient as a function of con­
centration and mobility of charge carriers.

9.34. Calculate the difference in the mobilities of conduction elec­
trons and holes in impurity-free germanium, if in a magnetic field
B = 3.0 kG the ratio of the transverse electric field strength E.I­
to the longitudinal one, E, is known to be equal to 0.060.

9.35. The Hall effect could not be observed in a germanium sample
whose conduction electron mobility is 2.1 times that of holes. For
this sample find: (a) the ratio of conduction electron and hole con­
centrations; (b) what fraction of electric conductance is effected I'y"
electrons. ",'

I
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threshold wavelength of light beginning from which that phenomenon
is observed in the case of metallic sodium (whose free electron
concentration is n = 2.5.1022 cm-S).

9.24. The alkali metals exhibit temperature-independent para­
magnetic properties which can be explained as follows. On applica­
tion of the external magnetic field B, the free electrons with spins
?riented oppositely to the vector B start reorienting along it and,
III accordance with the Pauli principle, promoting to higher non­
occupied levels. This process will proceed until the decrease in the
magnetic energy of electrons equalizes the increase in their kinetic
energy. From this condition find the paramagnetic susceptibility of
a metal of 1 cms volume in a weak magnetic field, if the free electron
concentration is n = 2.0.1022 cm-s.

9.25. The photoconduction limit in impurity-free germanium is
equal to 1.0 ~ 1.7 /lm at very low temperatures. Calculate the tem­
perature coefficient of resistance of
this semiconductor at T = 300 K. lnct

9.26. Find the lowest energy of +2
electron-hole pair formation in
pure tellurium at 0 K whose elec­
tric conductance increases 11 = 5.2
times, when the temperature is
raised from T 1 = 300 K to T 2 =

= 400 K. -4
9.27. Figure 28 illustrates the

logarithmic electric conductance as
a function of reciprocal tempera­
ture (T in Kelvins) for boron-doped
silicon (n-type semiconductor).
Explain the shape of the graph. By
means of the graph find the width of the forbidden band in silicon and
activation energy of boron atoms.

9.28. A sample of impurity-free germanium, whose forbidden band
width is 0.72 eV and electron and hole mobilities are 3600 and
1800 cm2/(V ·s), is exposed to an electromagnetic radiation field at
300 K. Under these conditions the sample's resistivity equal 43 Q ,cm.
Determine the fraction of the electric conductance caused by pho­
toconduction. Instruction. Make use of the solution of Problem 9.18.

9.29. The resistivity of impurity-free germanium at room temper­
ature P = 50 Q·cm. It becomes equal to PI = 40 Q·cm, when the
semiconductor is illuminated with light, and t = 8 ms after switch­
ing off the light source, the resistivity becomes equal to P2 =
= 45 Q. cm. Find the mean lifetime of conduction electrons and
holes.

9.30. Using the formula cited in Problem 9.19, calculate the acti­
vation energy of donor atoms in an n-type semiconductor, if the
electron mobility is known to be equal to 500 cm2/(V. s), concentration
of donor atoms to 5.0.1017 cm-3 , and resistivity at 50 K to 1.5 kQ.
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PRINCIPAL CHARACTERISTICS OF NUCLEI

RADIUS, MASS, AND BINDING ENERGY OF NUCLEI

to.1. Evaluate the density of nuclear matter. nucleon concen­
tration, and volume density of electric charge in a nucleus.

to.2. The scattering of protons by a thin lead foil obeys the
Rutherford formula provided the values Bp for protons do not exceed
450 kG· cm. Evaluate the radius of a lead nuclei.

to.3. The results of experiments on scattering fast electrons by
nuclei agree well enough with the distribution of electric charge
volume density in a nucleus:

14
75

p (r) ex [1 +e(r-ro)/6j-l,

where ro= 1.08A1/3.10-13 cm, 6 = 0.545.10-13 cm.
Find the most probable radius of distribution of electric charge in an
Ag nucleus. Compare the result obtained with the nucleus' radius.

10.4. In the modern system of atomic masses a unit mass is adopt­
ed to be 1/12 of the mass of a 12C atom (to replace the old unit mass
equal to 1/16 of the mass of an 160 atom). Find the relation between
the new and the old unit masses. How did the numerical values of
atomic masses change on adoption of the new unit?

10.5. Find the percentage (atomic and mass) of the 13C isotope
in natural carbon Which consists of 12C and 13C isotopes. The atomic
mass of natural carbon and of both isotopes are supposed to be
known.

10.6. Find the atomic ma~ses of IH, 2H, and 160 isotopes, if the
differences in masses of the three fundamental doublets are known
(in a.m.u. 's): IH 2 - 2H = 0.001548; 2H 3 - 1/212C = 0.042306;
120H4 - 160 = 0.036386.

10.7. Using formula (10.3), find:
(a) the binding energy of a nucleus possessing an equal number of

protons and neutrons and a radius 2/3 of that of 27AI nucleus;
(b) the binding energy per nucleon in 6Li, 4°Ar, 107Ag, and 20sPb
nuclei.

10.8. Determine: (a) the binding energy of a neutron and a-par­
ticle in a 21Ne nucleus; (b) the energy required to split an 160 nucleus
into four identical particles.

10.9. Find the excitation energy of a 207Pb nucleus appearing on
the capture of a slow neutron by a 206Pb nucleus.

to. to. Calculate the binding energy of a neutron in a 14N nucleus,
if the binding energies of 14N and 13N nuclei are known to be equal to
104.66 and 94.10 MeV.

to.1t. Find the energy required to split an 160 nucleus into an
a-particle and 12C nucleus, if the binding energies of 160, 12C, and
4He nuclei are known to be equal to 127.62, 92.16, and 28.30 MeV.

10.12. Find the energy liberated on the formation of two a-parti­
cles as a result of fusion of 2H and 6Li nuclei, if the binding energy
per nucleon in 2H, 4He, and 6Li nuclei are known to be equal to 1.11,
7.08, and 5.33 MeV respectively.

(10.1)

Fig. 29

(10.4)

+ 1 when A and Z are even,

o when A is odd (for any Z),

-1 when A is even and Z is odd.
.-{

• Radius of nucleus with mass number A:

R = 1.4A 1/3 ·10-13 em.

• Binding energy of nucleus (in mass units):

E b = Zmn + (A - Z) mn - M, (10.2)

where Z is the atomic number of nucleus, A is the mass number, mn, m n , and
N/ are the masses of hydrogen, neutron, and the given atom. In calculations
one can use the more convenient formula

E b = ZL'!n + (A - Z) L'!n - L'!, (10.3)
where L'!n, L'!n' and L'! are the mass surpluses of
a hydrogen atom, a neutron, and an atom cor­
responding to the given nucleus.
• Semi-empirical formula for the binding energy
of a nucleus:

E (MeV) = 14.0A-·13.0A2j3-0.584 A:;3

-193 (A-2Z)2 !- 33.5 {J"
. A 'A3/!'

• Total angular momentum of an atom:

F = J + I,

L'!F = 0, ±1; F = 0 -j. F = O.

• Magnetic moment of a nucleus (or rather its maximum projection):

!.t = gI!.tN, (10.6)

where g is the gyromagnetic factor, [ is the spin of a nucleus, !.tN is the nuclear
magnelon.
• Model of nuclear shells (Fig. 29). Here j is the quantum number of the nucle­
on's total angular momentum; the encircled numbers indicate the number of
nu.cleons of one sort (either protons or neutrons) which fill up all the levels
lymg below the corresponding dotted line, a shell's boundary. The protons and
neutrons fill up the levels independently and in accordance with the Pauli
principle.

(10.5)
F = J + I, J + I - 1, ... , I J - I I,

where J is the angular momentum of the atom's
electron shell, I is the spin of the nucleus. For
allowed transitions



10.13. Demonstrate that in the case of uniform distribution of
charge over the volume of a nucleus, the energy of the Coulomb
repulsion of protons is equal to Uc = O. 6Z2e2/R, where Z and R
are the charge and the radius of the nucleus.

10.14. Calculate the difference in binding energies of mirror
nuclei 338 and 33Cl, if the mass of 33Cl is known to exceed the mass of
338 atom by 0.00599 a.m.u. Compare the obtained value with the
difference in energies of the Coulomb repulsion of protons in these
nuclei (see the formula in the foregoing problem). Explain the coin­
cidence of the results.

10.15. Assuming the difference in binding energies of mirror nuclei
23Na and 23Mg to be determined only by the difference in energies of
the Coulomb repulsion in these nuclei (see the formula in Prob­
lem 10.13), calculate their radii. Compare the obtained result with
the result calculated from the formula for nucleus' radius.

10.16. Using the semi-empirical formula, calculate: (a) the bind­
ing energies of 40Ca and 107Ag nuclei; (b) the binding energies per
nucleon in 60V and 200Hg nuclei; (c) the masses of 458c and 70Zn
atoms.

10.17. Using formula (10.4) determine the charge of a nucleus
whose mass is the smallest among nuclei with the same odd value of
mass number A. Using the obtained formula, predict the character of
activity (either electron or positron) of the following ~-active nuclei:
103Ag, 1278n, and 141CS.

SPIN AND MAGNETIC MOMENT OF A NUCLEUS

10.18. Determine the number of hyperfme structure components
in the basic term of the following atoms: 3H e81/ 2 ), 6Li e81/ 2 ),

9Be (l80)' 15N (483/2), and 35Cl (2P 3/2)' The basic term of electron shell
is indicated in parentheses.

10.19. Determine the spin of a 59Co nucleus whose basic atomic
term 4F9/ 2 possesses eight components of hyperfine splitting.

10.20. Find the number of components of hyperfine spitting of the
spectral lines 2P1/2 ~ 281/2 and 2P3/2~ 281/2 for 39K atoms. The
nuclear spin is supposed to be known.

10.21. Two terms of an atom have different values of the quantum
number J (J1 and J 2)' What quantum number (J or 1) can be deter­
mined from the number JVof the components of hyperfine splitting
of each term in the case when the numbers of the components of both
terms are: (a) equal (N1 = N 2 ); (b) different (N1 =1= N 2)?

10.22. The intensities of hyperfine components of the spectral
line 2P1/ 2~ 281/2 in sodium relate approximately as 10 : 6. Taking
into account that the hyperfine structure emerges due to splitting
of the 281/2 term (the splitting of the 2P1/ 2 term is negligible), find the
spin of 23N a nucleus.
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10.23. The electron shell of an atom produces at the nucleus'
site the magnetic field B 0whose direction coincides.~ith that of the
angular momentum J of ~he elect~on shell. An. addItional energy of
interaction of the nucleus magnetic moment wIth that field depends
on orientation of the angular momenta J and I which is specified
by the spatial quantization rules. Proceeding ~rom th~se concepts
demonstrate that the intervals between the nelghbourmg sublevels
deflllecl bv the quantum numbers F, F + 1, F + 2, . .. relate as
(F 1):'(F--r- 2): ...

10.24. The 2D
3

/ 2 term of a 209Bi atom has four component~ of
hyperfine splitting with the ratio of the intervals between the n81gh­
bouring components being equal to 4 : 5 : 6. By means of the ru~e
of the intervals (see the foregoing problem) find the nuclear spm
and the number of the components of hyperfine splitting for the line

281/2~ 2D 3/2' 2' 36Cl
10.25. The hyperfine structure sublevels of .the P 3/2 ~erm m a

atom experience splitting in a weak magnetIC field. Fmd the total
number of the Zeeman components.

10.26. In a strong magnetic field each sublevel of the 2~1/2 ter~ in
42K and s5Rb splits into five and six components respectIvely. Fmd
the nuclear spins of these atoms.

10.27. Calculate. the angular precession velocities of an electron,
proton, and neutroh in a magnetic field B = 1000 G..

10.28. In studies of magnetic properties of 25Mg atoms m the ground
28 0 state by the magnetic resonance method, ~he resonance _energy
absorption is observed at a constant magnetIC field B = :J.4 ~G
and a frequency of a.c. magnetic field vo . 1.40 MHz. Deterr~llr:e
the gyromagnetic ratio and nuclear magnetic moment. (The spm IS
supposed to be known.)

10.29. The magnetic resonance method was used to study the
magnetic properties of 7Li19F molecules whose el~ctron shells possess
the zero angular momentum. At constant magnetI~ field B = 5000 G,
two resonance peaks were observed at frequencIes v1 = 8.3~ MHz
and V 2= 2.00 :MHz of an a.c. magnetic field. The c~)lltro) expenmen~s

showed that the peaks belong to lithium and fluo~me atom~ respectI­
vely. Find the magnetic moments of these nucleI. The spms of the
nuclei are supposed to be known.

10.30. According to the gas model of a nucleus, th~ nucleons for~
a gas filling up the volume of the nucleus .and obeymg the ~erml­
Dirac statistics.'On the basis of that assumptiOn, evaluate the lughest
kinetic energy of nucleons inside a nucleus. The gas is supposed to be
completely degenerate, and the number of protons and neutrons
in a nucleus to be equal.

to.31. Using the nuclear shell model, write the electronic configura­
tions of 7Li 13C and 25:Mg nuclei in the ground state.

10.32. U~ing' the nuclear shell model, determine the spi~s and
parities of the following nuclei in the ground state: 170, 2981, 39K,
458c, and 63CU.
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11

where e = I n - (n) I is the deviation from the mean, a is the standard error
of a single measurement,

(11.2)

(11.1)

(11.4)

(11.3)p (e) = __1....,--".... e-e2/2a 2 ,

a y2n:

RADIOACTIVITY

• Fundamental law of radioactive decay:

N=Noe-1-.f; A~~-~
~'t- T '

where A is the decay constant, 't is the mean lifetime of radioactive nuclei, T is
their half~life.
• Specific activity is the activity of a unit mass of a substance.
• Poisson distribution law .

(n)n e-(n)

p(n)= 11! '

a= y (n) ~ l/71.

• Standard error of the sum or difference of independent measurements

a= Ya~+aH- ... ,

where at are the standard errors of independent measurements.

where p (n) is the probability that n random events will occur in a certain period
of time, (n) is the average number of times the event occurs during this period.
• Gaussian (norma~) distribution

"

RADIOACTIVE DECAY LAWS

11.1. Find the decay probability for a nucleus during the time
interval t, if its decay constant is equal to 'A.

11.2. Demonstrate that the mean lifetime of radioactive nuclei
equal 't = 1/'A, where 'A is their decay constant.

11.3. What fraction of the original number of 90Sr nuclei: (a) will
remain after 10 and 100 years? (b) will disintegrate during one day;
during 15 years?

11.4. There is a stream of neutrons with a kinetic energy of
0.025 eV. What fraction of neutrons decays at a distance of 2.0 m?

11.5. Calculate the decay constant, mean lifetime, and half-life
of a radionuclide whose activity diminishes by 6.6 per cent during
100 days.

. 10.~3. Using the vector model, demonstrate that the gyromagnet­
IC ratIO for a nucleon in the state l, j is

._ gs-gl
gJ - g I + 2l +1 '

where the plus sign is to be taken for J' = l + 1/2 and th . .
for . - l 1/2 e mmus sIgn
rati~s:- - , gs and gl are the spin and orbital gyromagnetic

10.34:, Using th~ formula of the foregoing problem, calculate the
magnetlc moment m the states S d
(gl = 0); (b) a proton (gl = 1).1/2' P1/2' an PS/2 of: (a) a neutron

. 10.35. USifolg the formula of Problem 10.33, determine the uan-

tthum
at

ntumtb)e~ J for a
l

proton in the f state, if its magnetic mome~t (in
. sae Isequa to/-1=5.79/-1N'

10.36. Using the nuclear shell model determine the .
moments of the nuclei: (a) 3H and 3H~' (b) 170 an I 39mKa~nethlc
ground state. ,( m t e

sheA~·3t~e COfoltrar
f
y t~Fthe alssumption of uniform filling of nuclear

, spm 0 a nuc eus equals 5/2 and not 1/'1 Su .
that the magnetic moment equal to 2 63 II . 'l'S defi d b ~. ppo~mg

t d' ' . rJli, ne yanunpalred
pro on, etermme the level occupied by that proton Th t'
gyromagnetic ratios are gs = 5.58 and gl = 1. . e pro on s
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138Xe ------J> i38es ---? i38Ba (stable)
17 min 32 min

(the half-lives are indicated under the arrows). Calculate the com­
bined activity of the given preparation 60 min after the beginning of
accumulation.

11.24. A 99Mo radionuclide with a half-life of 67 hours transforms
into a stable 99Tc nuclide through p-decay. As this takes place,
75 % of p-transformations goes through the isomer 99Tcm whose half­
life is 6.04 hours. Determine: (a) the fraction of stable nuclei in the
preparation 5.00 hours after, assuming that at the initial moment it

816-0339

T ~nd: . <aJ Ih? f,"clion of nuclei I'nnsfo'med inLo slable ones after
. 60 mm; (b) m what proportion the activity of the preparation di-

1 minishes after 60 min.
11.17. A radionuclide A 1 decays via the chain: A 1- A 2-A 3- ...

A1 A2 A3
(the c~rrespondingdeca?, ~~nstants are indicated under the arrows).
Assummg that at the IIlltlal moment the preparation consisted of
N 10 nuclei of radionuclide A 1, derive the expression for the law of
accumulation of A 3 nuclide.

11.18. Find the mass of lead formed from 1.0 kg of 238U during the
period equal to the age of the Earth (2.5.109 years).

11.19: A pre~aration contains 10 !lg of 226Ra and its decay prod­
ucts WhICh are m the state of transitional equilibrium with radon.
Using the tables of the Appendix, determine: (a) the a-activity
of 222Rn and p-activity of 21°Pb of the preparation; (b) the total
a-activity of the preparation.

11.20. A 27Mg radionuclide is produced at a constant rate of
q = 5.0.1010 nuclei per second. Determine the number of 27Mg nuclei
that would accumulate in the preparation over the time interval:
(a) exceeding considerably its half-life; (b) equal to its half-life.

11.21. A 124Sb radionuclide is produced at a constant rate of
q = 1.0.109 nuclei per second. Having the half-life T = 60 days it
decays into the sta'ble 124Te. Find: (a) how soon after the beginning
of production the activity of 124Sb radionuclide becomes equal to
A . 10 !lCi; (b) what mass of 124Te will be accumulated in the prep­
aratIOn four months after the beginning of its production.

11.22. An A 1 radionuclide produced at the constant rate q nuclei
per second goes through the following transformation chain:

Ai~ Az~ A 3 (stable)
A, A,

(the decay constants are indicated under the arrows). Find the
law describing the accumulation of nuclei A 1 , A 2' and A 3 in the
course of time, assuming that at the initial moment the preparation
did not contain any of them.

11.23. A 138Xe radionuclide produced at a constant rate of q =
= 1.0.1010 nuclei per second, goes through the following transfor­
mation chain

118 Cd __0> 118In ----? 118 Sn (stable)
30 min 4.5 min

11.6. Determine the age of ancient wooden items, if it is known
that the specific activity of 14C nuclide amounts to 3/5 of that in
lately felled trees.

11.7. A fresh preparation contains 1.4 !lg of 24Na radionuclide.
What will its activity be after one day?

11.8. Determine the number of radioactive nuclei in a fresh speci­
men of 82Br, if after one day its activity became equal to 0.20 Ci.

11. 9. Calculate the specific activity of pure 239PU.
11.10. How many milligrams of beta-active 89Sr should be added

to 1 mg of inactive strontium to make the specific activity of the
preparation equal to 1370 Ci/g?

11.11. In the bloodstream of a man a small amount of solution
was injected, containing a 24Na radionuclide of activity A =
= 2.0.103 S-l. The activity of 1 cm3 of blood sample taken after t =
= 5.0 hours turned out to be a = 16 min-1·cm-3. Find the total
blood volume of the man.

11.12. A preparation contains two beta-active components with
different half-lives. The measurements resulted in the following depen­
dence of the count rate N (S-l) on time t expressed in hours:

t . • • • • .. 0 1 2 3 5 10 20 30
]V .•..•. 60.0 34.3 21.1 14.4 8.65 5.00 2.48 1.25

Find the half-lives of both components and the ratio of radioactive
nuclei of these components at the moment t = O.

11.13. A radionuclide A 1 with decay constant A1 transforms into
a radionuclide A 2 with decay constant A2. Assuming that at the
initial moment the preparation consisted of only N 10 nuclei of
radionuclide A 1 , find: (a) the number of nuclei of radionuclide A 2

after a time interval t; (b) the time interval after which the number
of nuclei of radionuclide A 2 reaches the maximum value; (c) under
what condition the transitional equilibrium state can evolve, so that
the ratio of the amounts of the radionuclides remains constant.
What is the magnitude of that ratio?

11.14. The decay product of 238U is 226Ra which is contained in
the former substance inlthe proportion of one atom per 2.80.106 uran­
ium atoms. Find the half-life of 238U, if it is known to be much long­
er than that of 226Ra (equal to 1620 years).

11.15. Via beta-decay a 112Pd radionuclide transforms into
.a beta-active 112Ag radionuclide. Their half-lives are equal to 21
and 3.2 hours respectively. Find the ratio of the highest activity of
the second nuclide to the initial activity of the preparation, if at the
initial moment the preparation consisted of the first nuclide only.

11.16. A 1l8Cd radionuclide goes j through the transformation
chain

(the corresponding half-lives are indicated under the arrows). Assum­
ing that at the moment t = 0 the preparation consisted of Cd only,
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contained only 99Mo; (b) the number of stable 99Tc nuclei in the prep­
aration 20 hours after the beginning of accumulation, assuming
991\10 to be produced at a constant rate of 1.0.1010 nuclei per second.

a- AND ~-DECAY

11.25. A stationary 213PO nucleus emits an a-particle with kinetic
energy T a = 8.34 MeV. Provided that a daughter nucleus is produced
in the ground state, find the total energy released in this process.
What fraction of that energy is accounted for by the kinetic energy
of the daughter nucleus? What is the recoil velocity of the daughter
nucleus?

11.26. 210PO nuclei emit a-particles with kinetic energy T =
= 5.30 MeV, with practically all daughter nuclei being formed imme­
diately in the ground state. Determine: (a) the amount of heat
released by 10.0 mg of 210PO preparation during the mean lifetime
period of these nuclei; (b) the initial activity of the 210PO preparation,
if during its half-life period it releases 2.2 kJ of heat.

11.27. The decay of 210PO nuclei (in the ground state) is accom­
panied by emission of two groups of a-particles: the principal one
with an energy of 5.30 MeV and low-intensity one with an energy
of 4.50 MeV. Find the energy of a-decay of the initial nuclei and that
of gamma-quanta emitted by the daughter nuclei.

11.28. 226Th nuclei decay from the ground state with emission of
a-particles with energies of 6.33,6.23,6.10, and 6.03 MeV. Calculate
and plot the diagram of the levels of the daughter nucleus.

11.29. The decay of 212PO nuclei is accompanied by emission of
four groups of a-particles: the principal one with an energy of
8.780 MeV and long-range ones with energies of 9.492, 10.422, and
10.543 MeV. Calculate and plot the diagram of the levels of a 212PO
nucleus, if the daughtl'r nuclei are known to be produced in the
ground state.

11.30. Evaluate the height of the Coulomb barrier for a-particles
emitted by 222Rn nuclei (the rounded top of the barrier is to be ig­
nored). What is the barrier width (tunnelling distance) of these nuclei
for a-particles ejected with a kinetic energy of 5.5 MeV?

11.31. Determine the ratio of the height of the centrifugal barrier
to that of the Coulomb barrier for a-particles emitted by 209PO nuclei
and having the orbital moment I = 2. The rounded top of the Cou­
lomb barrier is to be ignored.

11.32. A nucleus emits an a-particle whose kinetic energy T is
considerably less than the Coulomb barrier height. In this case the
coefficient of transparency of the barrier is equal to

x = 2nZe2 -V 2m/fi,

where Ze is the charge of the daughter nucleus, m is the mass of
a-particle.

(a) Derive this formula from the general expression for D (3.5).

(b) Calculate the transparency ratio for a-particles emitted by
226Th nuclei with energies of 6.33 and 6.22 MeV.

11.3~. 2l2po nuclei in the first excited state decay through two
competmg pr~ce~ses: the direct emission of a-particles (long-range
group) and emISSlOn of a-particle after transition of the excited nucle­
us to t~e ground st~te (principal group of a-particles). 35 long-range
a-partlcl~s are emItted for each 1.0.106 a-particles of the princip~l

gr0.up: Fmd the decay constant of the given excited level in terms of
emIssI.on of long-range a-particles, if the mean lifetime of that
level IS L = 1.8.10-12 s.

1.1.~4. Find the width of the first excited level of 214PO in terms of
emISSlOn of gamma-quanta, if the decay of the excited nuclei in­
volves. 4.3.10-7 lo?g-.range a-particles and 0.286 y-quanta for each
cx:-partlcle of the pnncIpal group. The decay constant in terms of emis­
SlOn of long-range a-particles is equal to 2.0.105 S-l.

11.35. Calculate the total kinetic energy of particles emerging
on ~-decay of a stationary neutron.

_11.36. H~w does one determine t~e amount of energy released in
~ -decay, ~ -decay, and K-capture, If the masses of the parent and
daughter nuclei, and the electron mass are known.

11.37. Knowing t~e mass of the daughter atom and ~-decay ener­
g~ Q, find the ato,mIc mass of: (a) 6He which undergoes a ~--decay

w~th an energy 01 Q = 3.50 .MeV; (b) 22Na, undergoing a ~+-decay
wIth an energy of Q = 1.83 MeV.

11.38. Determine whetMr the following processes are possible:
(a) ~--decay of 51V nuclei (-0.05602); (b) ~+-decay of 39Ca nuclei
(-0.029~9); (c) ~he.K-~apture in 63Zn atoms (-0.06679). The excess
of atomIC m3~ss IS mdIcated in parentheses, !v! - A (in a.m.u. 's).

11.39. ~ P r:ucleus undergoes ~-decay to produce a daughter
nucleus dIrectly ~n the ground state. Determine the highest kinetic
energy of ~-partIcles and the corresponding kinetic energy of the
daughter nucleus.

11.40..Calculate the maximum magnitude of momentum for elec­
t~ons emI.tted by lOBe nuclei, if the daughter nuclei are produced
dIrectly m the ground state.

11.41. A HC nucleus undergoes a positronic decay to produce
a.daughte~ m~cleus directly in. the ground state. Calculate: (a) the
hIghest kmetIc energy of posItrons and the corresponding kinetic
energy of .the daughter nucleus; (b) the energies of the positron and
neutrmo m ~he case when the daughter nucleus does not recoil.

11.42..A He .nucleus undergoes ~--decay to produce a daughter
nucleus dIrectly m the ground state. The decay energy isQ = 3.50MeV.
J\n electron with the. kin~tic energy. T = 0.60 MeV escapes at
rIght angles to the dIrectIOn of motlOn of the recoil nucleus. At
wh~t ang!e to t~e direction at which the electron escapes is the
antmeutrmo emItted?

11.43. Calculate the energy of y-quanta released in ~-decay of
28Al nuclei (Fig. 30).
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11.44. Determine the number of y-quanta per one ~-decay of .3sCI
nuclei (Fig. 31), if the relative number of ~-decays with the gIven
partial spectrum of ~-particles is equal to: 31 % (~1), 16 % (~2)'

and 53 % (~3)· . . '
11.45. ~-decay of 56Mn nuclei m the ground s~ate IS .accomp.amed

by the emission of three partial spectra of ~-partIcles wIth maXImum
kinetic energies of 0.72,1.05, and 2.86 MeV. The concurrent y-quanta

V.RADIATION: INTERNAL CONVERSION,
MOSSBAUER EFFECT

11.49. An isomeric nucleus S1Sem with an excitation energy of
103 keY passes to the ground state, emitting either a y-ql!antum or
conversion electron from the K-shell of the atom (the bmdmg energy
of the K-electron being equal to 12.7 keY). Find the velocity of the
recoil nucleus in both cases. . . . 109A m I s11.50. Passing to the ground state, an IsomeflC g nuc ~u

emits either a y-quantum with an energy of 87 keY or a converSIOn

Fig. 32

K-electron with Bp = 860 G·cm. Calculate the binding energy of
the K-electron.

11.51. 203Tl atoms resulting from ~-decay of 20SHg atoms emit
4 groups of conversion electrons with kinetic energies of 266.3,
264.2,263.6, and 193.3 keY. To what shell of a Tl atom, K, L 1 , L 2 ,

L 3 , does each group correspond? The electron binding energy in
the shells is 87.7, 15.4, 14.8 and 12.7 keY respectively. Calculate
the energies of y-quanta concurrent with that decay.

11.52. Excited 141Pr nuclei resulting from ~-decay of 141Ce
nuclei pass to the ground state by emission of y-quanta or con­
version electrons. Determine the excitation energy of a 141Pr nucleus,
if for the conversion K-electrons Bp = 1135 G·cm and the binding
energy of the K-electrons is equal to 42 keY.

11.53. Excited 117Sn nuclei resulting from ~-decay of 117In
nuclei pass to the ground state, emitting two consecutive y-quanta.
This process is followed by emission of
conversion K-electrons for which Bp is equal
to 3050 and 1300 G·cm. The binding energy
of K-electrons equals 29 keY. Determine
the energy of the y-quanta.

11.54. Find the number of conversion
electrons emitte\} per second by a 59Fe
preparation with an activity of 1.0 mCi.
The diagram of ~-decay of 59Fe nuclei is
shown in Fig. 32. The internal conversion
coefficients for y-quanta are equal to
1.8.10-4 (1'1), 1.4.10-4 (1'2), and 7.10-3 (1'3)'
The probabilities of 1'2 and Ys emission
relate as 1 : 15. Nate: the internal conversion coefficient is the ratio
of the probability of conversion electron emission to that of y-quan­
tum emission.

11.55. A free nucleus 191Ir with an excitation energy of E =
= 129 keY passes to the ground state, emitting a y-quantum. Find
the fractional change of energy of the given y-quantum due to recoil
of the nucleus.

11.56. A free nucleus 119Sn with an excitation energy of E =
= 23.8 keY passes to the ground state, emitting a y-quantum. The
given level has a width r = 2.4·10-s eV. Determine whether the
resonance absorption of such a y-quantum by another free 119Sn nu·
cleus is possible, if initially both nuclei were stationary.

11.57. What must be the relative velocity of a source and an
absorber consisting of free 191Ir nuclei to observe the maximum
absorption of y-quanta with an energy of 129 keY?

11.58. As it was shown by Mossbauer, each y-line of the spectrum
emitted by the excited nuclei of a solid has two components: a very
narrow one with energy equal to the transition energy in the nuclei,
and a much broader one which is displaced relative to the former.
For a 57Fe y-line corresponding to the energy of 14.4 keV the fraction-

I

Fig. 31

J8CL

Fig. 30

have the energies of 0.84, 1.81, 2.14, 2.65, and 2.98 MeV. Calculate
and draw the diagram of levels of the daughter nucleu~.

11.46. 37Ar nuclei experience the K -capture after WhICh the .daugh­
ter nuclei are formed directly in the ground state. Neglectmg the
binding energy of the K-electron, determine the kinetic energy and
velocity of the daughter nucleus.

11.47. Find the energy of a neutrino in the K-capture in mcs atoms,
if the total energy released in this process equals 355 ke'!, and the
binding energy of the K -electron in the. daugh~er atom IS 35 keV,
with the daughter nucleus being formed dIre~tly m t~e ground sta.te.

11.48. The K-capture in 7Be results occasIOnally m th~ formatIOn
of an excited daughter nucleus emitting a y-quantum wIth an ener­
gy of 479 keY. Determine the .kinetic ene~gy of the daught~r nucleus
after emission of y-quantum, If the neutrm.o and the r~coII nucleus
move at right angles to each other. \\That IS t~e magmtu~e of th~t
energy in the case when the daughter nucleus IS formed dIrectly m
the ground state?
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Fig. 34

HEGISTRATION STATISTICS
OF NUCLEAR RADIATION. COUNTERS

11.64. In measuring the activity of a certain preparation a counter
registers 6 pulses per minute on the average. Using formula (11.2)
evaluate the probability of the count rate having a value between 9
and 11 pulses per:.,minute.

11.65. 2000 measurements of activity of a preparation are to be
performed during equal time intervals. The mean number of pulses
registered during each me'asurement is equal to 10.0. Assuming
the total measurement time to be small in comparison with the half­
life of the radionuclide being investigated, determine the number of
measurements in which one should expect registering 10 and;) pulses
exactly.

11.66. The mean count rate value registered in the studies of
a radionuclide with a long half-life is 100.0 pulses per minute. Deter­
mine the probability of obtaining 105.0 pulses per minute, and the
probability of absolute deviation from the mean value exceeding
5.0 pulses per minute.

11.67. Calculate the probability of obtaining the absolute error
of measurement exceeding: (a) a and (b) 2a, where a is the standard
error.

1.1.68. A counter placed in a radiation field to be investigated
reglst~red 3600 pulses during 10 minutes. Find: (a) the standard
error m the count rate, pulses per minute; (b) the duration of measure­
ment sufficient to determine the count rate with an error of 1.00 %.

11.69. While measuring the intensity of radiation (including the
background), a counter registered 1700 pulses during 10.0 minutes.
The se~arate b~ckground measurement yielded 1800 pulses during
15.~ ~mu~es. Fl.nd the count rate (pulses per minute) caused by the
radIatIOn mvestIgated and its standard error.
. 11.7.0. pemonstrate that in the presence of a background whose
llltensity IS equal to that of the investigated radiation one has to

exceed that of the absorber, so that the temperature shift of the
Mossbauer "(-line in 57Fe counterbalances completely the gravitational
shift? The source is placed at a distance of l = 20 m above the absorb­
er. The mean kinetic energy of atoms in the crystal is assumed to be
equal to 3kT/2.

11.63. Figure 34 illustrates the Mossbauer absorption velocity
spectrum in the case when the emission line of "(-quanta with an
energy of nUl = 14.4 keY is not split (a 57CO source is inserted into
non-magnetic steel), while a plate of natural iron serves as an absorb­
er. The positive velocity values signify the motion of the source
toward the absorber. Using the level diagram of Fig. 34, find the
magnetic moment of a 57Fe nucleus in the excited state and induction
·of the magnetic field acting on the nucleus in iron. The magnetic
moment of a 57Fe nucleus in the ground state is equal to !.L =

= 0.090 !.LN'
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it whole, so that the momentum of the emitting atom remains con­
stant. The mean kinetic energy of such an atom, however, increases
due to a decrease in its mass following the radiation. As a result,
the Mossbauer line frequency turns out to be less than the transition
frequency Ulo, that is, Ul = Ul o (1 - <v2 )/2c2

), where <v2
) is the

square of the root-mean-square velocity of the atom.
(a) Derive this expression from energy considerations.
(b) By how many Kelvins must the temperature of the source

a1 shift of the displaced component is f"..'A/'A = 1.35.10-7. Demon­
strate that that component is caused by the recoil nuclei occurring
in the process of "(-emission.
. 11.59. Figure 33 illustrates the absorption of the Mossbauer "(-line

with an energy of 129 keY as a function of the relative velocity of
1) source and an absorber (l91Ir). Taking into account that the emission
of the given line is caused by the transition of excited nuclei directly
to the ground state, find the width
and lifetime of the corresponding v, em/ s
excited level. 04 -2 0 2 4 6 8

11.60. A gamma source is
placed 20.0 m above an absorber. ~ 0.2
With what velocity should the source ::,
be displaced upward to counter- ~
balance completely the gravita-s O.
tional variation of the "(-quanta
energy due to the Earth's gravity
at the point where the absorber is
located?

11.61. The relative widths of
the Mossbauer "(-lines in 57Fe and
S7Zn are equal to 3.0.10-13 and Fig. 33
5.0.10-16 respectively. To what _
height above the Earth surface has one to raise an absor~.er (n7Fe
and 67Zn) to make the gravitational displacement of the Mossbauer
line exceed the width of the lines when being registered on the Earth
surface?

11.62. In the process of emission of "(-quanta corresponding to
11 Mossbauer line the recoil momentum is taken by a crystal as
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Fig. 35

register 6 times as many pulses to provide the same measurement
accuracy as in the case when the investigated radiation is not accom­
panied with any background radiation.

11.71. The count rate of the background pulses is equal to nb =
= 15 pulses per minute, and the count rate of a preparation studied
in the presence of the background is npb = 60 pulses per minute. Let
t b and t pb be the times of measurement of the background and that
of the preparation in the presence of the background. Find the opti­
mum ratio tb/tpb at which the preparation count rate is determined
with the highest accuracy for the given total time of measurement
(t b + t pb ).

11.72. Using the data of the foregoing problem, find the minimum
values of t b and t]Jb at which the preparation count rate can be deter­
mined with accuracy lJ = 0.050.

11.73. A Geiger-Muller counter with time resolution 'I: =
= 2.0.10-4 s registered n = 3.0.104 pulses per minute. Determine
the real number N of particles crossing the counter during one
minute.

11.74. What fraction of particles crossing a counter with time
resolution 'I: = 1.0.10-6 s will be missed at the count rates of n =
= 100 and 1.0.105 pulses per second?

11.75. In measuring the activity of a preparation a Geiger­
Muller counter with time resolution of 2.0.10-4 s registered 1000
pulses per second in the presence of the background. The separate
background measurement by means of the same counter yielded 600
pulses per second. Determine the number of particles from the prepa-
ation crossing the counter during 1 s.

11.76. Two radioactive sources are placed near a counter. Wit h
alternate screening of the sources the counter registers n1 and 11 2
pulses per second. Both sources simultaneously yield n12 pulses per
second. Find the time resolution of the given counter.

11.77. The number of particles crossing a counter per unit time
is equal to N. Find the number of pulses recorded per unit time, if
the time resolution of the counter is known to be equal to '1:1 and
that of the recording facility to 'l:z• Consider the cases: (a) '1:1 > '1: 2 ;

(b) '1:1 < 'l:z'
11.78. In a scintillation counter with a photomultiplier tube, the

de-excitation time of the scintillator is equal to '1:1 = 0.6.10-8 s
and the time resolution of the photomultiplier tube to '1:2 =

= 3.0.10-8 s. Determine the number of electrons falling on the
scintillator during one second, if the photomultiplier tube yields
n = 5.0.106 pulses per second.

11.79. An electromechanical reader with the time resolution T

is incorporated at the output of an amplifier (without a scaler).
Find how the number of pulses n registered per unit time depends
on the mean number of particles N crossing a Geiger-Muller counter
per unit time. Instruction: it should be taken into account that if at
the moment when the electromechanical reader has not yet completed

88

a cycle of pulse registration another pulse comes in, the latter will
not be registered. The non-registered pulse, however, will increase
the reader's dead time caused by the first pulse.

11.80. The pulses from a Geiger-Muller counter are amplified
and fed directly to an electromechanical reader. Determine the time
resolution of the electromechanical reader, if on bringing a radio­
active preparation closer to the counter the number of registered
pulses exceeds a maximum value nmax = 46 pulses per second.

11.81. Two identical counters incorporated into a coincidence
circuit are exposed to cosmic radiation. Determine the number of
spurious coincidences I1n, if the number of pulses coming to the
input of the coincidence circuit from one counter is equal to n1
and from the other to n 2 , the time resolution of the circuit being '1:.

11.82. A radioactive preparation is placed symmetrically in front
of two identical counters incorporated in a coincidence circuit. The
time resolution of the circuit is 'I: = 1.0.10-7 s. The registration
efficiency of each counter is 25 %.
Determine the number of particles
falling on each counter during one
second, if the count rate of the
coincidence circuit I1n = 2.0.103

pulses per second..
11.83. A radioa~tive preparation

A is placed in front of two iden­
tical counters S 1 and S 2 as' shown
in Fig. 35. The counters are incor­
porated in a coincidence circuit
with the time resolution 'I: =

= 1.0.10-8 s. To determine the preparation activity, the count
rates of background radiation I1nb and of preparation in the presence
of the background npb are measured. Both measurements are taken
during equal time intervals t. Find the magnitude of t at which the
preparation count rate is determined accurate to 5.0 %, if the number
of pulses produced by each counter is equal to 1.00.105 pulses per
second when the background radiation is measured and to 100 pulses
per second when only the preparation is measured.

11.84. A radioactive preparation is placed between two identical
,\,-quanta counters incorporated into a coincidence circuit. The prep­
aration's ~-decay involves the emission of two quanta '\'1 and '\'2'
Under experimental conditions the given ,\,-quanta can be registered
by the counters with probabilities lJ1 = 5.10-4 and lJ z = 7.10-4.
Determine the number of counts registered by the coincidence circuit
(as a percentage of the number of pulses registered by one of the
counters within the same time), neglecting the correlation between
the directions of motion of the outgoing '\'1 and '\'z quanta.



where 11, 1:, (J are the linear coefficients of attenuation, absorption, and scatter­
ing.
• Units of dose (roentgen, rad, and rem) and tolerance rates are given in
Table 15 of Appendix .

These formulas give the path values in any substance with sufficient accuracy
provided the energy losses of the electrons are due primarily to ionization.
• Absorption law for ~-particles

J = Joe-I,td, (12.8)

where J is the flux of ~-particles, 11 is the linear absorption coefficient, d is the
layer thickness of a substance. The mass absorption coefficient

(12.9)

(12.10)

0.5 < T(3 max < 6 MeV,II/p = 2?(T 4/ 3 •r ~ J3 max:'

where T(3 max is the cut-off energy in the spectrum of ~-particles, MeV.
• Attenuation law for a narrow beam of monochromatic y-radiation:

12

• Specific ionization loss of energy of a heavy charged particle moving in
a matter:

INTERACTION OF RADIATION WITH MATTER

(
fJE ) 4:rt neq2e2 [ 2m v2 ]- - = In e 1'\2, (12 1)fJx ion mev2 I (1_~2) t-' •

whe~e q and v are. the. charge and velocity of the particle, ~ = vIc, n is the elec­
trfolllc concentratIOn In the matter, I ~ 13.5Z eV is the mean ioniz~tion energy
o an atom of the matter, Z is the atomic number.
• Empirical formulas for the mean path of particles with kinetic energy T
M~: '

an a-particle in air at NTP

Rex, = 0.31T3j2 cm; 4 < T < 7 MeV; (12.2)

an a-particle in a substance with mass number A

Rex, = 0.56Ra (cm) Alj3 mg/cm2 , (12.3)

where Rex, (cJ?) i~ the range of the particle of the same energy in air'
a proton III aIr at NTP ,

R p (T) = Rex, (4T) - 0.2 cm; T > 0.5 MeV, (12.4)

where ~ex, is th.e I!'-ean path of a-particle with kinetic energy 4T in air
• SpeCIfic radIatIOn and ionization losses of energy for an electron .

_ ( OE) = 4r~ nTZ2 In ~. (fJElfJxl!on 800
ox rad 137 ZI/3 ' (fJElfJxlrad - ZTMeV' (12.5)

w~er:h T is the kin~tic energy of an electron, r e is the classical electronic radius
n
t

IS e concentratIOn of atoms in a substance, Z is the atomic number of a sub
san~. -
: If an elect~on loses i.ts energy primarily due to radiation, its kinetic energy

ecreases, as It moves In a substance, according to the law

T -xjl d
= Toe ra, (12.6)

where lrdad is the radiation length, that is, the distance over which the electron'
energy ecreases e-fold. s
• Mean path of electrons with kinetic energy T MeV' I .., , In a umlnlum

R (g/cm2)= { 0.407T1.38, 0.15 < T < 0.8 MeV,
0.542T-O.133, 0.8 < T < 3 MeV. (12.7)
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PROPAGATION OF CHARGED PARTICLES
THROUGH MATTER

12.1. Find the maximum possible angle through which an a-par­
ticle can be scattered due to collision with a stationary free electron.

12.2. An a-partiple with a kinetic energy of 25 MeV moved past
a stationary free el'ectron with an aiming parameter of 2.0.10-9 em.
Find the kinetic energy of the recoil electron, assuming the trajectory
of the a-particle to be rectil'inear and the electron to be stationary
during the flyby.

12.3. A fast a-particle moves through a medium containing n elec­
trons per 1 ems with the velocity v. Determine the energy lost by the
a-particle per unit length due to interaction with electrons relative
to which its aiming parameter falls within interval (b, b + db).

12.4. Calculate the specific ionization loss of energy for a deuteron
with an energy of 4.0 MeV in nitrogen at NTP.

12.5. Find the ratio of specific ionization losses: (a) for an a-par­
ticle and proton with an energy of 5.0 MeV in neon; (b) for an
a-particle with an energy of 10.0 MeV in copper and aluminium.

12.6. A point source of a-particles with an energy of 5.3 MeV
is located at the centre of a spherical ionization chamber of radius
14.0 em. At what values of air pressure in the chamber will the satu­
ration current be independent of pressure '?

12.7. Using the empirical formulas, find: (a) the number of ion
pairs produced by an a-particle with an initial energy of 5.5 MeV
over the first centimeter of its path in air (if the energy required to
produce one ion pair is assumed to be equal to 34 eV); (b) the fraction
of ion pairs produced by a proton with an initial energy:of 2.5 MeV
over the first half of its mean path in air.

12.8. A radioactive 2S8PU preparation emitting a-particles with
an energy of 5.5 MeV is electroplated on a thick metallic base. Find
the minimum thickness of the layer at which the further addition
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of 238PU will not produce any increase in intensity of a-particles
emitted by that preparation.

12.9. Find the kinetic energy of a-particles whose mean path in
iron equals 11.0 ~tm.

. 12.10. Determine the range of an a-particle in lead, if its energy
IS known to correspond to a range of 17 ~tm in aluminium.

12.11. a-particles with an energy of 13.7 MeV fall on an aluminium
foil. At what thickness of the foil is the energy of passed-through
particles equal to 7.0 MeV?

12.12. An aluminium foil is located at a distance of 5.0 em from
a radioactive preparation emitting a-particles with an energy of
9.0 MeV. Of what minimum thickness must the foil be to screen all
the a-particles? The ambient medium is air.

12.13. Using formula (12.1), find how the mean ranges of a proton
and a deuteron in a matter are related provided their velocities are
~qua.l. Calculate the range of a deuteron with an energy of 2.0 MeV
In aIr.

12.14. Find the mean range of protons with an energy of 3.0 MeV
in lead.
. 12.15. A fast heavy particle with charge q and velocity v moves
In a substance with electronic concentration n and produces 6-elec­
trons on its way. Assuming the process of their production to involve
the elastic scattering of the primary particle by free electrons
determine: (a) the cross-section da of production of 6-electrons with
kinetic energies falling within interval (T, T + dT); (h) the total
number of 6-electrons produced by the primary particle per unit
length of its trajectory; the minimum value of kinetic energy T th,

that an electron is to possess to form a visible trace, is supposed to
be known.

12.16. When a fast heavy charged particle moves through photo­
graphic emulsion, it forms

N __ 2:rrnq2 e" ( t 1)
6 - lIIeU2 Tth - 2mev2

8-electrons per unit length of its trajectory; n is the electronic con­
c~ntration? q and v are the charge and velocity of the primary par­
tICle, Tth IS the threshold kinetic energy of an electron required to
fo~m a visible trace .in emulSion, me is the electronic mass. Using
th~s formula, determIne: (a) the lowest energy of the a-particle suf­
fiCIent to produce 6-electrons in photographic emulsion for which
T th =.11.0 keV; (h) the energy of the a-particle that produces
a max~mum .number of 6-electrons per unit length in the photographic
emulSIOn wIth n = 6.0.1023 cm-3 and T th = 17.5 keV; calculate
the maximum number of 8-electrons produced over 1/10 mm of the
a-pa~ticle's tra~ectory; (c) the charge of the primary particle if the
maXImum denSIty of 8-electrons produced by it is known to be one
fourth of that produced by an a-particle (in the same emul­
sion).
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12.17. Calculate the specific radiation loss of energy in aluminium
for an electron with a kinetic energy of 20 MeV. By what factor does
the specific radiation loss of energy of an electron in lead exceed that
in aluminium?

12.18. Evaluate the kinetic energies of electrons at which the
specific bremsstrahlung loss of energy is equal to the specific radiation
loss in nitrogen (at NTP), aluminium, and lead.

12.19. Evaluate the kinetic energy of electrons at which the spe­
cific radiation loss of energy in aluminium amounts to 1/4 of the total
specific loss of energy.

12.20. Evaluate the total specific loss of energy in aluminium for
an electron with a kinetic energy of 27 MeV.

12.21. Find how the radiation length lrad of an electron depends on
the atomic number Z of a substance. Calculate lrad for an electron
in nitrogen (at NTP), aluminium, and lead.

12.22. Fast electrons that passed through a layer of some sub­
stance 0.40 cm thick diminished their energy by 25 % on the average.
Find the radiation length of the electron if its energy loss is known
to be primarily due to radiation.

12.23. Evaluate the initial energy of electrons, if on passing
through a lead plate 5.0 mm thick their energy is equal to 42 MeV
on the average. ,

12.24. When eleC'irons of sufficiently high energies decelerate in
the field of a nucleus, the cross-section of gamma-quanta emission
within the frequency interval (Ul, Ul + dUl) in the vicinity of the
maximum frequency of bremsstrahlung is defined by the formula

da =_1_ ~, where n is the number of nuclei in unit volume. Find
nlrad (J)

the probability that an electron will lose over 90 % of its initial energy
on passing through a zinc plate of thickness l = 1.0. mI?'

12.25. Using the empirical formulas, calculate the kInetIC energy
of electrons whose mean path in aluminium is equal to 100 mg/cm2.

12.26. Find the mean path of relativistic electrons whose Bp =
= 5.0 kG'cm in graphite.

12.27. A beam of electrons with a kinetic energy of 0.50 MeV
falls normally on an aluminium foil 50 mg/cm2 thick. Using the
empirical formulas, evaluate the mean path of the electrons, passed
through this foil, in air.

12.28. Evaluate the minimum mass thickness of a ~-radioactive

204Tl preparation beginning from which the further increase o~ its
thickness does not increase the intensity of a stream of ~-partIcles

emitted by the preparation.
12.29. What fraction of ~-particles emitted by 32p is absorbed

by an aluminium foil 20 mg/cm2 thick? .
12.30. The increase in the thickness of the WIndow of a GeIger­

Muller counter by 60 mg/cm2 reduces the count rate of ~-particles

by 50 per cent. What is the highest energy of ~-particles of the radio­
active source studied?
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12.31. Find the half-value thickness for ~-particles emitted by
a radioactive 32p preparation for air, aluminium, and lead.

12.32. A charged particles, moving uniformly in a medium with
the refractive index n, emits light if its velocity v exceeds the phase
velocity of light c' in that medium (Cherenkov radiation). Using
the laws of conservation of energy and momentum, demonstrate
that the angle at which light is emitted is defined by the expression
cos {l- = c' /v. Recall that the momentum of a photon in a medium is
equal to ftro/c'.

12.33. Calculate the threshold kinetic energies of an electron and
a proton at which the Cherenkov radiation occurs in a medium with
a refractive index of n = 1.60. What particles have the threshold
kinetic energy in that medium equal to 29.6 MeV?

12.34. Find the kinetic energy of electrons that, moving through
a medium with a refractive index of n = 1.50, emit light at the
angle 30° to the direction of their motion.

PROPAGATION OF GAMMA-RADIATION
THROUGH MATTER

12.35. The increase in the thickness of a lead plate by 2.0 mm
reduces the intensity of a narrow beam of monochromatic X-rays
having passed through that plate by a factor of 8.4. Find the energy
of photons, using the tables of the Appendix..

12.36. What is the thickness of an aluminium plate that attenu­
ates a narrow beam of X-ray radiation with an energy of 200 keV
to the same degree as a lead plate 1.0 mm in thickness?

12.37. The attenuations of narrow beams of X-ray radiation with
energies of 200 and 400 keV passing through a lead plate differ by
a factor of four. Find the plate's thickness and the attenuation of the
200 keV beam.

12.38. Calculate the half-value thickness for a narrow beam of
X-rays with a wavelength of 6.2.10-2 A in lead, water, and air.

12.39. How many layers of half-value thickness are there in
a plate attenuating a narrow beam of monochromatic X-rays 1000­
fold?

12.40. Plot (~/p)1/3 versus X-ray radiation wavelength dependence
in the case of copper, using the following data:

A, A ••...... 0.40 0.80 1.20 1.60 2.00 2.40 2.80
d 1/ 2 , ftm • • • • •. 78.0 11.0 3.34 12.7 7.21 4.55 3.00

(d1/ 2 is the half-value thickness).
12.41. Using the tables of the Appendix, select a metal foil that,

being transparent to the K a radiation, attenuates considerably the
K i\ radiation of: (a) cobalt (AKa = 1.79 A, AKfl = 1.62 A); (b) nickel

(AKa = 1.66 A, AKj:l = 1.50 A).
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12.42. Calculate the thickness of copper foil at which the attenu­
ation of the K Ii radiation of zinc (AKfl = 1.29 A) is 10 times that
of the K a radiation (A Kfl = 1.43 A). Make use of the plot obtained
in Problem 12.40.

12.43. In the case of soft X-ray radiation, the differential cross­
section of a photon scattering by a free electron is described by the
formula

da r;
(iQ="'2 (1 + cos2

{}),

where r is the classical electronic radius, {} is the angle of photon
scatteri~g. Using this formula, find: (a) the total cross-section of
scattering; (b) the fraction of photons scattered through the angles
{} < 60°; (c) the fraction of the recoil electrons outgoing within the
range of angles from 45° to 90°.

12.44. Calculate the mass and linear scattering coefficients for
soft X-rays in neon and oxygen at NTP. Recall that the atomic
scattering coefficient is defined by the Thomson formula

8n Ze4

(Ja = -3 .~ cm2 per atom.me

12.45. The mass absorption coefficient of X-ray radiation with
A = 0.209 A in iron is equal to 1.26 cm2/g. Calculate the correspond­
ing atomic scattering coefficient.

12.46. Taking into account that the atomic absorption coefficient
T = CZ4A3 at A < AK' where AK is the wavelength of K absorption
edge, C is the constant equal for all substances, determine: (a) thoe
mass absorption coefficient T/p for X-ray radiation with A = 1.00oA
in vanadium, if in aluminium T/p = 40 cm2/g for A = 1.44 A;
(b) the ratio of mass absorption coefficients of X-ray radiation .in
bones and tissues of human body; the bones are known to consIst
of Ca 3(POq)2, and the absorption in tissues is mainly due to water.

12.47. After passing through an aluminium plate 2.9 cm thick
a monochromatic beam of v-quanta attenuates by a factor of 2.6.
Using the tables of the Appendix, find the corresponding mass scatter­
ing coefficient.

12.48. A point source of v-quanta with an energy of 0.80 MeV
is placed in the centre of a spherical layer of lead whose thickness
is equal to !J.r = 3.0 cm and outer radius to r = 5.0 cm. Find the
flux density of non-scattered v-quanta at the external surface of the
layer, if the source activity A = 1.00 mCi and each disintegration
produces one quantum.

12.49. A narrow beam of v-quanta composed of equal number of
quanta with energies 0.40 and 0.60 MeV falls normally on:a lead plate
1.00 cm in thickness. Find the ratio of intensities of both components
of the beam after its passing through that plate.

12.50. A narrow beam of v-radiation composed of quanta of all
energies in the range from 0.60 to 0.80 MeV falls normally on an alu-
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12.61. A thin lead plate was irradiated in the Wilson cloud cham­
ber with y-quanta with energies of 3.0 MeV. In the process, the num­
ber of electron tracks was found to exceed the number of positron
tracks by a factor of 11 = 3.7. Find the ratio of the probability of
electron-positron pair production to the total probability of all
other processes proceeding in this case.

12.62. Derive the expression for the threshold energy of y-quantum
required to produce a pair in a field of a nucleus with mass M.

12.63. Demonstrate that a y-quantum cannot produce a pair out­
side the field of a nucleus, even when such a process is allowed in
terms of energy.

12.64. Determine the total kinetic energy of an electron-positron
pair produced by a y-quantum with the threshold value of energy
in the field of a stationary proton.

12.65. Calculate the energy of a y-quantum that produced an
electron-positron pair in the field of a heavy nucleus, if for each
particle of the pair Bp = 3.0 kG·cm.

RADIATION DOSIMETRY

12.66. The saturation current of an ionization chamber placed
in a uniform y-radi,ation field is equal to 1.0.10-9 A. The chamber
has the volume of ';:;0 cm3 and is filled with air under a pressure of
2.0.105 Pa and at 27 cC. Find the y-radiation dose rate.

12.67. Determine the radiation dose rate (mR/h) and the absorbed
dose rate (mrad/h) in air and in water at the points where the flux
density of y-quanta with an energy of 2.0 MeV is equal to 1.30.104

quanta per cm2 per second.
12.68. At a certain distance from the radioactive source with

a half-life of 26 hours, the y-radiation dose rate amounts to 1.0 R/h
at the initial moment. Determine: (a) the radiation dose accumu­
lated for 6.0 h; (b) the time interval during which the absorbed dose
becomes equal to 1.0 rad.

12.69. Disregarding the absorption in air, determine the y-radi­
ation dose rate (ftRls) ata distance of 2.0 m from a point source with
an activity of 100 mCL The energy of y-quanta is 1.0 MeV. The
y-quanta yield equals 0.50 quanta per disintegration.

12.70. A point radioactive source with an activity of 18 mCi
emits two y-quanta with energies of 0.80 and 1.00 MeV per disinte­
gration. Ignoring the absorption in air, find the minimum distance
from the source at which the radiation dose rate is equal to the
tolerance dose rate for a 36-hour working week.

12.71. For radionuclides: (a) 24Na, (b) 42K, and (c) 3sCI calculate
.the y-constants (K ,,), i.e. the radiation dose rate (R/h) at a distance
of 1 cm from a point source with activity of 1 mCL The disintegra­
tion schemes of these radionuclides are shown in Fig. 36.

12.72. A source ofy-quanta with energy E = 1.00 MeV is uni­
formly distributed along a straight line. The length of the source is

minium plate 2.0 cm thick. Find the attenuation of the beam's inten­
sity after passing through the plate, if the attenuation coefficient
is a linear function of energy of quanta in this interval and the spec­
tral intensity of incident radiation is independent of frequency.

12.51. Using the table of the Appendix, determine the interaction
cross-section (b/atom) of y-quanta with an energy of 1.00 MeV in
aluminium.

12.52. A narrow beam of y-quanta with an energy of 0.15 MeV
attenuates by a factor of four after passing through a silver plate
2.0 mm thick. Find the interaction cross-section (b/atom) of these
y-quanta in silver.

12.53. Using the tables of the Appendix, calculate the mean free
path of y-quanta with an energy of 1.00 MeV in air, water, and
aluminium.

12.54. Calculate the mean free path of y-quanta in a medium whose
half-value thickness is equal to 4.50 cm.

12.55. Making use of the plots of the Appendix, find the mean free
path of y-quanta with an energy of 2.0 MeV in lead, as well as the
mean paths of these quanta in the case of Compton scattering, photo­
electric effect, and electron-positron pair production. How are these
paths interrelated?

12.56. Using the plots of the Appendix, find the photoabsorption.
probability for a y-quantum with an energy of 2.0 MeV in a lead
plate 2.0 mm thick.

12.57. A beam of monochromatic y-radiation attenuates by a factor
of six after passing through a lead plate 3.2 cm thick. Using the
plots of the-'Appendix, calculate the mass Compton scattering coef­
ficient of that radiation in lead.

12.58. The total cross-section of Compton scattering of y-quantum
by a free electron is described by the formula

where e = /lw/mc2 is the energy of a y-quantum expressed in units
of electron rest mass, aT is the Thomson scattering cross-section.

(a) Simplify this formula for the cases e« 1 and e» 1.
(b) Calculate the linear Compton scattering coefficient for y-quan­

ta with energy e = 3.0 in beryllium.
(c) Find the mass Compton scattering coeffIcient for y-quanta with

energy e = 2.0 in light-element substances.
12.59. Using the plots of the Appendix, calculate the. cross-section

of electron-positron pair production for a y-quantum wIth an energy
of 6.0 MeV in a lead plate whose thickness is equal to the half-value
thickness.

12.60. At what thickness of a lead plate is the probability of a
y-quantum with an energy of 7.0 MeV to produce an electron-positron
pair equal to 0.10?
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l = 10.0 cm and intensity J = 1.00.106 quanta per second. Cal­
culate the radiation dose rate at the point, located at the perpendic­
ular drawn through the midpoint of the source, at a distance: R =
= 5.0 cm from the source.

12.73. A source of 'V-quanta with energy E = 2.0 MeV is uniformly
distributed over the surface of a round disc of radius R = 3.0 em.

2'lNa

l.BMeV
2.75MeV

2.l5MeV

Fig. 36

The source's activity is A = 100 mCi/cm2, the 'V-quanta yield is
equal to unity. Find the radiation dose rate at the point removed
by a distance h = 6.0 cm from the source's centre and located at the
axis of the disc.

12.74. At a point through which passes a narrow beam of 'V-quanta
with an energy of 1.00 MeV, the radiation dose rate amounts to
3.8 ftRls. Determine the thickness of a lead screen reducing the dose
rate at that point to the tolerance dose rate for a 36-hour working
week.

12.75. A point 'V-source with activity A = 100 ftCi is located
at the centre of a spherical lead container with an outside radius
r = 10.0 cm. Find the minimum thickness of the container's walls
at which the dose rate outside the container would not exceed
2.8 mR/h. The energy of 'V-quanta is E = 2.00 MeV, and the yield
1'] = 0.50 quanta per disintegration.

12.76. A narrow beam of 'V-quanta with an energy of 2.00 MeV
falls normally on a lead screen of thickness l = 5.0 cm. Determine
the absorbed dose rate in lead in the vicinity of the point where
the beam leaves the screen, provided the dose rate at the point where
it enters the screen equals Po = 1.0 Rls.

12.77. At what distance from a small isotropic source of fast
neutrons with a power of 4.0.107 neutrons per second will the neutron
radiation dose rate be equal to the tolerance dose rate for an 18-hour
working week?

12.78. A stream of neutrons with kinetic energy T = 0.33 MeV
and density J = 1.4.105 neutrons/(cm2 ·s) penetrates a thin graphite
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plate. Calc~llate the.'dose absorbed by graphite during t = 1.0 h
If the elastIc scatterIng cross-section of neutrons (J = 4.8 b/nucleus.
T~e mean fraction of energy transferred by the neutron to a nucleus
WIth the mass number A during collision f = 2AI(1 + A)2.

12.79. What number of ex-particles with an energy of 4.4 MeV
absorbed by 1 g of biological tissue corresponds to an absorbed dose
of 50 rem? The Q.F. for ex-particles is equal to 10.

12.80..1.6.104 ex-particles with an energy of 5 MeV fall normally
on the skIn surface of 1 cm2 area. Determine the mean absorbed dose
~rad .and :em) i? the layer equal to penetration depth of ex-particles
~n bIOlogIcal tls~ue.. The range of ex-particles in biological tissue
IS 1/815 of that In all'; the Q.F. for ex-particles is equal to 10.

12.81. A beam of ~-particles from a radioactive 9°81' source falls
normally on the surface of water. The flux density J = 1 0.104 par­
ticles/(cm2 ·s). Determine the dose (rad) absorbed by w~ter at its
~urface during an interval t = 1.0 h. The mean energy of B-particles
IS assumed to be equal to T j3max/3.
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NUCLEAR REACTIONS

1 I'

" i' th, .nRI, at which th' outgo'ng pac"do m' movo, in 0 c1,;;:'0" , 'i~l~~'""', '1
angle of divergence of generated particles in the L frame. , ~ ... " .-,'
• Detailed balancing principle: for the reaction '~.. '-- .

m1 (S1) + M 1 (I1) +'= m 2 (S2) + M 2 (I2)" j~' ','

the cross-sections of a direct (J12 and a reverse process (J2l are related as '. .

(13.3)

• Energy diagram of a nuclear reaction

m + M ->- M* ->- m' + M' + Q,
proceeding via the compound nucleus M* is shown in Fig. 37, where m + M
and m' + M' are the sums of rest masses of particles before and after the reac-

tion T and T' are the total kinetic energies of particles before and after the
reaet,ion (in the C frame), E* is the excitation energy of the compound nucleus,

Q is the energy of the reaction, E and E' are the bindi~g energies of the particles rn
and rn' in the compound nucleus. The figure also lliustrates the energy levels
1, 2, and 3 of the compound nucleus.
• Threshold kinetic energy of an incoming particle (il!- a laboratory frame L)
at which an endoergic nuclear reaction becomes possible

Tth = m"tM I Q I, (13.1)

here m and M are the masses of the incoming particle and the target nucleus.
• Vector diagram of momenta* for particles involved in the reactio~
M (m, m') M' is shown in Fig. 38. Here Pm' Pm', and PM' are the rr~ome~ta of
the incoming particle and particles generated as a result of the reactiOn (ill ,,!,he

L frame), 0 is the centre of a circle whose radius equals the momentum P of
generated particles (in the C frame):

---::-;---

;=V2f-t' (T+Q), (13.2)

where f-t' is the reduced mass of generated particles, Q is the reaction's energy,

T is the total kinetic energy of particles prior to the reaction (in the C frame),
the point 0 divides the section A C into two parts in the ratio AO : OC = m' : M',

* The similar diagram for elastic scattering is given on page 16.

J

-

tr
2

E*
r'1--1---1°m+M

E

E't m'+M'

M*
Fig. 37 Fig. 38

if both processes proceed at the same magnitude of the total energy o!-,intera~.

ing particles in the C frame. Here si and Ii are the particles' spins, P1 and P2
are the momenta of particles in the C frame.

CONSERVATION LAWS IN NUCLEAR REACTIONS

13.1. An a-particle with kinetic energy To = 1.0 MeV is scat­
tered elastically by an initially stationary 6Li nucleus. Find the
kinetic energy of the recoil nucleus ejected at an angle it = 30°
to the initial direction of the a-particle's motion.

13.2. Find the kinetic energy of an incoming a-particle, if after
its elastic scattering by a deuteron: (a) Bp of each particle turns
out to be 60 kG·cm; (b) the angle of divergence of two particles
it = 120° and the amount of energy acquired by the deuteron T d =
= 0.40 MeV. "

13.3. A non-relativistic deuteron is elastically scattered through
an angle of 30° by a stationary nucleus. The recoil nucleus is ejected
at the same angle to the direction of motion of the incoming deu­
teron. To what atom does that nucleus belong?

13.4. Plot the vector diagrams of momenta for elastic scattering
of a non-relativistic a-particle by a stationary nucleus: (a) 6Li,
(b) 4He, (c) 2H, if the angle of scattering of the a-particle in the
C frame is equal to 60°. In what case is the relation between the
energy of scattered a-particle and its angle of scattering described
by a non-single-valued function? Find the greatest possible angle
of scattering of the a-particle for each of these three cases.

13.5. Find the fraction of the kinetic energy lost by a non-rela-

tivistic a-particle due to elastic scattering at an angle '1']. = 60°
(in the C frame) by a stationary 12C nucleus.

13.6. A proton with a kinetic energy of 0.90 MeV sustains an
elastic head-on collision with a stationary deuteron. Find the pro­
ton's kinetic energy after the collision.

13.7. A non-relativistic neutron is scattered elastically through
the angle itn by a stationary 4He nucleus so that the latter is ejected
at an angle of 60° to the direction of motion of the incoming neutron.
Determine the angle itn •

13.8. A non-relativistic a-particle is elastically scattered by a 6Li.
Determine the angle of scattering of the a-particle: (a) in the L

frame provided that in the C frame ita = 30°; (b) in the C frame
provided that in the L frame {}a = 45°.
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13.9. Deuterons with a kinetic energy of 0.30 MeV are elastically
scattered by protons. Find the kinetic energy of the deuterons scat­
tered through the greatest possible angle in the L frame. What is the
magnitude of the angle?

13.10. Find the energy of the reaction 7Li(p, a)4He if the mean
binding energies per nucleon in 7Li and 4He nuclei are known to
be equal to 5.60 and 7.06 :l\IeV respectively.

13.11. Determine the energies of the following reactions:
(a) 3H(p, 1')4He; (b) 14N(a, d) 160; (c) 12C(a, d)14N; (d) 6Li(d, na)3He.

13.12. Using the tables, calculate the mass of 17N atom, if the
energy of the reaction 170(n, p)17N is known to be Q = -7.89 MeV.

13.13. Find the velocity with which the products of the reaction
10B(n, a)7Li come apart; the reaction proceeds due to interaction
of slow neutrons with stationary boron nuclei.

13.14. Find the energy of neutrons produced due to photodisin­
tegration of beryllium according to the reaction 9Be(I" n)8Be by
l'-quanta with an energy of fzro = 1.78 MeV. The energy of the reac­
tion is Q = -1.65 MeV.

13.15. A deuterium target irradiated by l'-quanta with an energy
of fzro = 2.62 MeV emits photoprotons for which Bp = 63.7 kG·cm.
Ignoring the difference in the masses of a neutron and a proton find
the binding energy of a deuteron. '

13.16. Calculate the energies of the following reactions:"
(a) 2H(d, p)3H, if the energy of the incoming deuterons T d =
= 1.20 MeV and the proton, outgoing at right angles to the direction
of the deuteron's motion, has an energy Tp = 3.30 MeV;
(b) 14N(a, p)l70, if the energy of the incoming a-particles T a =
= 4.00 MeV and the proton, outgoing at an angle 'fr = 60° to the
direction of motion of a-particles, has an energy of Tp = 2.08 MeV.

13.17. Determine the kinetic energy of protons activating the
reaction 9Be(p, a)6Li + 2.13 MeV, if the range of a-particles, out­
going at right angles to the direction of motion of the protons, is
equal to 2.5 em in air at NTP.

13.18. Deuterons with a kinetic energy of T d = 10.0 MeV collide
with carbon nuclei and initiate the reaction 13C(d, a)llB, Q =
- +5.16 MeV. Determine the angle between the directions in which
the products of the reaction are ejected, if: (a) the produced nuclei
diverge in a symmetric pattern; (b) the a-particle is ejected at
right angles to the deuteron beam.

13.19. Derive formula (13.1).
13.20. Calculate the threshold kinetic energies of a-particles

and neutrons in the following reactions:

(a) a+ 7Li--+ 10B+n; (b) a+ 12C--+1l'N+d;
(c) n+ 12C--+9Be+a; (d) n+ 170--+ 14C-+a.

13.21. Calculate the threshold kinetic energy of an incoming
particle in the reaction p + 3H --+ 3He + n, for the cases when that
particle is: (a) a proton; (b) a tritium nucleus.
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13.22. Determine the kinetic energies of 7Be and 150 nuclei pro­
duced in the reactions:

(a) p+7Li--+ 7Be+n, Q= -1.65 MeV;

(b) n -+ 19F--+ 150+ p + 4n, Q= - 35.8 MeV

for the threshold value of energy of the proton and neutron.
13.23. A lithium target is irradiated with a beam of protons whose

kinetic energy exceeds the threshold value 1.50 times. Find the
energy of neutrons ejected as a result of the reaction 7Li(p, n)'Be ­
- 1.65 MeV at an angle of 90° to the proton beam.

13.24. Evaluate the lowest kinetic energy an incoming a-par­
ticle requires to overcome the Coulomb potential barrier of a 7Li
nucleus. Will this amount of energy be sufficient for the a-particle
to activate the reaction 7Li(a, n)l°B?

13.25. Neutrons with the kinetic energy T = 10.0 MeV activate
the reaction 10B(n, d)9Be for which Tth = 4.8 MeV. Find the kinetic
energy of deuterons for the reverse reaction under assumption that
the total energies of interacting particles are equal for both processes
in the C frame.

13.26. Derive the expression for the momentum p of particles
produced by the rElaction M (m, m') M' + Q in the C frame, if the
kinetic energy of an incoming particle in the L frame is equal to T m'

13.27. Determine the kinetic energy of oxygen nuclei ejected
following the reaction 14N(P, n)140 - 5.9 MeV at an angle of 30°
to the direction of motion of the striking protons whose kinetic
energy is 10.0 MeV. Obtain the solution, using the vector diagram
of momenta drawn to scale.

13.28. Find the highest kinetic energy of a-particles produced
by the reaction 160(d, a)14N + 3.1 MeV, if the energy of the striking
deuterons is 2.0 MeV.

13.29. "Find the width of the energy spectrum of neutrons pro­
duced by the reaction llB(a, n)l4N + 0.30 MeV, if the kinetic
energy of striking a-particles is equal to 5.0 MeV.

13.30. A lithium target is bombarded with a-particles with the
kinetic energy T a' As a result of the reaction 7Li(a, n)10B, Q =
= -2.79 MeV, the target emits neutrons. Find:

(a) the kinetic energies of neutrons ejected at the angles 0, 90,
and 180° to the direction of motion of the striking a-particles, if
Ta = 10.0 MeV;

(b) at what values of T a the neutrons will be emitted into the
front hemisphere only ({} ~ 90°).

13.31. To obtain high-intensity fluxes of fast neutrons, lithium
deuteride LiD is placed into a reactor, so that slow neutrons activate
the reaction 6Li(n, a)3H + 4.80 MeV. The generated tritium nuclei
in its turn activate the reactions: (a) D(t, n)4He + 17.6 MeV and
(b) 7Li(t, n)9Be + 10.4 MeV, providing fast neutrons. Find the
highest energies of these neutrons.
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13.32. Neutrons with an energy of 1.50 MeV strike a target pos­
sessing the nuclides 6Li and 2H. Using the vector diagram of momenta,
determine the width of energy spectrum of neutrons appearing
after the following successive transformations:

n+ 6Li~4He+3H; 3H+2H~ 4He+ n.

13.33. Find the greatest possible angles (in the L frame) at which
the products of the following reactions move:

(a) 9Be(p, n)9B-1.84 MeV, if T p =4.00MeV;

(b) 4He(n, d)3H-17..5MeV, if T n =24.0MeV.

Here T is the kinetic energy of a striking particle.
13.34. A beam of neutrons with an energy of 7.5 MeV activates

the reaction 12C(n, a)9Be - 5.70 MeV in a carbon target. Find:
(a) the fraction of a-particles ejected into the front hemisphere
('6'a ~ 90°), assuming the angular distribution of the reaction prod­
ucts to be isotropic in the C frame; (b) the angle at which the
a-particle is ejected in the C frame, if the corresponding angle in
the L frame is equal to '6'a = 30°.

13.35. Find the threshold energy of a y-quantum sufficient to
activate the endoergic photodisintegration of a stationary nucleus
of mass M, if the reaction yield is equal to Q.

13.36. Calculate the kinetic energies of neutrons in the following
disintegration reactions: (a) y + d ~ n + p; (b) y + 7Li ~ n +
+ 6Li, if the y-quanta possess the threshold values of energy.

13.37. Demonstrate that in a nuclear photodisintegration reaction
y + M ~ m1 + m 2 , when the products of the reaction are non­
relativistic, the momenta of generated particles in the C frame are
described by the formula p ~ V21-t' (Q + nw), where I-t' is the
reduced mass of the generated particles, Q is the energy of the reac­
tion, nw is the energy of the 'V-quantum.

13.38. 'V-quanta with an energy of 6.40 MeV interacting with
tritium nuclei activate the reaction 3H('V, n)2H, Q = -6.26 MeV.
Assuming the angular distribution of neutrons in the C frame to be
isotropic, find the probability of a deuteron being ejected into the
front hemisphere ('6'd ~ 90°) in the L frame.

13.39. A beryllium target is irradiated with a narrow beam of
deuterons with an energy of T d = 190 MeV. Beyond the target,
a beam of neutrons is observed (in the direction of the primary deu­
teron beam) with an angular width of ~e = 16°. Making use of the
assumption concerning the mechanism of stripping reaction, find
the energy spread of the neutrons.

13.40. Find the possible spin value of a 170 nucleus in the ground
state appearing due to stripping reaction involving the interaction
of deuterons with 160 nuclei, if the orbital moment of captured neu­
trons equals In = 2. Compare the result with the spin value given
by the nuclear shell model.
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13.41. Consider the two following reaction branches proceeding
via a compound 8Be* nucleus:

(1)

(2)

The spin and parity of 7Li and 8Be nuclei in the ground state are
equal to 3/2- and 0+ respectively, the spin of a-particle is 0, the
internal parity of proton is to be assumed positive. Using the laws
of conservation of angular momentum and parity, fmd for the cases
when the orbital moment of proton I is equal to 0 and 1: (a) the
possible values of spin I and parity P of the compound nucleus;
(b) the states (spin and parity) of the compound nucleus in both
reaction branches.

ENERGY LEVELS IN A NUCLEUS.
REACTION CROSS-SECTIONS AND YIELDS

13.42. Find the excitation energy of a stationary nucleus of
mass M which it acquires on the capture of 'V-quantum of energy nw.

13.43. Determine the excitation energy of a 4He nucleus appearing
after the capture6I a proton with a kinetic energy of 2.0 MeV by
a stationary 3H nucleus.

13.44. What is the lowest kinetic energy of a neutron capable,
after inelastic scattering by a 9Be nucleus, to transfer to the latter
an excitation energy of 2.40 MeV?

13.45. A 7Li target is bombarded with a beam of neutrons with
energy T = 1.00 MeV. Determine the excitation energy of nuclei
generated due to inelastic scattering of neutrons, if the energy of
neutrons scattered inelastically at right angles to the incident beam
is T = 0.33 MeV.

13.46. Calculate· the energies of protons scattered inelastically
at right angles by stationary 2°Ne nuclei. The lower levels of 2°Ne
nucleus are known to correspond to excitation energies of 1.5, 2.2,
and 4.2 MeV. The energy of the striking protons To = 4.3 ~IeV.

13.47. Find the kinetic energies of neutrons providing the maxi­
mum interaction cross-sections for 160 nuclei, if the lower levels of
the compound nucleus correspond to the following excitation ener­
gies: 0.87, 3.00, 3.80, 4.54, 5.07, and 5.36 MeV.

13.48. Deuterons bombarding a carbon target activate the nuclear
reaction 13C(d, n)l4N whose maximum yield is observed for the
following values of energy of deuterons: 0.60,0.90,1.55, and 1.80 MeV.
Find the corresponding levels of the compound nucleus through
which the given reaction proceeds.

13.49. A boron target is irradiated with a beam of deuterons
with an energy of 1.50 MeV. It is found that due to the reaction
(d, p) in lOB nuclei the target emits protons with energies of 7.64,
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5.51, and 4.98 MeV at right angles to the beam of deuterons. Find
the levels of excited HB nuclei corresponding to these energies.

13.50. Find the ratio of intensities of monochromatic groups of
neutrons that are inelastically scattered at right angles to the inci­
dent beam by the 27Al nuclei whose lower levels correspond to exci­
tation energies of 0.84, 1.02, and 1.85 MeV. The energy of the strik­
ing neutrons is equal to 1.40 MeV. The cross-section of inelastic
scattering of neutrons in the vicinity of the threshold is known to be
proportional to the velocity of inelastically scattered neutrons.

13.51. Find the expression for the cross-section of the reaction
A (a, b) B, if the cross-section of the compound nucleus formation aa
and the widths of its level, rand r b , through which the reaction
proceeds, are known. Here r is the total width of the level, and r b

is the partial width corresponding to the emission of particle b.
13.52. Determine the mean lifetime of excited nuclei appearing

after the capture of neutrons with an energy of 250 keV by 6Li nuclei,
if the mean lifetimes of these nuclei are known with respect to
emission of neutrons and a-particles: "n = 1.1.10-20 s, "ex = 2.2 X
X 10-20 s (no other processes are involved).

13.53. The rate of a nuclear reaction can be characterized by the
mean duration" of bombardment of a given nucleus prior to the
moment of its activation. Find" for the reaction 6°Ni(a, n)63Zn ,
if the current density of a-particles is J = 16 ftA/cm2 and the reac­
tion cross-section a = 0.5 b.

13.54. Find the flux density of neutrons at a distance of 10 cm
from a small (Po-Be) source containing 0.17 Ci of 210PO, if the yield
of the reaction 9Be(a, n)12C is equal to 0.8.10-4.

13.55. A beryllium target becomes an intensive neutron source
due to irradiation with deuterons accelerated to an energy of 10 MeV.
Find the number of neutrons emitted per 1 s per 100 ftA of deuteron
current, if the yield of the reaction 9Be(d, n)l°B is equal to 5.10-3.
What amount of radium must a (Ra-Be) source possess to have the
same activity? The yield of that source is assumed to be equal to
2.0.107 neutrons per second per one gram of Ra.

13.56. A BF3 gas having the volume V = 10 cm3 at NTP is
irradiated with thermal neutrons whose flux density J = 1.0.1010 neu­
trons/(s· cm2). Find: (a) the number of nuclear reactions (n, a) in­
volving boron nuclei occurring within the given volume during one
second; (b) the thermal power liberated in this volume as a result
of the reaction (n, a) involving boron nuclei.

13.57. The irradiation of a thin target of heavy ice with 1 MeV
deuterons activates the reaction 2H(d, n)3He whose yield and cross­
section are equal to 0.8.10-5 and 0.020 b respectively. Determine the
cross-section of this reaction for the deuterons' energy of 2 MeV,
if at this energy the yield amounts to 4.0.10-5.

13.58. The yield of the reaction (y, n) on the exposure of a copper
plate of thickness d = 1.0 mm to y-quanta with an energy of 17 MeV
is w = 4.2.10-4. Find the cross-section of the given reaction.
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13.59. A narrow beam of monochromatic neutrons (0.025 eV)
with an intensity of 2.0.108 neutrons/s passes through a chamber con­
taining a nitrogen gas at NTP. Find the cross-section of the reaction
(n, p), if it is known that 95 protons are produced during 5.0 ms
over 1.0 cm of the beam's length.

13.60. A thin plate of 1l3Cd is irradiated with thermal neutrons
whose flux density is 1.0.1012 neutrons/(s·cm2). Find the cross­
section of the reaction (n, y), if the content of 1l3Cd nuclide is known
to diminish by 1.0 % after six days of irradiation.

13.61. A thin plate made of boron of natural isotopic content is
irradiated for a year with thermal neutrons of intensity J = 2.00 X
X 1012 neutrons/so The reaction involving lOB nuclei reduces their
content to 16.4 % by the end of irradiation. Determine the cross­
section of the given reaction.

13.62. Determine the yield of the reaction (n, a) activated in
a target 0.50 em thick, made of lithium of natural isotopic content,
by a beam of thermal neutrons.

13.63. An iron target is irradiated with a beam of protons with
an energy of 22 MeV. As a result of the nuclear reaction (p, n) whose
yield w = 1.2.10-3 a 56CO radionuclide is produced with a half-life
of 77.2 days. Determine the activity of the target" = 2.5 h after the
beginning of irr~diation, if the proton's current J = 21 ftA.

13.64. A target of metallic sodium was irradiated with a beam of
deuterons with an energy of 14 MeV and a current of 10 ftA for
a long period of time. Find'the yield of the reaction (d, p) producing
a 24Na radionuclide, if the activity of the target 10 h after the end
of irradiation is 1.6 Ci.

13.65. A thin phosphorus plate of thickness 1.0 g/cm2 was irra­
diated for" = 4.0 h with a neutron flux of 2.0.1010 neutrons/s with
a kinetic energy of 2 l\leV. One hour after the end of irradiation, the
activity of the plate turned out to be 105 ftCi. The activity is known
to result from 31Si nuclide produced by the reaction (n, p). Determine
the cross-section of the given reaetion.

13.66. A thick* aluminium target irradiated with a beam of
a-particles with an energy of 7.0 MeV emits 1.60.109 neutrons/s
resulting from the reaction (a, n). Find the yield and mean cross­
section of the given reaction, if the current of a-particles is equal
to 50 ~LA.

13.67. A thick* beryllium target is bombarded with a-particles
with an energy of 7.0 MeV. Determine the mean cross-section of the
reaction (a, n), if its yield amounts to 2.50.10-4.

13.68. A thick* target made of 7Li nuclide is bombarded with
a-particles with an energy of 7.0 MeV. Find the mean cross-section
of the reaction 7Li(a, n)l°B - 4.4 MeV, if its yield w = 2.8.10-5.

* A target is referred to as "thick" when its thickness exceeds the range of
a striking particle in the target's material.
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O"a=nj;2g (T-T
o
)2+(f/2)2

21+1
g= 2 (21 + 1) ,

• Logarithmic loss of energy is In (To/T), where To and T are the initial and
final kinetic energies of a neutron... ., .
• Mean logarithmic loss of energy of a neutron undergomg a smgle elastlc col-
lision with a nucleus:

1;;=1+ 1 a a Ina; a=( ~+~ t, (14.5)

where A is the mass number of the nucleus.

where ~ = ')J2'Jt is its wavelength, l is the orbital quantum number.
• Breit-Wigner formula for an individual level giv~ th~ cross-section of for­
mation of compound nucleus by slow s-neutrons (l - 0).

ffn

h e j; and T are the wavelength and kinetic energy of an incoming neutron,To e[s the kinetic efiergy of a neutro!J- corresp~n~ing to the given level of the
compound nucleus M* (Fig. 39), g IS the statIstl­
cal weight, I is the spin of thll target nucleus, J
is the spin of the given level of the compo.und
nucleus f and f is the total and neutron wIdth
of the l~vel, f n depends on the wavelength of the
incoming neutron, j;fn = j;ofno ' j;o and ,rno are
the neutron's wavelength and neutron wIdth of
the level at T = To'
• Rate of nuclear reaction:

R = (L:) <1J reaction/ (cm3 .s), (14.3)

where (L:) = N (0") is the mean macrosc?pic cross­
section of reaction, N is the concentratIOn of nu­
clei, <1J = n (v) is the flux density of neut~ons, .n
is the concentration of neutrons, and (v) IS theIr
mean velocity. .
• Mean value of the cosin~ of the angl~ at whIch neutrons a~e scattered due to
elastic collisions with statIOnary nucleI of mass number A.

• Aiming parameter of a neutron

b=,-yrl (l+1),
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NEUTRON PHYSICS

13.69. A beam of a-particles with an energy of 7.8 MeV enters
a chamber filled with air at NTP. The length of the chamber along
the beam exceeds the range of a-particles of the given energy. Find
the mean cross-section of the reaction 14N(a, p)l70 - 1.20 MeV, if
the yield of the reaction is 2.0.10-6. The nitrogen content in air
is 78 % by volume.

13.70. A beam of neutrons with an energy of 14 MeV falls nor­
mally on the surface of a beryllium plate. Evaluate the thickness
of the plate sufficient for the 10 % reproduction of neutrons by means
of the reaction (n, 2n) whose cross-section (J = 0.50 b for the given
energy of neutrons. Other processes are assumed non-existent, the
secondary neutrons are not to be absorbed in the plate.

13.71. A thick target containing no nuclei/cm3 is irradiated with
heavy charged particles. Find how the cross-section of a nuclear
reaction depends on the kinetic energy T of striking particles, if the
reaction yield as a function of the particles' energy, w (T), and the
expression for ionization loss of energy of these particles, dT/dx =
= f (T), are known.

13.72. When a deuterium target is irradiated with deuterons, the
following reaction occurs: d + d ---+ 3He + n, Q = +3.26 MeV.
Making use of the detailed balancing principle, find the spin of a 3He
if the cross-section of this process equals (Jl for energy of deuterons
T = 10.0 MeV, while the cross-section of the reverse process for the
corresponding energy of striking neutrons (J2 = 1.8(Jl' The spins
of a neutron and a deuteron are supposed to be known.

13.73. Using the detailed balancing principle, find the cross­
section (Jl of the reaction a + 6Li ---+ 9Be + p - 2.13 MeV, if
the energy of striking a-particles is T = 3.70 MeV and the cross­
section of the reverse reaction with the corresponding energy of pro­
tons is 0'2 = 0.050 mb.

13.74. Using the detailed balancing principle, demonstrate that
the cross-section of an endoergic reaction A (P, n) B activated due
to irradiation of a target with protons of energy T p is proportional
to VT p - Tp th in the vicinity of the threshold, if in the case of slow
neutrons the cross-section of the reverse reaction is proportional
to VVn' Vn being the velocity of the neutrons.

13.75. The cross-section of the deuteron photodisintegration
reaction I' + d ---+ n + p, Q = -2.22 MeV is 0'1 = 0.150 mb for
an energy of I'-quanta hw = 2.70 MeV. Using the detailed balancing
principle, find the cross-section (J2 of the reverse process for the cor­
responding energy Tn of striking neutrons. Calculate this value of Tn.
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where n is the concentration of neutrons, D is the diffusion coefficient, V2 is
the Laplace operator, <D is the flux density of neutrons, L a is the macroscopic
absorption cross-section, Ldlf is the diffusion length.
• Neutron albedo ~ is the probability of neutrons being reflected after multiple
scattering in a medium.

Fig. 40

scintillator of a photomultiplier A. After elastic collision with
protons of stylbene, the neutrons scattered throu.gh the angle {t
are registered by a photomultiplier B while the. recoIl protons b~ t!le
photomultiplier A. The output pulses from eIther photom~ltI'plIer
are fed to coincidence circuit, the pulses from the photomultIplIer A
being delayed to account for the time taken. by .the scattered ne.utron
to travel the distance L. Find: (a) the kmetIc energy of prImary
neutrons, if the delay time required to observe the highest num~~r
of pulse coincidences is 2.20.10-8 S, L = 50 cm, .and {t.= 4;) ;

(b) the accuracy of determination of neutron energy, If the dIameter
of the crystal of the photomultiplier B is equal to 3.0 cm.

14.5. In a pulsed cyclotron installation the total width of a neu­
tron pulse and a channel of a time analyze: is equal to 1.0 ~s: ~valu­
ate the distance from a moderator to the tIme analyzer of thIS mstal­
lation sufficient to resolve two resonances lying in the vicinity of
50 eV and separated by the interval of 0.50 eV.

14.6. Calculate the energy of neutrons reflected from a set of
planes of NaCI crystal with d = 3.25 A through ~ glancin~ angle of
4.0°. The incident beam consists of neutrons wIth energIes below
3.0 eV.

14.7. In a beryllium crystal monochromator, the neutron reflec-
tion of the first order from a set of planes with d = 0.75 A is used.
Evaluate the energy resolution (!1TIT) of this monochromator for
neutrons with energy about T = 0.30 eV, if the incident neutron
beam has an angular spread of !1{t = 0.5°.

14.8. A LiF crystal monochromator that employs neutron reflec-
tion of the first order from a set of planes with d = 2.32 A is used
to resolve two groups of resonant neutrons with kinetic energies
of 0.49 and 0.51 eV. At what angular divergence of the incident neu­
tron beam can it be done?

14.9. When a thermal neutron beam passes through a thick chunk
of pressed crystalline powder, the neutrons of sufficiently long wave­
length penetrate 1iPe whol.e length .of t?e chunk without reflecti?ns
from crystalline planes. Fmd th~ kmetIc ener?,y of n.eutrons passI~g
through a thick chunk of g~aph~te. The maXImum mterplanar dIS-
tance of graphite is d = 3.35 A.

14.10. Figure 40 illustrates a scintillation spectrometer of fast
neutrons. A neutron beam to be investigated falls on a stylbene
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(14.8)

(14.7)

(14.6)

( ) n -r2/4t
qE r = 4n. e ,

where n is the source intensity, neutrons/s, • is the neutron age, cm2, r is the
distance from the source, cm.
• Neutron diffusion equation for a medium without multiplication:

dn
_=DV2l1>-~a<1l;
dt

1 ,j'-
D=~; Ldlf= y D/~a,

tr

• Age of neutrons moderated from energy To down to T:
To

\

1 dT o •

• = 3l:L ~ T cm ",
. '" s tr
T

Ltr= L s (1-( cos 1't»,

where 6 is the mean logarithmic loss of energy, L s and ~ tr are the macroscopic
scat tering an d transport cross-sections.
• Moderation density q (E) is the number of neutrons in 1 cm3 crossing a given
energy level E per one second in the process of moderation. For a point source
of fast monoergic neutrons in an infinite homogeneous moderating medium

NEUTRON SPECTROSCOPY

14.1. One of the first designs for mechanical selection of neutrons
consists of two discs fixed to an axle rotating at a speed of n rps.
The distance between discs is L. Each disc has a radial slit displaced
relative to each other by the angle a. Find the energy of neutrons
filtered through such a selector, if n = 100 rps, L = 54 em, and
a = 8°.

14.2. In a mechanical neutron selector, constructed as a stack
of alternating aluminium plates of a thickness of 0.75 mm and thin
cadmium layers, the total length of the stack is equal to 50 mm.
What must be the speed of rotation of the stack to arrest neutrons
with energies below 0.015 eV? What is the neutron pulse duration
in this case?

14.3. A mechanical time-of-flight neutron selector has a resolution
!1-c/L ~s/m. Find the energy resolution !1TIT of that selector as
a function of neutron energy T, eV. Assuming !1-cIL = 1.0 ~s/m,

find !1TIT for T = 5.0 eV, and the highest value of T at which !1TIT
is better than 10 %.

14.4. Is a mechanical neutron selector with time-of-flight resolu­
tion of 0.50 ~s/m acceptable to study the shape of a resonance curve
in silver for an energy of 5.0 eV and half-width of 0.20 eV?
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INTERACTION OF NEUTRONS WITH NUCLEI

14.11. On the basis of quasiclassical concepts derive the expres­
sion for the aiming parameter b of a striking neutron. Calculate the
first three allowed values of b for neutrons with a kinetic energy of
1.00 MeV.

14.12. Find the maximum value of aiming parameter for neutrons
with a kinetic energy of 5.0 MeV interacting with Ag nuclei.

14.13. Demonstrate that for neutrons with the wavelength ],
the Jgeometric nuclear cross-section S ~ 11; (R + T)2, where R is
the radius of the nucleus. Estimate this value for the case of a neu­
tron with a kinetic energy of 10 MeV interacting with an Au nucleus.

14.14. Evaluate the maximum centrifugal barrier height for
neutrons with a kinetic energy of 7.0 MeV interacting with Sn nuclei.

14.15. Evaluate the angle it within which the neutrons are scat­
tered after elastic diffraction by lead nuclei. The neutron energy is
50 MeV.

14.16. Find the probability that after interaction of slow neu­
trons (l = 0) with nuclei whose spin I = 1, the compound nuclei
are formed in the state with spin J = 3/2. The spins of neutrons
and nuclei are assumed to be randomly oriented relative to one
another.

14.17. On the basis of the Breit-Wigner formula for the cross­
section of formation of a compound nucleus (1a, derive the expres­
sions for the cross-sections of elastic scattering and radiative capture
of a neutron.

14.18. Using the Breit-Wigner formula, derive the radiative neu­
tron capture cross-section (1nv as a function of the kinetic energy of
a ne,utron T, if the cross-section of this process"is known for T = To;
values of To and r are also known. ,

14.19. Calculate the cross-section of the r~action mIn(n, 1')116In
for a neutron energy of 0.50 eV, if under the conditions of resonance
(10 = 2.76.104 b, To = 1.44 eV, and r = 0.085 eV. The neutron
width r n is known to be much smaller than the radiation width r y'

14.20. When thermal neutrons with an energy of 0.025 eV interact
with 113Cd nuclei, the scattering cross-section amounts to 0.22%
of the radiative capture cross-section. Determine the ratio of prob­
ability of a compound nucleus decaying with emission of neutrons
to that with emission of 1'-quanta, if the resonant value of neutron
energy To = 0.178 eV.

14.21. Using the Breit-Wigner formula, find: (a) the values of the
kinetic energy of a neutron (Tmax and T min) at which the radiative
capture cross-section (1nv reaches its maximum and minimum (To and
r are assumed to be known); find under what conditions T max ~ To;
(b) by how many percents the cross-section (10 of the process (n, 1')
at T = To differs from the resonant value (1max of that process,
if r = To; (c) the values of the ratio rlT0 at which radiative capture
of neutrons does not exhibit its selective nature.

14.22. Applying the Breit-Wigner formula for radiative capture
of neutrons, find the ratio (1mlnl(1o, where (1mln is the minimum cross­
section of the process (n, 1') in the region T < To; (10 is the cross­
section of this process at T = To, if r ~ To.

14.23. Using the Breit-Wigner formula, determine the width r
of a level in a compound nucleus appearing after the capture of a neu­
tron by a l1sCd nucleus, if the radiative capture cross-section for
neutron energy T = 2T0 is 1/15 of that for T = To, where To =
= 0.178 eV. r is supposed to be independent of the neutron energy.

14.24. Using the Breit-Wigner formula, show that if the half-width
!1T of a resonant peak of the curve (1nv (T) is small (!1T ~ To),
then !1T ~ r.

14.25. The resonance energy of neutrons interacting with 59Co
nuclei is To = 132 eV, the corresponding neutron width r no =
= 0.9r, and r ~ To. Using the Breit-Wigner formula, find: (a) the
resonance cross-section of elastic scattering of neutrons; (b) the
spin of the state of the compound nucleus through which the process
proceeds, if the total resonance cross-section (10 = 1.0.104 b.

14.26. Find the ratio of the resonance cross-section of elastic
scattering of neutrons by 55Mn nuclei to the geometric cross-section
of these nuclei, if To = 337 eV, r nO ~ r ~ To, and the spin of the
transitional nucleus, through which the process proceeds, is J = 2.

14.27. The croSS-section of radiative capture of neutrons by
149Sm nuclei under conditions of resonance (To = 0.097 eV) is
(10 = 1.2.105 b. Find the netftron width r no for the resonance energy
of neutrons, if r no ~ r = 0.064 eV and the spin of 149Sm nucleus
1=7/2.

14.28. Evaluate the lifetime of a compound nucleus appearing
on capture of a neutron by a 10sRh nucleus, if at the resonance energy
of neutrons To = 1.26 eV the cross-section of the process (n, 1')
is (10 = 2700 b, r y »rno = 7.8.10-4 eV, and g = 1/4.

14.29. Using the Breit-Wigner formula, find the cross-section of
radiative capture of slow neutrons as a function of their kinetic
energy, when the compound nucleus has a "negative" energy level,
To < 0 (the level E1 in Fig. 39). Find out how (1nv behaves as T varies
in the regions T ~ ITo I and T » ITo I·

14.30. Using the Breit-Wigner formula, identify the conditions
under which the cross-section of radiative capture of neutrons obeys
the 11v law.

14.31. On irradiation of a magnesium target with neutrons
(2.5 MeV), it was observed that in addition to elastically scattered
neutrons there is a group of inelastically scattered neutrons whose
energy corresponds to a certain excited level of transitional nuclei
(1.3 MeV). Determine the relative width of the given level for inelas­
tic scattering, if it is known that the total cross-section of the process
(1tot = 2.2 b and the elastic scattering cross-section (1el = 1.6 b,
44 % of which represents potential scattering.
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~at",al i,otopic compo,ilion i, used). A"uming t1",t the reaction
cross-s~ctlon ana ex: 1/v, determine: (a) the volume density of neu­
trons If 1.0.1012 reactions occur in the counter per one second'
~b) the number of reactions occurring in the counter per one second
If CD = 1.1.1010 neutrons/(cm2·s) and the neutron temperature is
300 K.

14.43. Demonstrate th~t in a t?in ~arget exposed to an isotropic
field of neutrons the reactIOn rate IS tWIce that in the case when a par,
allel flux of ~eutrons with the same energy spectrum falls normally
?n the target s. surface. The number of neutrons hitting the target
IS the same In both cases.

14:44.. How long does it take to irradiate a thin layer of lOB
nuclIde In a field of thermal neutrons with a volume density n =
= 4.0.108 neut:ons/cm3 to decrease the number of lOB nuclei by
50 percent? It. IS known that the reaction cross-section ana ex: 1/v.

14.45: A th.In sa~ple of metallic sodium of 0.40 g mass was
placed In an IsotropIc field of thermal neutrons with CD = 1.0 X
X 1010 neutrons/(cm2.s). Assuming the 24Na radionuclide production
rate constant, determine: (a) the activity of the saturated sample
~nd t?e .fract~on of 24~a nuclei accumulated in such a sample; (h) the
Hr~dlatIOn tll?e reqUIred to raise the sample's activity up to 75 %
of ItS saturatIOn activity.

14.46. The specific activity of a neutron-activated golden foil
equals A = 1.1.108 dis/(s·g) = 3.0 mCi/g. For how long has this
foil to be additionally exposed to the field of thermal neutrons with
CD = 1.0.1010 neutrons/(cm2·s) to increase its activity by a factor of
11 = 10?

14.47. A thin copper plate is exposed to the isotropic field of
thermal. neutr~n~ with CD = 0.9.1012 neutrons/(cm2.s). Determine
the speCIfic actIVIty of the plate t = 2.0 h after the beginning of the
exposure.

14.48. A thin 115In foil of mass 0.20 g was exposed to an isotropic
therm~l neu.tron flux for 't = 2.0 h. In t = 0.50 h after the exposure­
was dls~ontInued, the foil activity turned out to be A = 0.07 mCi.
DetermIne the neutron flux density CD.
. 14.49. A 51V sample of mass 0.50 g is activated up to saturation
In a the.rmal n~utro.n ~eld. During 't = 5.0 min immediately after
completIOn. of Irrad~atIOn, N = 0.8.109 pulses were registered, the
count effiCIency be.Ing ~ = 0.~10 .. Determine the volume density
of n~utron.s, assumIng the actlvatIOn cross-section to obey the 1/w
law In thIS case.

14.50.. An 115In foil whose both sides are covered with thin layerS'
of cadmIUm was exposed to. an iso~roJ?ic neutron field. Taking into
acco~nt that the cross-sectIOn of IndIUm activation obeys the 1/0
la~ I~ the case of .the:mal neutrons, determine the specific saturation
actlvlty of the foIl, If the volume density of thermal neutrons n =
= 3.1.104 cm -3 and a cadmium ratio of Red = 20. Cadmium is

PROPAGATION OF NEUTRONS THROUGH MATTER

14.32. What must the thickness of cadmium plate be to reduce
the flux of thermal neutrons 100-fold after passing through it?

14.33. How many times will a narrow beam of thermal neutrons
be attenuated after passing through a layer of heavy water 1.0 cm
in thickness?

14.34. Evaluate in what proportion a narrow beam of fast neu­
trons with an energy of 10 MeV attenuates on passing through a lead
plate 4.0 cm in thickness. The effective nuclear cross-section is
assumed to be a = 2:11 (R + 1; )2; R is the radius of the nucleus;
'A is the neutron wavelength.

14.35. In the centre of a spherical graphite layer whose inside
and outside radii are r1 = 1.0 cm and r2 = 10.0 cm a point source
of monochromatic neutrons is located, emitting 1 0 = 2.0.104 neu­
trons/s with an energy of 2.0 MeV. The interaction of neutrons of
such an energy with carbon nuclei is characterized by a cross-section
a = 1.6 b. Determine the neutron flux density at the outside surface
of the layer, counting only neutrons that penetrated the layer with­
out collisions.

14.36. The intensity of a narrow beam of slow monochromatic
neutrons diminishes 20-fold on passing through a plate of natural
boron with a mass thickness of 1.0 g/cm2

• Determine the energy of
neutrons, taking into account that the 1/u law is valid in this case.

14.37. A narrow beam of neutrons with an energy of 10.0 eV passes
a distance l = 15.0 cm along the axis of a counter filled up with
BF3 at NTP (natural boron is used). Determine the counter efficiency
provided that the cross-section of the reaction (n, ex) is known to
obey the 1/u law.

14.38. In a neutron counter with LiI crystal sensor the reaction
(n, ex) in 6Li nuclei is used. Determine the efficiency of the counter
for a thermal neutron beam, if the thickness of the crystal is known
to be 2.0 cm and density 4.0 g/cm3 (natural lithium is used). The
scattering of neutrons is to be neglected.

14.39. Find the decrease in efficiency (%) of a neutron detector,
a thin lOB layer, that was irradiated for a week by a plane flux of
thermal neutrons with a density J = 1.00.1013 neutrons/(cm2.s).

14.40. A non-monochromatic beam of slow neutrons falls on a thin
target activating a nuclear reaction whose cross-section is a ex: 1/u.
Demonstrate that in this case the mean cross-section of the reaction
(averaged over all neutron velocities) (a (u) = a (v»).

14.41. A beam of neutrons with energies falling within the inter­
val, in which the cross-section of the reaction (n, ex) is proportional
to 11v, passes through a thin 6Li foil 10 mg/cm2 in thickness. What
is the mean velocity of the neutrons, if the yield of the reaction
(n, ex) is known to be 0.40 in this case?

14.42. A neutron counter with a volume of 100 cm3 filled up with
BF3 gas at NTP is placed in the uniform field of slow neutrons (boron
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supposed to absorb all thermal neutrons and let through above­
thermal ones. Note. Red is the ratio of saturation activities of the
naked foil and cadmium-coated one.

MODERATION AND DIFFUSION OF NEUTRONS

14.51. What fraction of its kinetic energy does a neutron lose in:
(a) an elastic head-on collision with initially stationary nuclei 2H,
12C, and 238U; (b) an elastic scattering through the angle it by an
initially stationary deuteron, if the angle it is equal to 30, 90, and
150°?

14.52. Neutrons with the kinetic energy To are elastically scat­
tered by nuclei with the mass number A. Determine: (a) the energy of

neutrons scattered through the angle it in the C frame; (b) the frac­
tion of neutrons that after single scattering possess a kinetic energy
whose value falls within the interval (T, T + dT) provided the
scattering in the C frame is isotropic. Plot the distribution of scat­
tered neutrons in terms of energy.

14.53. Neutrons with a kinetic energy of To = 1.00 MeV are
elastically scattered by initially stationary 4He nuclei. Determine
the mean energy value of singly scattered neutrons, assuming the
scattering in the C frame to be isotropic.

14.54. Determine the probability that after a single elastic scat­
tering of a neutron by a deuteron the neutron energy becomes less ,
,than half the initial value; the scattering in the C frame is isotropic.

14.55. Neutrons are scattered by initially stationary protons.
Assuming this scattering to be isotropic in the C frame, find, using
the vector diagram of momenta: (a) the probability of a neutron
scattering into the angular interval (it, it + d{t); (b) the fraction
of neutrons scattered through angles {t> 600

; (c) the mean value
.of neutron scattering angle in the L frame.

14.56. A neutron is scattered by a nucleus with mass number A
through the angle defined by the expression

." 1+A cos ~cos U' = ,

V 1+A2+2A cos ~

where (t is the corresponding scattering angle in the C frame.
(a) Derive this expression.
(b) Determine the fraction of neutrons elastically scattered

through angles it > {tl = 900 due to single collisions with 9Be
nuclei; the scattering in the C frame is isotropic.

(c) Demonstrate that the mean value of cosine (cos (t) = 2/3A
fo I' the isotropic scattering in the C frame.

14.57. Calculate (cos (t) for neutrons elastically scattered in
beryllium oxide provided the scattering in the C frame is isotropic.

14.58. Supposing that the elastic scattering of neutrons by nuclei
is isotropic in the C frame, (a) derive formula (14.5); simplify this
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formula for the. case of s~Jfficiently large values of A; (b) calculate S
for a neutron 1Il graphIte and heavy water.

14.59. Determine the mean number of elastic collisions tl t
t '. h Iaa neu ron expenences 1Il t e process of its moderation from an ener

of 2.00 1\IeV down to 0.025 eV in uranium, graphite, and hea~y
water. y

14.60. Find the mean time of .neutron .moderation from energy
To - 2.0 MeV to Tt = 0.025 eV III beryllIUm, assuming the mean
free path of a neutron between two collisions to be independent of
energy and equal to As = 1.15 em.
. 14.61.. Neutrons with a kinetic energy of 2.0 MeV are thermalized
m graphIte down to energy 0.025 eV. Calculate the age 't of thermal
neutrons and moderation length L.

14.62: Using the expression for moderation density qE in the case
of a pomt source of !ast monochromatic neutrons, demonstrate that
the mean sq~are~ dIstance ~alo~g the straight line) travelled by a
neutron ~urmg Its thermahzatIOn to the energy E is (r 2 ) = 6't,
where 't IS the age of the given neutrons.

14.6.3. To det.ermine the neutron age, a point source of fast neu­
trons .IS placed III a large bulk of moderator and thin indium strips
cadmIUm-plated ar,e activated at various distances from that source.
The degree o~ indium activation is primarily effected by its reso­
~an,ce level WIth ~n energy o~ about 1.5 eV. Find the age of resonance
Illdll:m neutrons m graphite, if the foil activity A (in relative units)
at dIstances r from the source, equal to 50, 100, and 150 mm, is
known to be equal to 100, 94, and 85 respectively.

! ~4.64. Demonstrate ~hat for nuclei whose cross-section obeys the
llu law the resonance m.tegral for above-cadmium neutrons (whose
energy ex:eeds 0.40 eV) IS equal to (50/2, where (50 is the absorption
cross-sectIOn for a neutron energy of 0.025 eV.

14.65. ~hermal ~eutrons diffuse in a uniform medium whose
mac~OSC?PIC s:~tterm~ cross-section is L s and absorption cross­
~ectIOn IS ne¥lIgible. Fmd: (a) the probability that a neutron passes
I~ that medIUm the distance between x and x + dx without colli­
SIOns; the mean free path As between two successive collisions'
(h) the mean squared free path (x2 ) of a neutron in graphite. '
. 14.66..A thermal neutron with an energy of 0.025 eV diffuses
lfol. graphIte. Determine the mean diffusion time (lifetime) of the
glV~n neutron and the mean number of collisions it experiences
durmg that time.

14.67. Calculate for, the~mal neutrons in graphite: (a) the trans­
port length; (h) the dIffusIOn length and the mean distance covered
by the neutron till its absorption.

1~.68: Neut,r~ns diffuse .in a medium whose absorption cross­
~ectIOn IS neglIgIble. A~summg the neutron scattering to be isotropic
I~ the L frame, .determme: ,( a) the number of neutrons crossing 1 cm2
al ea fro~ one SIde per 1 s, If the neutron flux is the same throughout
the medIUm and equal to cD; (h) the resultant density rate of neu-
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(15.2)

(15.3)

trons crossing an element of area oriented normally to V<D, if <D =
= <Do + (d<D/dn)o x, where the values sllbindexed with 0 refer to
the points of the considered element of area (x = 0).

14.69. A thermal neutron source is located in the infinite uniform
medium without multiplication, whose macroscopic absorption
cross-section is L a and diffusion coefficient D. Assuming the neutron
scattering to be isotropic in the L frame, find the expression de­
scribing the steady-state distribution of the neutron flux <D in the
medium, if the neutron source: (a) is an infinite plane emitting
n neutrons/(cm2 ·s); (b) is a point with activity n neutrons/s; (c) is
a sphere of radius Remitting n neutrons/(cm 2 ·s), with all neutrons
getting inside the sphere being absorbed.

14.70. A point source of thermal neutrons is surrounded with
a large bulk of heavy water. Calculate the neutron diffusion length
in this medium, if the ratio of neutron fluxes at distances r 1 = 15 cm
and r 2 = 30 cm from the source is <D1 /<D 2 = l] = 2.2.

14.71. Demonstrate that the mean squared displacement of a
thermal neutron in a medium from the point at which it became
thermal to the point at which it was absorbed is related to the diffu­
sion length as (r2

) = 6Laif'
14.72. A neutron diffuses in a medium with albedo ~. Determine

the probability that the given neutron crosses an imaginary plane
in the medium n times exactly, as well as the mean number of times
that the neutron crosses the plane.

14.73. An indium foil of thickness 0.13 g/cm2 is activated in
a field of thermal neutrons realized in a water tank. The foil activity
turned out to be 6.9 times that of the foil plated by cadmium on one
side. Find the thermal neutron albedo in water.

14.74. !\laking use of the solution of Problem 14.68, find the albedo
of a reflector, if a medium producing thermal neutrons: (a) is sepa­
rated by a plane boundary from an infinite graphite reflector having
the neutron flux distribution <D = <Doe-x/I., where x is the distance
from the boundary, L is the diffusion length; (b) has the shape of
a sphere of radius R surrounded by an infinite reflector; known are
the diffusion coefficient D, diffusion length L, and neutron flux

distribution in the reflector <D ex: .! e-r/ I. , where r is the distance from
r

the centre of the sphere.
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NUCLEAR FISSION AND FUSION

• Energy liberated in a single uranium fission is adopted equal to 200 MeV.
• Multiplication constant for neutrons in inflnite medium:

k"", = Epl!] , (15.1)

where £ is the fast neutron multiplication, p is the probability of avoiding
a resonance capture, f is the thermal neutron utilization coefficient (the proba­
bility of absorption of a thermal neutron by a fissionable substance), YJ is the
mean number of fission neutrons per one thermal neutron absorbed by a fission­
able substance.
• Energies of the dd and dt reactions (d for deuterium and t for tritium):

t+p+4.0 MeV,
/'

d+d d+t ~ a+n+17.6 MeV.
~,

31Ie+n+3.3MeV,

Both branches of the dd reactiop. are practically equiprobable.
.' Effective cross-section of the dd reaction:

add=1.2.102 _
1
-exp (-~) bT r1 / 2 '

'where T is the kinetic energy of a relative motion of deuterons, i.e. their total
kinetic energy in the C frame, keY.
• In this chapter the plasma particles are supposed to be distributed in accord­
ance with Maxwell's law; the plasma temperature is expressed in energy units
e = kT.
• Mean values of the quantity au for deuterium and tritium plasma are:

(au)dd=3·10- 11 82~3 exp ( - 811~3 ) cm3/s,

1 (20 )(aU)dt =3.10-12 82/ 3 exp - 81/3 cm3/s,

where 8 is the plasma temperature, keY. The graphs of these functions are pre­
sented in Appendix 13.
• Hydrogen plasma bremsstrahlung intensity

u·=4.8·10-31 neni y8e W/cm3 , (15.4)

where "e,i is the concentration of electrons and ions, cm-3 , 8e is the l'lectronic
temperature, keY.
• Conductivity of totally ionized hydrogen plasma

a = 4.0.10;83/ 2 Q -1.cm-1 , (15.5)

where 8 is the plasma temperature, keY.
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where N is the number of electrons per unit length of the pinch.

• Basic equation of magnetohydrodynamics for quasisteady state and plasma
boundary condition:

where p is the kinetic pressure of plasma, j is the electric current density, B is
the magnetic induction. . .
Cl Relation between the temperature 0 and longitudinal current I 1Il an eqUI­
librium cylindrical pinch of totally ionized hydrogen plasma:

6 = J2/4c 2N, (15.7)
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15.7. The nucleus, appearing after a neutron is captured by a 238U
nucleus, fIssions provided the neutron energy is not less than 1.4 MeV.
Find the activation energy of the fissionable nucleus.

15.8. Determine the most probable and mean kinetic energy of
235U fission neutrons whose energy spectrum is n (T) ex: VTe-O.77T ,

where T is the neutron's kinetic energy, .'\leV.
15.9. Calculate the fission cross-section of a nucleus in uranium

of natural isotopic abundance for thermal neutrons.
15.10. Calculate the fraction of thermal neutrons whose capture

by nuclei 233U, 235U, and 239PU induces their fission.
15.11. Find the mean number of inst antaneous fission neutrons

per one absorbed thermal neutron in 233U, 235U, and 239PU.
15.12. Compare the mean number of instantaneous fission neutrons

per one absorbed thermal neutron in natural and enriched (1.50%
235U) uranium.

15.13. A 235U plate is exposed to thermal neutrons falling nor­
mally on its surface. At what thickness of the plate will each inci­
dent thermal neutron produce on the average one fast fission neutron ?-

15.14. A parallel thermal neutron flux of density J 0 = 1.2 X
X 1010 neutrons!(cm2·s) falls normally on a plate of natural ura­
nium 8.0 g/cm2 in thickness. Find the power generated from 1 cm2
of the plate due .t'O 235U fission.

15.15. Into a constant power reactor a small amount of 239PU
(m 1 = 0.90 g) was added. To keep the reactor's power constant,
some boron of natural isotopic abundance (m 2 = 0.060 g) was also­
added. Assuming the absorption cross-sections of plutonium and
boron to be known, find the mean number of 239PU fission neutrons.
per one absorbed thermal neutron.

15.16. A reactor with fissionable isotope 235U operates at a con­
stant power level. Find the fraction of neutrons escaping from the
fissile core, if half of fission neutrons are captured by uranium nuclei
and impurity nuclei without subsequent fission.

15.17. What is the physical meaning of the multiplication con­
stant k? How many neutrons will there be in the hundredth genera­
tion, if the fission process starts from 1000 neutrons and k = 1.05?

15.18. Evaluate the time interval during which 1.0 kg of sub­
stance fissions in the infinite medium of 235U, if the mean energy of
fission neutrons equals 1.6 .MeV, the fission cross-section of 235U
nucleus for such energy is about 2 b, and the multiplication constant
k = 1.0010. Suppose that one nucleus fissioned at the initial moment.
How will the result change, if k = 1.01O?

15.19. Each fission of a 238U nucleus releases about 2.6 fIssion
neutrons on the average. The fission cross-section of 238U is equal
to about 0.5 b (for fission neutron energies), the inelastic scattering
cross-section amounts to a few barns. Taking into account that at
least half of fission neutrons possess the energy below 238U fission
threshold, demonstrate that a self-sust ain ing chain reaction is
impossible in the medium consisting of these lIuclei.

I

(15.6)
B2

p+-=const,
8nvp=.! [jB];
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FISSION OF NUCLEI. CHAIN REACTION

15.1. Determine: (a) the energy liberated in fission of 1.0 kg
of 235U nuclide' what amount of oil with a calorific value of 42 kJ Ig
liberates such 'an energy on combustion? (b) the electric power of
an atomic power plant if its annual consumption of 235U nucli.de
comes to 192 kg with an efficiency of 20%;. (c) the ~ass of 23aU
nuclide fissioned in the explosion of an atomIC bomb wIth a trotyl
equivalent of 30 kt, if the thermal equivalent of trotyl equals
4.1 kJ/g. .

15.2. Find the total neutrino flux and power bemg lost due to
that flux in the case of a reactor with 20 MW thermal power. Each
fIssion is assumed to be accompanied with five ~-decays of fission
fragments for which the total neutrino energy amounts to about
11 MeV.

15.3. Using the semi-empirical fo:mula for binding energy (1~.3),

find the ratio Z 21A at which the fissIOn of an even-even nucleus mto
two equal fragments becomes feasible in terms ~f e~ergy.

15.4. A nucleus becomes quite unstable to fissIOn mto two equal
fragments when the ratio of its electrostatic energy to surface energy
equals two. Using formula (10.3), find the value Z2!A of such nucleus.
Compare this value with that of nuclei lo~ated. at the end of the
Periodic Table; explain why these nucleI fissIOn. .

15.5. Find the half-life of 238U with respect to spontaneous fissIOn,
if it is known that the number of such fissions per one gram of pure
238U equals 25 per hour. How many a-decays occur in this sample
during the same interval?

15.6. A 235U nucleus captured a thermal neutron. The unstable
nucleus thus formed fissioned to produce three neutrons and two
radioactive fragments that transformed into stable 89y and 144Nd
nuclei. Find the energy liberated in this process, if: (a) the ei'i~ess
of mass of a neutron and nuclei 235U, 89Y (-0.09415 amu), Nd
(-0.09010 amu) are known; (b) the binding energy per one nucleon
in nuclei 235U (7.59 MeV), 89Y (8.71 MeV), 144Nd (8.32 MeV) and
binding energy of a neutron in 236U (6.40 MeV) are known.
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15.20. Explain why a self-sustaining chain reaction is impossible
in a medium consisting of natural uranium.

15.21. A homogeneous mixture contains z = 500 mol of carbon
per each mole of uranium. Calculate: (a) the coefficient t, if the
uranium of natural isotopic abundance is used; (h) the degree of
235U enrichment for which t = 0.95.

15.22. In a homogeneous uranium-graphite mixture the proba­
bility of avoiding a resonance capture

p = exp [-24.7 (Na/~ s)r.5851,

where:Na is the number of 238U atoms in 1 cm3 ; ~ s is the macroscopic
scattering cross-section of the medium, b. Calculate the value of p
for the mixture containing 400 mol of graphite per each mole of
natural uranium.

15.23. Making use of the formula of the foregoing problem and
assuming e = 1, calculate the multiplication constant koo in a homo­
geneous mixture containing z = 400 mol of graphite per each mole
of natural uranium.

15.24. The active section of heterogeneous thermal-neutron reactor
is a tank filled with moderator into which 200 rods of natural ura­
nium are inserted. The length of each rod is 1.50 m, the diameter
2.0 cm. Neglecting the self-absorption of neutrons in uranium, evalu­
ate the mean flux density <D and thermal neutron concentration, if
the reactor's power is 0.60 MW.

15.25. A thin 233U foil of a mass of 0.10 g was exposed for T = 60 s
to a flux of thermal neutrons falling normally on its surface. The
flux is 1= 1.1.1010 neutrons/(cm2 ·s). Following T = 10 s after the
end of the exposure, the activity of one of the delayed neutron groups
with a half-life of 55 s turned out to be A = 4.0.105 neutrons/so
Find the yield of delayed neutrons of that group per one fission.

15.26. Evaluate the mean lifetime of a single generation of fission
neutrons in a homogeneous medium containing 100 moles of graphite
per each mole of natural uranium. Take into account that the neu­
tron thermalization time is much less than the diffusion time.

15.27. The fission of 235U exposed to thermal neutrons produces
six groups of delayed neutrons:

Ti , s •....••• 55.7 22.7 6.20 2.30 0.61 0.23
Wi, 10-3 •••••• 0.52 3.46 3.10 6.24 1.82 0.66

Here T i is the half-life of the fragments emitting the ith group of
delayed neutrons, Wi is the yield of these neutrons per one fission.
Find the increase in the mean effective lifetime of a single generation
of neutrons, in a medium consisting of 235U and moderator, caused
by delayed neutrons. The mean lifetime T of a single generation of
fission neutrons is known to be equal to about 1 ms.

15.28. Find the reactor period T (the time interval during which
its power increases e-fold), if the multiplication constant k = 1.010
and mean lifetime of a single generation of neutrons T = 0.10 s.
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THERMONUCLEAR REACTIONS

15.29. What amount of energy is liberated in fusion of 1 g of
nuclear fuel in the following thermonuclear reactions: (a) dt; (h) dd;
(c) 6Li(d, a)4He?

Compare the obtained results with the energy liberated in fission
of one gram of uranium.

15.30. How long would the thermonuclear energy liberated in
the dd reaction have held out, if 1% of deuterium contained in the
Ocean had been used and the world energy consumption rate had
been equal to 10Q per year (the volume of the Ocean is 1018 m3

,

1Q = 1018 kJ) ? Note. The present energy consumption rate amounts
to about O.1Q per year. Still, the above-mentioned rate of 10Q per
year would not change the Earth climate appreciably, as this value
totals 1% of the solar radiation absorbed and emitted by the Earth
annually.

15.31. A carbon cycle of thermonuclear reactions, proposed by
Bethe as a possible source of stellar energy, comprises the following
transformations:

p -+- 12C -+ 13N -+- '\', p -+- i/lN -+ 150 ,\"
13N -+ 13C + e~ v, 150 -+ 15N + e+ -+- v,

p --["'1 3C -+ HN -+- '\', P -+- 15N -+ 12C -+- ~He.
Calculate the energy liberated in this cycle in the process of pro­
duction of one mole of helfum.

15.32. What fraction of liberated energy is carried from a thermo­
nuclear reaction core by neutrons released as a result of the reaction:
(a) dt; (h) dd?

15.33. The energy of neutrons produced in the thermonuclear
reaction dt can be utilized by surrounding the reaction core by an
envelope which absorbs the neutrons with positive thermal energy
yield, e.g. by the envelope containing 6Li (n -+- 6Li -+ t + a). By
what factor will the utilized energy increase on the introduction
of such an envelope?

15.34. Evaluate the lowest temperature of deuterium plasma in
which the deuterons possessing the most probable value of relative
velocity are capable of overcoming the Coulomb barrier. The radius
of deuteron R ~ 2.0.10-15 m.

15.35. When the kinetic energy T of the relative motion of charged
particles is considerably less than the Coulomb barrier height, the
coefficient of transparency of the barrier

D ~ exp (-aIVT); a = nq1q2 V 2 /-l/n,
where ql and q2 are the charges of the particles, /-l is the reduced mass.

(a) Derive this formula from the general expression (3.5).
(h) Calculate the values of D for deuterons possessing the most

probable value of relative velocity at plasma temperatures of 1.0
and 10.0 keY.
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15.36. Calculate the cross-section of the dd reaction for the most
probable value of relative velocity of deuterons in a plasma with
temperatures of 1.0 and to.O keY.

15.37. In a deuterium plasma with a concentration of nuclei of
n = 1.0.1015 cm-3 , the deuterons react with frequency f = 1.0 X
X to-3 S-l. Find the volume density of the released thermonuclear
energy and plasma temperature 8.

15.38. Determine the kinetic energy of the relative motion of
deuterons corresponding to the maximum velocity of the dd reaction
in deuterium plasma with a temperature of 8 = 2.0 keY.

15.39. A deuterium plasma with a concentration of nuclei of
n = 1.0.1015 em -3 is heated to the temperature 8. For 8 = 1.0
and 10 keV calculate: (a) the mean lifetime of a deuteron in terms
of the dd reaction; (b) the number of dd reactions per unit time
(cm-3 ·s-1) and volume density of the released power.

15.40. In a deuterium-tritium plasma with the temperature e
and concentration of nuclei n = 1.00.1015 em -3, the concentration
of tritium nuclei equals nl100. For 8 = 1.00 and 10.0 keY calculate:
(a) the number of thermonuclear reactions (dd + dt) per 1 s per
1 cm3 ; (b) the volume density of released power.

15.41. A deuterium-tritium plasma with a concentration of nuclei
of n = 1.00.1015 em -3 has the temperature 8. For 8 = 1.00 and
10.0 keY find the ratios of nuclear concentrations of tritium and
deuterium at which the released thermonuclear power is the highest,
as well as the values of this power in \VIcm3• What inference can be
made on the relative contributions of the dd and dt reactions into
the power released under the given conditions?

15.42. Find the temperature 8 of deuterium-tritium plasma with
a concentration of nuclei of n = 1.0.1015 cm-3 (nd = nt) at which
the volume density of released power is w = 1.0 W lema. Assume
this power to be released primarily due to dt reactions.

15.43. What would be the radius of a spherical thermonuclear
reactor filled with deuterium plasma with deuteron concentration n
at the temperature 8, if the heat was removed from the active section
only in the form of thermal radiation in accordance with the Stefan­
Boltzmann law? Calculate 8m at which the reactor's radius is the
smallest. What is its value, if n = 1.0.1020 cm-3 ? Think over the
result obtained.

15.44. Find the deuterium plasma temperature 8 at which the
released thermonuclear power is equal to the power of bremsstrah­
lung radiation of electrons.

15.45. A deuterium-tritium plasma is maintained at a tem­
perature of 10.0 keY and constant deuterium concentration nd =
= 1.00.1015 em -3 is replenished from an outside source. The latter
provides deuterons at the rate q nuclei/(cm3 ·s). Considering only
the dd and dt reactions, find: (a) the steady-state concentration of
tritium nuclei and the value of q; (b) the volume density of released
power w. What is the value of nd for which w = 100 W Icm3?
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PLASMA PHYSICS

15.46. A plasma sample is shaped as a plane-parallel layer. Sup­
pose that due to a certain cause all electrons shifted with respect
to ions by the distance x in the direction perpendicular to the layer's
surface. Using this model, find the frequency of electronic oscilla­
tions set in the plasma.

15.47. The dielectric permittivity of plasma in electric field E =
= Eo cos rot is E (ro) = 1 - (ro o/ro)2, (roo is the Langmuir frequency
of electrons) under the conditions that collisions between particles
and ionic motion can be neglected.

(a) Derive this expression.
(b) Demonstrate that an electromagnetic wave with the frequency

ro < roo goes through total internal reflection in the plasma.
(c) Calculate the electronic concentration in the plasma at which

the electromagnetic radiation with wavelengths exceeding 1.0 =
= 1.7 em is suppressed.

15.48. Calculate the flux of thermonuclear neutrons from a deute­
rium plasma of volume V = 1.0 litre at temperature 8 = 10.0 keY,
if the suppression of sounding radio waves is known to be observed
for wavelengths longer than 1. 0 = 5.0 mm.

15.49. Using Poisson's equation, demonstrate that the mean poten­
tial of electrostati&'field in the vicinity of an ion in hydrogen plasma
is <poe f e-r/ d , where r is the distance from the ion, d is the Debye
length. Find the expression fOr d provided the concentration of elec­
trons (and ions) is equal to n and plasma temperature to 8 (8 e = 8 i ).

Assume the spatial distribution of particles to obey the Boltzmann
law, and, specifically, I ecp 1« 8.

15.50. A hydrogen plasma with concentration of nuclei n =
= 1.0.1015 cm-3 is kept at temperature 8 = 10 keY. Calculate the
Debye length and number of nuclei contained in the sphere whose
radius is equal to the Debye length.

15.51. Calculate the cross-section corresponding to scattering of
electrons with the kinetic energy T = 1.00 keY through the angles
'fr > 900 due to collisions with ions of hydrogen plasma.

15.52. A hydrogen plasma with concentration of nuclei n =
= 1.0.1015 cm -3 is kept at the temperature 8 = 1.0 keV. Evaluate the
minimum angle 'frm1n , through which the electrons with the most
probable velocity are scattered, and also the magnitude of the
Coulomb logarithm In (2/'frm1n ). The Coulomb field of nuclei is
supposed to reach over the Debye length and then vanish abruptly.

15.53. The effective cross-section for transfer of electronic momen­
tum (when an electron is scattered by plasma ions) is defined by the

following expression: a = I (1 - cos 'I't) a('I't) d'l't, where a ('I't) =
= dald'l't is the differential cross-section given by the Rutherford
formula. Using this formula, calculate for the electrons with the
most probable velocity (if 8 = 1.0 keY and the concentration of
nuclei n = 1.0.1015 em -3): (a) the magnitude of the given effective
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cross-section; (b) the mean "free path", mean time interval between
"collisions", and the number of collisions per one second.

Assume the electrons to be scattered due to the Coulomb field of
nuclei, which reaches over the Debye length and vanishes abruptly
at longer distances.

15.54. An electron in a hydrogen plasma emits a power of 8w =

= 4.5.10-31 ni VT W, where ni is the concentration of nuclei, cm-3 ;

T is the kinetic energy of the electron, keY. Find the volume density
of bremsstrahlung radiation of electrons in the plasma, if their tem­
peratllre is equal to 8 keY and concentration to n e , cm-3 •

15.55. The power transferred from electrons to ions in unit volume
of the deuterium plasma

Wei = 1. 7 ·10-28n2 (8 e - 8J 8;3/~ W/cm3 ,

where n is the concentration of electrons (ions), cm-3 ; 8 e and 8i are
the electronic and ionic temperatures, keV. Using this expression
for deuterium plasma with n = 1.0.1015 em -3, find the time interval
during which 8 i rises to 28 e13, if the initial ionic temperature is neg­
ligible and the electronic temperature: (a) is maintained at a con­
stant value 8 e = 1.0 keY; (b) is 8 eo = 1.0 keY at the initial moment
and there is no heat exchange with the environment.

15.56. The current 10 flows along a thin skin layer of a cylindri­
cal plasma filament of pradius roo Find the magnetic pressure p, that is,
the Lorentz force acting on unit area of the filament's surface. Demon­
strate that p = B~/8Jt, where Bois the magnetic induction at the
filamen t's surface.

15.57. Suppose that the gas-kinetic pressure p of deuterium plas­
ma at a temperature of 8 = 10.0 keY is counterbalanced by the mag­
netic pressure developed by a magnetic field B = 50 kG. Calculate
the concentration of deuterons, pressure p, and volume density of
power released in thermonuclear dd reactions.

15.58. A current flows along a thin skin layer of a stable cylindri­
cal filament of hydrogen plasma of radius r 1 , and in the opposite
direction, along an external coaxial cylinder of radius r 2 • Find the
ratio of the magnetic energy to gas-kinetic energy of the plasma
filament. The plasma is assumed fully ionized.

15.59. A plasma has the shape of a thin cylindrical layer carrying
the current II' Along the axis of this layer there is a conductor carry­
ing the current 1 2 in the opposite direction. Ignoring the magnetic
field inside the plasma, determine: (a) the current ratio 11/1 2 at which
the plasma layer is at equilibrium; (b) the value of II at which the
hydrogen plasma temperature 8 = 1.00 keY, if the equilibrium
radius of the plasma filament ro = 6.0 cm and concentration of nuclei
n = 1.00.1015 em -3.

15.60. The current 1 0 flows along a hydrogen plasma filament of
cylindrical form with equilibrium radius roo Ignoring the external
gas-kinetic pressure, determine: (a) the mean value of gas-kinetic
pressure inside the filament; (b) the plasma temperature, if 1 0 =
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= 300 kA and the number of nuclei per unit length of the pinch
N = 0.7.1017 cm-1 •

15.61. The current I flows along a cylindrical fully ionized hydro­
gen plasma filament possessing N electrons per u~it length. Assum­
ing the plasma temperature and current denSIty to be co~stant

over the cross-section: (a) demonstrate that the concentratIOn of
. 2N( T

2
)electrons is distributed over the cross-sectIOn as n (r) = -:rt2 1 - T2 '

TO • 0

where ro is the equilibrium radius of the filament; fmd also the value
n2 (r) averaged over the cross-section; (b) find the current :vh?se
Joule heat power is equal to the plasma bremsstrahlung radIatIOn
power. ~What is the plasma temperature under this condition, if
N = 5.1017 cm-I?

15.62. A glass tube of radius ro = 2.5 em is filled with deuterium
with concentration no = 4.0.1014 molecules/emS and placed inside
a one-turn "coil" of length I = 10 em made of flat copper bus. After
preliminary ionization of deuterium a capacitor bank is discharge.d
through the coil. The current flowing in the co~l generates a magne.tIc
field that pinches the plasma filament to radIUS r = 0.50 em, With
the current in the coil reaching a value I = 1.0.106 A at that mo­
ment. Evaluate the plasma temperature neglecting the magnetic
field inside the pla~ma. Explain the mechanism of plasma compres­
sion in this case. '.;

15.63. Due to a sharp increase of current to 1 0 = 50 kA, a cylin­
drical filament of fully ionizM hydrogen plasma is pinched to equi­
librium radius ro = 1.0 cm; while increasing, the current flows along
a thin skin layer. Evaluate the time interval during which the mag­
netic field settles over the filament's cross-section, if the number of
nuclei per unit of its length N = 1.00.1016 em-I. Instruction. The
time during which magnetic field diffuses over the length I is equal
to about 12/D, where D = c2/4JtO" is the diffusion coefficient, 0" is the
electric conductivity.

15.64. A hydrogen plasma with a concentration of nuclei of
2.0.1010 cm -3 filling a glass tube of radius of 2.5 em is placed in an
external longitudinal magnetic field B zO = 4.0 kG. On passing
through the plasma of a current I z = 5.0.105 A flowing in a thin skin
layer, the plasma gets compressed to a radius of 0.50 cm carry.ing
along the magnetic field B z confined in the plasma. Evaluate the tIme
interval during which the field gets trapped in the plasma.

15.65. Show that the condition for suppression of sausage-type
instabilities in a cylindrical plasma filament carrying the current I
in the presence of the longitudinal magnetic field B z trapped in the

;i;;ma takes the following' form: B I < l/2 B z' where B I is the
magnetic field of the current I. The current is supposed to flow in
a thin skin layer. Find the value of B z at which the sausage-type
instabilities will be quelled in the plasma filament of radius r =
= 1.0 em carrying the current I = 100 kA.
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ELEMENTARY PARTICLES

16

(16.1)E2 _ p2 = inv,

• In all formulas of this chapter, energy, momentum, and mass are expressed
in energy units: p and m being an abbreviation of pc and mc2. Whenever the
term "mass" is used, the rest mass is meant.
• Kinetic energy of relative motion is the total kinetic energy of particles
in the C frame.
• Lorentz invariant:

where E and p are the total energy and total moment1,1m of a system ~f particl.es.
On transition from one inertial frame of reference mto another thIS quantity
remains constant.
• Velocity of the C frame relative to laboratory one (the L frame):

B= vic = piE, (16.2)

where p and E are the,,total momentum and total energy of a system of particles.
• Lorentz equations transforming the momentum, total energy, and angles
on transition from the L to C frame (Fig. 41):

~. __ Px-EB . E- E-p~B. tan~ -v1=]32 sin'fr ,(16.3)
P.\- -V 1-B2' - -V1-B2 ' cos'fr-(Elp)B

where B is the velocity of the C frame relative to the L frame.
• Threshold kinetic energy of a particle m striking a stationary particle M
and activating the reaction m + M --+ L mi

(~mi)2_(m+M)2 (16.4)
T m th= 2M •

When a particle of mass M decays into two particles, the momenta of the
generated particles are equal (in the C frame) to

; = -i-- Y[M2_(m l +m2p]·[M2_(ml-m2)2j, (16.5)
~.l1

1
f

15.66. Make sure that a doughnut-shaped plasma turn located in
the external circular magnetic field B'fJ induced by a toroidal sole­
noid cannot be stable irrespective of whether or not there is a current
in the turn.

15.67. A circular turn of hydrogen plasma carrying the current
I = 10 kA and having a concentration of nuclei n = 1.0.1015 cm-3

is formed in a toroidal quartz chamber with a cross-sectional radius
a = 5.0 cm and mean great radius R = 50 cm. Suppose that at the
initial moment the mean great radius of the turn is also equal to R.
Evaluate the time interval required to get the turn thrown off to the
chamber's walls. Assume that while stretching the turn keeps its
cross-sectional radius, equal to r = 1.0 cm, and the current I con­
stant, with the gas-kinetic pressure of the plasma turn being counter­
balanced by the magnetic pressure of the current I. Also assume that
the current I flows along the surface of the turn, so that the induc-

tance of the turn can be adopted to be equal to L=4nR (In 8~ - 2).
15.68. A plasma turn with the current I = 10 kA is located in

the external uniform magnetic field B z directed normally to the
turn's plane. Assuming that the current flows along the surface of
the turn, find the value of B z at which the turn will be at equilibri­
um, if its great and cross-sectional radii are equal to R = 50 em and
r = 1.0 cm. The expression for the inductance of the turn is to be
taken from the foregoing problem.

15.69. A circular plasma filament is formed in a toroidal chamber
,over which a winding is contrived to produce the longitudinal magnet­
ic field B'fJ. When the filament carries the current I, the magnetic
lines of force take, under these conditions, the helical form, so that
the plasma filament can develop instabilities of the helical type.
Such instabilities do not occur though, if the filament length is less
than the lead of the helical lines of force on the filament's surface. Find
the limiting value of the current I, if Brp = 20 kG and the great
.and cross-sectional radii of the filament are R = 50 cm and r =
= 1.0 cm.

where ml and m 2 are their masses.
• Vector diagram of momenta for the decay ~f a relativistic particle o~ mass M
into two particles with masses ml and m2 (FIg. 42). The locus of possIble loca­
tions of the tip of the momentum vector PI of particle ml is an ellipse for which

b=p; a=pl-V1-B2; f=pBI-V1-~2, (16.6)

where b and a are the semi-minor and semi-major axes, f is the focal distance,

;; is the momentum of generated particles in the C frame, Bis the velocity of the
decaying particle (in units of c). .

The centre of the ellipse divides the section AB mto two parts al and a2

in the ratio al : a 2 = ifl : E2 , where EI and E2 are the total energies of the
generated particles in the C frame.
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Maximum angle at which the particle ml is ejected is defined by the formula

1319*

- - 4na (T) = IT (1.'1') T cm2/MeV,
o

where a(f}) is the differential cross-section in the C frame in which

the angle {} corresponds to the kinetic energy T.
(b) Find the energy distribution of the scattered protons in the L

frame, if their angular distribution in the C frame is isotropic.
16.12. A positron whose kinetic energy is equal to its rest energy

and a stationary free electron annihilate. As a result, two l'-quanta
emerge, the energy of one being n = 2 times that of the other. Cal­
culate the divergence angle between the motion directions of the
l'-quanta.

16.13. Demonstrate that when relativistic positrons with momen­
tum p and free electrons annihilate, the differential cross-section of

16.7. A relativistic proton with the kinetic energy T is scattered
through the angle it1 by a stationary proton. As a result of the colli­
sion, the initially stationary proton is ejected at the angle '6'2'

(a) Demonstrate that cot it1 cot it 2 = 1 + T/2m.
(b) Calculate the minimum possible angle of divergence of the

two particles.
(c) Determine T and kinetic energies of either particle after colli­

sion, if '6'1 = 30° and it2 = 45°.
16.8. Demonstrate that when a relativistic particle with mass m1

is elastically scattered by a stationary particle with mass m 2 < mI'
the maximum scattering angle of the incoming particle is given by
the expression sin '6'max = m 21m1•

16.9. A negative muon with the kinetic energy T = 100 MeV
sustains a head-on collision with a stationary electron. Find the
kinetic energy of the recoil electron.

16.10. Relativistic protons with the kinetic energy T are ~astical-

ly scattered by stationary nuclei of hydrogen atoms. Let '6' be the
proton scattering angle in the C frame corresponding to the angle '6'
in the L frame. Prove that

(a) tan (.fr/2) = V1 + T/2m tan it, m is the mass of the proton;
(b) the differential cross-sections of this process in the C and L

frames are relate'd as

- - (1+asin2 {t)2
a (\l') = 4 (1+a) cos {t a (it) cm2/sr; ex = T/2m;

(c) the scattering in the C frame is anisotropic, if the differential
cross-sections 0'1 and 0'2 corresponding to angles it1 = 15° and \l'2 =
= 30° are equal to 26.8 and 12.5 mb/sr respectively at T = 590 MeV.

16.11. Relativistic protons with the kinetic energy To are elasti­
cally scattered by nuclei of hydrogen atoms.

(a) Demonstrate that the differential cross-section a (T) corre­
sponding to the energy T of the scattered proton in the L frame is defined
by the expression

Fig. 42Fig. 41

INTERACTION OF RELATIVISTIC PARTICLES

16.1. Calculate the momenta (GeV/c) of a proton, muon, and
electron whose kinetic energies are equal to 1.0 GeV.

16.2. A relativistic particle with mass m and kinetic energy T
strikes a stationary particle of the same mass. Find the kinetic ener­
gy of their relative motion, momentum of either particle in the C
frame, and velocity of this system.

16.3. What amount of kinetic energy should be provided to a pro­
ton striking a stationary proton to make the kinetic energy of their
relative motion equal to that effected in a collision of two protons
moving toward each other with kinetic energies T = 30 GeV?

16.4. A relativistic particle with mass m l and kinetic energy T
strikes a stationary particle with mass m2' Find: (a) the kinetic
energy of their relative motion; (b) the momentum and total energy
of either particle in the C frame.

16.5. Determine the kinetic energies of particles with masses m1

and m 2 in the C frame, if the kinetic energy of their relative motion

is known to be equal to T.
16.6. One of the particles of a system moves with momentum p

and total energy E at the angle it (in the L frame) relative to the

velocity vector ~c of the C frame. Find the corresponding angle f} in
the C frame.
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• It follows from the generalized Pauli exclusion principle that for a system
of two particles with identical isotopic spins

l+s+T {-1 for half-integer spin particles
(-1) -

- 1 for zero-spin particles,

where 1 is the orbital moment, s is the spin of the system, T is the isotopic:spin.

. M P
sin {tlmax= _. --, (16.7)

ml PM

where PM is the momentum of the decaying particle.
• In particle interactions the conservation laws for. lepton and baryon charges
hold. In strong interactions also hold the conservatIOn laws for strangeness S,
isotopic spin T, and its projection Tz'



v-quanta production with energy E l' varies inversely with the posi­
trons' momentum, if the angular distribution of y-quanta in the C
frame is isotropic.

16.14. Calculate the threshold energy of a y-quantum required for
n +n- pair production in the field of stationary proton.

16.15. Derive formula (16.4).
16.16. Calculate the threshold kinetic energies of incoming par­

ticles in the following reactions (the incoming particles are indicated
in the first position):

~

(1) P + 2H----+ 3He + nO; (5) n- + p----+ n + KO + KO;

(2) p + lOB----+ llB + n+; (6) P+ p----+ p + ~o + i-;
(3) P+ p ----+ A + A; (7) p + p ----+ P + p + p + p;

(4) n- + p----+ ~- + K+; (8) p + p----+ p + p + ~- +~+.

16.17. Find the kinetic energies of mesons produced in a hydrogen
target when a striking particle possesses the threshold energy:

(a) I' + p----+ n + n+; (b) p + p----+ p + ~o + K+.

16.18. Let a relativistic particle a strike a stationary particle A
in the direct process, and a particle b strike a stationary particle B
in the reverse one (a + A +± B + b). Assuming the total energy of
interacting particles to be equal for both processes in the C frame,

i.e.Ea + ELt = Eb + EB , find: (a) how the kinetic energies of the
striking particles T a and T b in the L frame are related in both direct
and reverse processes, if the masses of particles A and B and the
threshold kinetic energy of particle a are known; (b) the kinetic
energy of a pion in the reaction I' + p +± n + n + for the reverse
process, if the y-quantum energy in the direct process is Ji(j) =
= 200 MeV; the masses of a proton and a neutron are assumed to
be equal.

16.19. Protons with the kinetic energy T = 500 MeV strike
a hydrogen target activating the reaction p + p----+ d + n+. Find
the maximum possible angle at which the deuterons are ejected.

16.20. The cross-section of interaction of n--mesons with the pro­
ton target measured as a function of the pion kinetic energy exhibits
maximum values at 198, 600, and 900 MeV. These maxima corre­
spond to the unstable particles called resonances. Determine their
rest masses.

DECAY OF PARTICLES

16.21. A stopped ~ --particle decayed into a neutron and a pion.
Find the kinetic energy and momentum of the neutron.

16.22. Calculate the highest values of the kinetic energy and mo­
mentum of an electron produced in the decay of a stopped muon.
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16.23. A hypernucleus 5HeA undergoes the decay 5HeA --+ 4He +
+ p + n-. Calculate the binding energy of A-hyperon in the given
hypernucleus, if its decay energy Q = 34.9 MeV. . .

16.24. A moving pion with a kinetic energy of Tn = 50 nJeV dISW­
tegrated into a muon and a neutrino. At what angle was the muon
ejected, if the angle of emission of the neutrino is 90°?

16.25. A nO-meson whose kinetic energy is equal to its rest ener­
gy decays during its flight into two y-quant~. Fi~d: (a) the sr:Iallest
possible divergence angle between the dIrectIOns of motion of
y-quanta; (b) in what limits the ener~y of eith:r q~antum is confined.

16.26. A relativistic KO-meson wIth the kmetic energy T decays
during its flight into two nO-mesons. Find: (a) at w~at magnitude
of T one of the emerging pions can be produced as statIOnary; (b) the
angle between symmetrically diverging pions, if T = 100 MeV.

16.27. A ~+-hyperon with a momentum of P2. = 900 M~V/c
decays during its flight into a positive pion and a neutral particle.
The meson is ejected with a momentum of pn = 200 ~IeV/c at an
angle'l'l' = 60° to the initial direction of the hyperOJ?'s motion. Find
the mass of the neutral particle and energy of the gIven decay.

16.28. A neutral particle decays to produce a proton and a nega­
tive pion with the divergence angle between the directions of out­
coming particles being equal to El = 60°. The mom:nta of the produced
particles are equaf to 450 and 135 .MeVIe. Assumm~ that th~re are no
other decay products, fwd the mass of the decaymg partIcle.

16.29. Derive formula (16.5) for the C frame.
16.30. Substantiate the plotting of the vector diagram of momenta

for the case of a relativistic particle decaying into two particles
(see Fig. 42).

16.31. Calculate the parameters for the ellipse of momenta and
draw the appropriate vector diagram for the following cases:

(a) a neutral pion with T = m n decays as nO ----+ 21'; ! ..

(b) a positive pion with T = m n /2 decays as :J1----+ ~l T \,

(c) a proton with T = mp is elastic~lly scattered by a proton:
(d) a deuteron with T = mdl2 is elastIcally scattered by a proton,
(e) a proton with T = mp activates the reaction p + p--+ :J1+ + d.

Here T is the kinetic energy. . .
16.32. A moving positive pion with the kinetic energy T dIsmte­

grates into a muon and neutrino. Find in the L fr.ame: (a) the
maximum possible angle of emission of the muon If ~ = 50 SIeV;
(b) the limiting value of T at which the muons are eJected at the
limiting angle. .

16.33. A relativistic pion moving with the velOCIty ~ = vic
disintegrates into a muon and a neutrino.

(a) Demonstrate that the angles of emission of the neutrino in

the C frame (if) and L frame ('I'l') are related as

, cos{}-~

cos .0' =-' 1- ~ cos {} .
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(1)

(2)

(5) :rt- + n-+ K- + KO;

(6) K- + p-+ 2;+ + :rt-.

(1)

(2)

16.43. Which of the reactions written below are forbidden by the
strangeness conservation law:

(1) JC + p-+ A + KO; (4) P+ n-+ A + .2-;
(2) :rt- + p-+ K- -+- K+; (5) 2;- + p-+ A + n;

(3) p+ p -+ f o + KO + n; (6) :rt- + n-+ 8 - + K+ + K-?

16.44. What branches of the following reactions are forbidden
and why?

71 n +n-
( ) 2;-/
a ~ A+n-

PROPERTIES OF ELEMENTARY PARTICLES

16.37. Determine the mean proper lifetime of: (a) muo.ns,. if,
when possessing a kinetic energy T. = 7m!" ~heir mean lIfetime
€quals 1" = 17.6 f!s; (b) :rt+-meson~, If, possessmg momentum p =
= 55 ~leV/c, they survive over a dIstance l = 3.0 m or; the a,:"era~e.

16.38. Find the probability of a positive pion decaymg durmg Its
flight from the point at which ,it ~as ~roduced ~o a target (over the
distance of 6.00 m), if the pion s kmetic energy IS e~ual.to 100,~eV.

16.39. Suppose that a proton remains for some tIme m the l~eal
proton" state with the magnetic moment f!N and the rest of the tIme
in the "ideal neutron" state (f! = 0) plus a pion (p +±.n -t :rt+).
What is the fraction of time during which the proton remams m the
ideal proton state? .' . .

16.40. Using the detailed balancmg prmcl~l~ (se~ th~ mtroduc-
tion to Chapter 13), determine the spin of a pOSItIve pIOn, If the total
cross-section 0'1'1' for protons with the kinetic ene:gy T p = .500 MeV
(in the L frame) in the reaction p + p -+ d +:rt for .the dIrect pro­
cess is known to be one ninth of the total cross-sectIOn O' J1 d for the
reverse process with the corresponding energy. The spins of a proton
and a deuteron are known. .

16.41. The interaction of y-quanta with a hydrogen t.arget act~-
vates the reaction' y + p -+ :rt0 + p. The total cross-sectIOn. of thIS
reaction is a = 0.20 mb when the energy of y-quanta IS. E v =
= 250 MeV. YJsing the detailed balancing princi'pl~, determme the
cross-section of the reverse process (:rt°-mesons stnkmg the hydro!?en
target) with the corresponding kinetic energy of the meson. Fmd
the value of this energy.

16.42. Using the conservation laws for lepton a~d baryon charges,
find out whether the following processes are pOSSIble:

('1) n-+ p + e- + V e ; (4) K+-+ f!+ + VlJ, + :rt0;

(2) ~It + P -+ n + f! +;

(3) f!+-+ e+ -L V e

,

l

(a) To what reaction branch does each maximum belong?
(h) Assuming the masses of a proton and a neutron to be known,

determine the mass of a :rt--meson.
(c) Find the mass of a nO-meson.
16.35. In studies of the interaction of fast pions with protons, an

unstable quasiparticle p was observed, whose lifetime is so short
that its production and decay occur at practically the same point.
How can one establish, having considered many outcomes of that
reaction, that the process :rt- + p-+ n- + :rt+ + n branches partial­
ly via the bound state (:rt-:rt+), i.e. :rt- + p-+ p + n, p-+ :rt- +
+ :rt+? The total energies E i and momenta Pi of emerging pions are
assumed to be known in each case in the L frame.

16.36. In studies of the reaction K+ + p-+ A + :rt+ + :rt- acti­
vated by K--mesons with a kinetic energy of T K == 790 MeV, it was
observed that the reaction branches partially via the bound state
(n-A) proceeding in two stages as follows: K- + p-+ (:rt-A) + :rt+,
(n-A)-+ n- + A, with the emerging :rt+-mesons possessing a kinetic

energy of T!l = 300 MeV in the C frame. Calculate the rest mass of
the (n-A) resonance and its decay energy.
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Fig. 43

1-B2
a (it) ex: (1-B cos 1'1)2 cm2/sr.

(c) Calculate the probability of the neutrino being emitted into
the front hemisphere in the L frame if the pion's kinetic energy T =
= m!l and the neutrino's angular distribution is isotropic in the C
frame.

16.34. Due to interaction of slow:rt--mesons with nuclei of a hy­
drogen target, the following reactions are observed:

?n+y (1)
:rt-+p

~ n + :rt0, :rt0-+ 2y. (2)

The energy spectrum of produced y-quanta is shown in Fig. 43,
where E 1 = 54 MeV, E 2 = 84 MeV, and E~ = 130 MeV.

(h) Assuming that in the C frame the angular distribution of decay
products is isotropic, demonstrate that the differential decay cross­
section corresponding to the neutrino outgoing at the angle 'fr in the L
frame is



16.45. Find possible values of the isotopic spin T and its projec­
tion T z for the systems: nucleon-nucleon; pion-nucleon.

16.46. Using the generalized Pauli principle, find the isotopic
spin T of the system:

(a) np in the states 3p and 3D;
(b) n+no in the states Ip and ID;
(c) n+n- in the states Ip and ID.
16.47. Using the Shmushkevich method *, prove that isotopic

invariance leads to the following relations between the total cross­
sections a and probabilities w of the processes:

(a) the reactions of the type N + N ~ n + n (N designates
a nucleon):

p p~n+ n-(a1»)
~ + p~ nO + nO (a2) 2a1= 4a2+ a3 ;

p + n~ n- + nO (a3 )

(b) the reactions of the type n + N ~ A + K:

n++n~A+K+(a1) 1
\ a - 2a .

nO+p~A+K+(a2) j 1- 2,

(c) the reactions of the type n +!N~ L; + K:
n++ p~'2,++K+(a1)1
nO+p~'2,0+K+(a2) I
nO+p~L;+7KO(a3) } a3=a5 , a1+a4=2a2 --'--a3 ;

n-+p~'2,-+K+(a4) I
n- +p~ '2,0 +KO (a5 ) J

(d) the decay of T-particles (T+, TO, T-) into three pions:

T+~n++no+no(W1)}

T-~ n- +;n,++ n- (W2~ w2 = w1 + W3;

TO~ nO + nO + nO (w 3 );

(e) the decay of roo-particle into three, pions: show that the
decay roo~ 3no is impossible (roo-isotopic s{nglet).

16.48. Find the change of isotopic spin T and its projection T z in
the following processes:

(a) n- + p~ K+ + L;-;~ (b) n- + p~rK+ + KO + 8-;
(c) K+~ nO + J[+; (d) K~~ 2no.

* .In this method ,both a ta,rget a?-d a beaJ.ll arc treated as isotopically non­
polarIzed and all possIble reactlOns of the stud18d process are taken into account·
besides, the produced particles of each type are supposed to be isotopically
non-polarized as well.
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T60490 The expo'me of a deute,[um '"ge' to ,low (I ~ 0) n-·'J m;,ons ac'ivates 'he "acLion n- -I- d~ 2n. Recalling 'ha' 'he
~ parity of a deuteron is positive, demonstrate using the laws of con-

, .f, servation of momentum and parity that n--meson has the negative
" parity.

16.50. It is found experimentally that the isotopic spin of the
p-particle, representing the bound state of two pions, is equal to 1.

(a) Taking into account that the decay p~ 2n belongs to the
class of strong interactions, predict the spin and parity of a p-parti­
cle, using the angular momentum conservation law; the internal
parities of pions are identical.

(b) Write the possible decays of p+-, pO_, and p--particles into
two pions.

16.51. Below are given the values of quantum numbers of three
hypothetical basic particles called quarks:

quarks z B S
ql +2/3 +1/3 0
q2 -1/3 +1/3 0
qg -1/3 +1/3 -1

Here z is the electric charge (in units of e), B is the baryon number, S
is the strangeness. :rhe quark's spin is equal to 1/2.

(a) From the th1'ee quarks construct the following baryons: p, n,
~+, L-, go, 8-.

(b) Taking into account tl~at the antiquarksql' Q2' and ~3 possess
the values of z, B, and S that are opposite in sign to those for the
corresponding quarks, construct from the two particles (a quark and
an antiquark) the following mesons: ;:'1+, n-, K+, K-, and KO.

(c) Find the ratio of the magnetic moments of a neutron and
a proton, assuming the magnetic moment of a quark to be proportion­
al to its electric charge. Take into account that for a particle formed
of three quarks the probability of the state in which the spins of
two identical quarks are parallel is twice that of the state in which
two identical quarks have the antiparallel spins.
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17.4. Having passed through the uniform transverse electric
fIeld E, an electron with the kinetic energy T gets onto the screen S
(Fig. 45, where a = 10 em, b = 20 em). Determine the deflection
angle CG of the electron and its displacement (j on the screen, if:
(a) E = 20 V/cm and T = 1.00 keY; (b) E grows at a constant rate

E = 1.00 MV/(cm's) and the electron with T = 40 eV enters the
electric field at the moment when E = 0; (c) E oscillates harmonical­
ly with a frequency v = 10.0 MHz and amplitude Eo = 5.0 V/cm,
and the electron with T = 100 eV enters the field at the moment
when E = O.

17.5. A beam of electrons accelerated by a potential difference
V = 1.0 kV passes through two small capacitors separated by
a distance l = 20 cm. A variable electric field is applied to the
capacitors in equiphase from an oscillator. By varying the oscilla­
tor frequency, the beam is adjusted to pass this system without deflec­
tion. Determine the ratio elm for an electron, if the two consecutive
values of frequency satisfying that condition are equal to 141 and
188 MHz.

17.6. Determine the kinetic energies of a proton and a relativistic
electron for which Bp = 5.0 kG·cm.

17.7. A proton with the kinetic energy T = 50 keV passes a trans­
verse magnetic fiel(kB = 400 G and gets onto the screen S (Fig. 46,
where a = 10 em and b = 20 em).
Determine the deflection angle CG

of the proton and its displacement
(j on the screen.

17.8. From the point A located
on the axis of a straight solenoid
an electron with a kinetic energy
of 500 eV is emitted at an angle
CG = 30° to its axis. The magnetic
induction of the field is equal to
B = 50 G. Calculate: (a) the lead of the helical trajectory of the
electron; (b) the distance from the axis to the point on a screen to
which the electron gets, if the screen is placed at right angles to
the axis at a distance l = 20 cm from the point A.

17.9. A slightly diverging beam of electrons accelerated by
a potential difference V = 500 V emerges from a certain point at the
axis of a straight solenoid and comes to the focus at a distance
l = 15.0 cm with two consecutive values of B: 158.0 and 189.6 G.
Determine: (a) the specific charge of an electron; (b) the minimum
magnetic induction capable of focussing the beam at that distance.

17.10. A source of monochromatic ~-particles is located at the
axis of a solenoid. The ~-particles emitted at an angle CG = 30° to the
solenoid's axis are known to be focussed at a point removed from the
source by a distance l = 50 cm at a minimum value of B = 200 G.
Find their kinetic energy.

I

i

Fig. 45
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Fig. 44

MOTION OF CHARGED PARTICLES
IN EXTERNAL FIELDS

• Equation~ of motio~ of a part!cle with the charge q in axisymmetric electric
,and magnetIc fields (m cylmdrIcal coordinates):

.. • q ( v )r - rm~=- E +---!t 'B .
'Y m r C z ,

1 d • qr di (r 2 <p) = -;;c (vzBr-vrBz);

LAWS OF MOTION. ANALYSERS

17.1. An electron moves. in a uniform electric field whose strength

grow~ at a constant rate E = 20 MV/(cm·s). What amount of ener­
gf wIll the electron gain after it passes a distance l = 10.0 cm, pro­
vIded that at the initial moment its velocity and the electric field
are equal to zero?

17.2. An electron starts moving under the action of uniform elec­
tric field E = 10.0 kV/cm. Determine the energy that the electron
.acquires and the distance it covers during a time interval T =
= 1.00.10-8 s after the beginning of motion.

. 17 .~. A proton outgoing. from the point 0 (Fig. 44) with the
kmetIC energy T = 6.0 keY gets to the point A with coordinates
x = 10.0 c~ and y = 7.5 em due to uniform electric field of strength
E. Determme: (a) the strength E if the angle CGo is equal to 60°;
(b) the values of CGo and E at which the velocity vector of the proton
n;take~ an angle CG = 30° with the vector E at the point A; (c) the
tIme It takes for the proton to reach the point A, if E = 1.00 kV/cm
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Fig. 49

charged particles. (a) In arrangement I a particle passes successively
through the electric field E of a cylindrical capacitor and the uniform
magnetic field B .rhe potential difference V across the capacitor
plates is known, as'\vell as the plates' radii R 1 and R 2 , the magnetic
field B, and the curvature radii r1 and r 2 of the particle's trajectory.
(b) In arrangement I I a particle passes through the electric field of
a plane capacitor and falls on the screen S. The whole arrangement
(the capacitor and the space between the capacitor and the screen) is
placed in the uniform magnetic field B (B--.LE). The values of E
and B, at which the trajectory of the particle in the capacitor is
rectilinear, are known, as well as the distance l and displacement o.

17.18. The cylindrical cathode and anode of a magnetron have
radii r 1 = 1.0 mm and r 2 = 20 cm respectively. The potential
difference applied between the anode and cathode is V = 200 V.
Neglecting the initial velocity of thermions, find the limiting value
of the longitudinal uniform magnetic field in the magnetron at which
the anode current ceases.

17.19. A cylindrical diode consists of a long straight heating
filament and coaxial cathode and anode whose radii are equal to
0.10 and 1.0 cm. A current of 14.5 A flowing through the filament
generates a magnetic field in the surrounding space. Neglecting the
initial velocity of thermions, find the limiting potential difference
between the anode and the cathode at which the anode current
ceases.

17.20. A proton with the initial velocity v is ejected in the direc­
tion of the x axis from the point 0 of the region in which the uniform
electric and magnetic fields E and B are produced in the direction
of the y axis (Fig. 50). Find the equation of its trajectory x (t), !/ (f).
z (t). What is the shape of the trajectory?

the dispersion with respect to ions' velocity is equal to !J.rl!J.v =
= 4rolv.

17.16. A beam of deuterons passes through the uniform electric
and magnetic fields produced in the same spatial region and crossed
at right angles. Find the kinetic energy of the deuterons, if at E =
= 1.00 kV/cm and B = 500 G beam's trajectory remains rectilinear.

17.17. Demonstrate that, using the arrangements sketched in
Fig. 49, one can simultaneously determine elm and the velocity of

Fig. 48

A

Fig. 47

17.11. A source of ~-particles is located at the point 0 on the
axis of a straight solenoid, and the inlet of a counter at the point 0'.
The 00' distance is l = 50 cm. At the midpoint between 0 and 0'
there is a diaphragm with a narrow ring opening of radius R = 7.5 cm.
Find: (a) the kinetic energy of the ~-particles focussed at the point 0'
~t the l.owest valu~ B = 250 G; (b) the first two values of magnetic
md~ctIOn at WhICh ~-particles with the kinetic energy equal to
theIr rest energy come to focus at the point 0'. Find also the corre­
sponding angles a of emission of such ~-particles.

17: 12. In a mass spectr~meter with semicircle focussing by
a ullIform transverse magnetic field a source and a focus point are
s~parated bJ: a distance x = 40.0 cm. Find the instrument's disper­
SIOn: (a) wIth respect to mass ox/oA for monochromatic uranium
ions; (b) with respect to energy ox/oT for ~-particles with kine­
tic energies of about T = 1.0 MeV.

17.13. A narrow beam of monochromatic ions passes a sector of
a circle in a uniform transverse magnetic field as shown in Fig. 47
(the beam enters and leaves the sector at right angles to the bounda­
ry of the field). Find the instrument's angular dispersion with re­
spect to mass oa/oA (deg/amu) for AI' isotopes, if cp = 60°.

17.14. A slightly diverging plane beam of ions enters the electric
field of a cylindrical capacitor (Fig. 48) at the point A. The potential

difference o~ the capacitor plates is so adjusted that the particles
whose velocIty vector at the point A is perpendicular to the radius
vec~or of that point continue moving along the circular trajectory of
radIUs roo Prove that: (a) th~sector angle sufficient for focussing the
beam is equal to '¥ = nlV 2; (b) the instrument's dispersion with
respect to vel~city is ~qual. to !J.rl!J.v = 2ro/v at the focal point.

17.15. A slIghtly dIvergmg beam of ions enters the transverse
a~isymmetricmagnet,ic ,field d~mi?ishing with the distance as r-n (see
FIg. 48). The magnetIc mductlOn IS such that the ions whose velocities
a~e directe? at right angles to the radius vector at the point A con­
tmue movmg along the circular trajectory of radius roo Show that:
(a) the angle at which the beam is focussed in the horizontal plane is

"If = ~/V 1 - n;. (b) when n = 1/2, the double focussing takes place
(both m the hOl'lzontal and vertical directions); (c) when n = 112,
140
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17.21. A narrow beam of identical ions with different velocities
enters the region with uniform parallel electric and magnetic fields E
and B at the point 0 (see Fig. 50). The beam's direction coincides
with the x axis at the entrance point. At the distance l from the point
o there is a screen located at right angles to the x axis. Find the
equation of the trace that the ions leave on the screen. Prove that
this equation is a parabola when z~ l.

17.22. A charged particle moves in the region where the uniform
electric and magnetic fields E and B cross at right angles (see Fig. 51).

00

1 i V"~_.!!:.!.=_ /0 dz;
52 51 4 l Vo

-00

(a)

143

-.51 ,

s,-<o

Here n I , 2 = VVo (zl, 2); f 2 is the i~Iage-side. foc~l dist~nce. .
17.28. A charged particle moves m a longltudmal aXlsyu:metnc

magnetic field in the vicinity of its a~is of s~mmetry .. Usmg the
equations of motion, show that t~e differel!tIal. equatIOns of the
particle's trajectory take the followmg form m thIS case:

cp' = - aBo (z); r" a 2rB: (z) = 0,

where a = el2mvc v is the particle's velocity, B o (z) is the magnetic
flux density at th~ axis; the primes designate the differentiation with
respect to z.

00

1 1 r V~
(b) Y=-s- J ~dz.

2 n2 _00 Vo

Fig. 52

Making use of the equation of the foregoing problem, demon­
strate that:

17.26. A charged particle moves in a longitudinal axisymme~ric
electric field described by the potential V (r, z). When the partlc~e
leaves the source with the zero initial velocity and then .moves .m
the vicinity of the axis of symmetry of the field, the dIfferential
equation of its trajectory takes the form:

n r' I r u 0
r VO+TFO+TVo= ,

where Vo (z) is the potential at the axis (relative to ,the ,potent~aI
of the source, Vo (0) = 0; the primes mark the derIvatIves wIth
respect to z. .' . .

(a) Derive this expreSSIOn, usmg the equat,lOn of .motIon.
(b) How does the magnitu~e of the particle s specIfic ~har,ge a~ect

the characteristics of the traJectory? How does the partIcle s traJec­
tory change when the whole system is increased in size n-fold and the
potentials at the plates are kept c?nstant? .

17.27. Figure 52 illustrates a trajectory o.f a c?arged particle f~r
a thin collecting electrostatic lens whose fIeld IS confined practI­
cally within a very narrow region between ZI and Z2 (points 1 and 2).

v,;

x

Fig. 51
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. .
(c) Xo = 0, Yo = v;

(d) xo= Yo = v.

v x

Fig. 50
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:z

. .
(a) X o= v12, Yo = 0;. .
(b) X o= -v, Yo=O;

Here v = cEIB.
17.24. Demonstrate that under conditions of the foregoing problem

all particles with equal magnitude of elm will get at the point Xl =
= 2nmc2EleB2 of the x axis irrespective of the value and direction
of their initial velocity.

17.25. A proton starts moving in the region where the uniform
electric and magneticlfields are produced. The fields cross at right
angles, with the magnetic field of induction B being constant and
the electric field varying as E = Eo cos ffit with the frequency ffi =
= eBlmc. Find the equation of the proton's trajectory x (t), y (t),
if at the initial moment t = 0 the proton was at the point 0 (see
Fig. 51).

Assuming that the particle leaves the point 0 without any initial
velocity, find: (a) the equation of the particle's trajectory, x (t),
Y (t); (b) the length of the trajectory between the points at which the
particle's velocity is equal to zero; (c) the mean velocity of the
particle in the direction of the x axis.

17.23. A charged particle moves in the region where the uniform
electric and magnetic fields E and B cross at right angles. Suppose
the particle leaves the point 0 (see Fig. 51) with an initial velocity. .
whose vector lies in the plane x, y and has the components X o and Yo.
Find the equation of the particle's trajectory x (t), y (t) and draw its
approximate plot, if



17.29. Figure 52 illustrates a trajectory of a charged particle for
a thin magnetic lens whose field is confined practically within a very
narrow region between Zl and Z2 (points 1 and 2). Using the equations
of the foregoing problem, demonstrate that the focal length f of such
a lens is defined by the following expression:

00

1 \T = a 2 J B~ (z) dz.
-00

Find the focal length f of the magnetic lens: (a) whose field varies
along the axis as B 0 (z) = Ae-a2z2 for particles accelerated by the
potential difference V; (b) realized as a wire loop of radius R =
= 2.0 em carrying a current I = 14 A for electrons accelerated by
potential difference V = 50 V. Also find the angle through which
the image turns in this case.

ACCELERATORS OF CHARGED PARTICLES

17.30. For an electron and a proton moving along circular orbits
in a uniform magnetic field B =10.0 kG determine: (a) the orbital
periods and radii if the kinetic energy of the particles is T =
= 10.0 MeV; (b) the kinetic energies if their orbital radii are r =
= 10.0 em.

17.31. Suppose that in a betatron the magnetic flux confined by
anIequilibrium orbit with radius r = 25.0 em grows from the zero

value at a constant rate <D = .5.0.109 Mx/s. Determine: (a) the
strength of the vortex electric field at the orbit and the energy
acquired by the electron during 5.0.105 revolutions; (b) the distance
travelled by an electron for 't = 3.00 ms and the energy acquired
during that interval.

17.32. The magnetic induction at the equilibrium orbit of radius
r = 100 em in a betatron varies from 0 to B m = 5 kG as B = B m X
X sin wt with a frequency v = 50 Hz. Find: (a) the kinetic energy of

the electrons at the end of the acceleration cycle; (b) the distance
travelled by the electron and the number of revolutions made during
the whole acceleration cycle provided the initial velocity of the
electrons is equal to zero.

17.33. The condition under which an electron moves along a cir­
cular orbit of permanent radius in a betatron requires that at any
moment the magnetic ifield at the orbit should change with the rate
equal to half the rate with which the mean magnetic induction within

the equilibrium orbit varies, that is, B = dJ )/2 (the betatron condi­
tion).

(a) Prove this condition to be true.
(b) How does the orbital radius change in the field B oc r-n ,

where n is the fall-off index (0 < n < 1), when this condition is
not met?

17.34. Using the betatron condition (see the foregoing problem),
demonstrate that the vortex electric field in a betatron has the
minimum value at the equilibrium orbit. Take into account that
the fall-off index of the magnetic field in the vicinity of the equi­
librium orbit

r 8B
n= -B·~<1.

17.35. In a betatron the magnetic field at the plane of symmetry
varies in the vicinity of the equilibrium orbit as B oc r- n , where n is
the fall-off index. Prove that the motion stability of electrons: (a) in
the radial direction is effected at n < 1; (b) in the vertical direction
is effected at n > O.

17.36. The magnetic field at the betatron's plane of symmetry
varies in the vicinity of the equilibrium orbit as B oc r-n , where n is
the fall-off index (0 < n < 1). Let the angular velocity of an elec­
tron moving along the equilibrium orbit be equal to Wo' For the elec­
trons moving in the vicinity of the equilibrium orbit determine the
frequencies of: (a) radial and (b) axial oscillations.

17.37. The unlimited increase in the energy of charged particles
in orbit accelerators is inhibited by the effect caused by radiation
losses. The amount of energy lost by a particle per one revolution is

4rre2 ( E"")4equal to~ mc2 ,where r is the orbital radius, E is the total

energy of the particle, m is 'its rest mass. Calculate the energy E
that the electrons can be accelerated to in a betatron, if the equi­
librium orbital radius is r = 100 em and the magnetic field at the

orbit increases at a rate B = 1000 kG/so
17.38. For protons, deuterons, and a-particles accelerated in

a cyclotron up to a maximum radius of curvature p = 50 em, deter­
mine: (a) the kinetic energy at the end of acceleration, if the magnetic
induction is B = 10.0 kG; (b) the lowest oscillator frequency suffici­
ent to reach the kinetic energy T = 20 MeV at the end of acceleration.

17.39. An oscillator drives a cyclotron at a frequency of v =
= 10 MHz. Determine the effective accelerating voltage applied to
the dees, if the distance between neighbouring trajectories of deuter­
ons is dp = 1.0 em for a radius of curvature of p ~ 50 em.

17.40. In a cyclotron driven at a frequency of v = 10 MHz
a-particles are accelerated up to a maximum radius of curvature p =
= 50 em. The effective voltage applied to the dees is V = 50 kV.
Neglecting the gap between the dees, determine: (a) the total accel­
eration time of the particles; (b) the total distance covered by the
particles during the complete cycle of acceleration.

17.41. At what values of the kinetic energy does the period of
revolution of electrons, protons, and a-particles in a uniform magnetic
field exceed that at non-relativistic velocities by 1.00 %?

17.42. A cyclotron is known to be inapplicable for acceleration of
electrons since their orbital period 't increases rapidly with energy
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and they get out of step with the alterna~ing electri~ field. !his. situ­
ation can be rectified, however, by makmg the orbItal perI~d mcre­
ment ~'t of an electron equal to a multiple of the ~cc~lera~mg field
period 'to. An accelerator employing such a prmclple IS cal~ed

a microtron. How many times has the electron to cross the a~celeratmg

gap of the microtron to acquire an energy ~E = 4.6 MeV, If ~'t = Lo,

the magnetic induction is B = 1.07 kG, and the frequency of the
accelerating field is f = 3.0.103 MHz? .

17.43. To counteract dephasing emergmg m th~ proce~s of ac~el­

eration of a particle and caused by variation of ItS orb.ltal perIO.d
with increase in its energy, the frequency of acceleratmg field 18

slowly decreased. Such an accelerator is called a synchrocyclotron.
(a) By how many percents should the frequency of the accelerat­

ing field of a synchrocyclotron be changed to accelerate protons and
a-particles up to an energy. T.= 500 JV~eV?

(b) What is the time VarIatIOn functIOn w (t) of the frequ~ncy

of a synchrocyclotron, if the magnetic flux density of t~e fi~ld ~s B
and mean energy acquired by a particle per one revolutIOn IS c ..

17.44. In a cyclotron-type accelerator the reso,nance a~celeratIOn

of particles can be accomplished, if the mag~etlc field. IS changed
slowly so that the orbital period of t~e particle remams constant
and equal to the period of the acceleratmg field ..Such an accelerator
is called a synchrotron. Assuming that the ~agnetlc field of a synchro­
tron is uniform and changing as B = B m sm wt and that the fregue~­

cy of the accelerating field is equal to w?, find: (a) t~e par.tIcle 8

orbital radius as a function of tIme; (b) m what lImIts varIes th.e
orbital radius of an electron accelerated from 2.00 to 100.0 MeV, If
r., = 700.108 S-l and w = 314 S-l. What distance does the electron
"'0 • . ',l
cover during the complete acceleratIOn cycle.

17.45. The accelerator, in which both the frequency .of the accel­
erating electric field w (t) and magnetic field B (t) ;ary simult~neous­

ly is referred to as a proton synchrotron. What IS the relatIOn be­
t~een w (t) and B (t) allowing the particles to be accelerated. along
the fixed orbit of radius r? The influence of the vortex electrIC field
is to be ignored. .

17.46. In a cyclic proton synchrotron acceleratmg proto~s from
0.500 to 1000 MeV, the orbital radius is r = 4.50 ~. Assummg the
magnetic field to grow in the acceleration process wIth constant rate

B = 15.0 kG/s, determine: (a) the limits, within which the.freq~en­
cy of accelerating electric field varies, and the total ac.celeratIOn tI~e;

(b) the energy acquired by a proton per one revolu.tIOn; (c) the dIS­
tance covered and number of revolutions made durmg the whole ac-
celeration cycle. ...

The influence of the rotational electnc field IS to be Ignored.
17 47 In the proton synchrotron of the Joint Nuclear Research

Instit~te·in Dubna, protons are accelerate~ ~rom 9.0 ~o 10,000 M.eV.
The perimeter of the stable orbit, with rectilmear sectIOns taken mto
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account, is IT = 208 m. The orbital radii at the rounded-off sections of
the orbit are r = 28.0 m. At these sections the magnetic field increases

in the acceleration process with constant rate B = 4.00 kG/so Con­
sider the same questions as in the foregoing problem.

17.48. The most powerful modern accelerators (e.g. the Serpukhov
one) employ the strong focussing principle. What is the essential of
this principle? What are its advantages?

17.49. In a linear accelerator, charged particles move through
a system of drift tubes connected alternately to the opposite termin­
als of a high-frequency oscillator G (see Fig. 53). The acceleration of

Fig. 53

the particles is effected in the gaps between the tubes. Suppose that
protons are injected into an accelerator with an energy To = 2.0 MeV
to be accelerated up to an energy T = 20 MeV. The protons increase
their energy by ~E.' = 0.50 MeV over each gap; the frequency of the
oscillator is f = 100 MHz. Ignoring the distance taken up by the
gaps between the tubes, det,ermine the length: (a) of the nth drift
tube, in particular, of the first and the last one; (b) of all drift tubes
(the length of the accelerator).

17.50. Suppose that all drift tubes in a linear accelerator have
the same length l = 6.00 cm. Within what limits should the frequen­
cy of the oscillator be varied to accelerate the protons and electrons
from 5.00 to 50.0 MeV in such an accelerator?

17.51. A travelling wave linac employs a cylindrical diaphragmat­
ic waveguide along which an electromagnetic wave propagates, whose
electric axial component is equal to Ex. The application of perforat­
ed ring diaphragms increases the phase velocity of the wave travel­
ling along the waveguide, with the accelerated particle being approx­
imately in the same phase all the time. Find: (a) the value of Ex
sufficient for acceleration of protons from 4.0 to 1000 MeV over the
waveguide's length L = 67.0 m; (b) how the phase velocity of the
wave depends on the distance from the entrance opening of the
waveguide. By what factor does the phase velocity of the wave change
in the case of protons and by how many percents in the case of elec­
trons on their acceleration from 4.0 to 1000 MeV?

17.52. A considerable increase in the energy of colliding particles
can be attained by using the colliding beams of these particles.
What amount of kinetic energy should be transferred to a proton
striking another (stationary) proton to make their total kinetic
energy in the C frame equal to the kinetic energy of two protons
moving toward each other with kinetic energies of 50 GeV?

10*
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It follows that the number of photons falling on unit area per unit
time is equal to (1/4)nc. Multiplying the latter expression by the mean
energy of a photon (l1w), we get (1/4)n(nw)c = (1/4)uc = M.

Integrate this expression with respect to {} going from 0 to n/2 and
with respect to cp going from 0 to 2n, taking into account that dQ =
= sin {} d{} dcp. Finally we obtain

I1N = (1/4)nc I1t 118.

1.14. Uw = (kTln2c3) w2 and Uw = (nw3/n 2c3) e- nw/ kT .

16n2n v 3 •1.15. (a) uv=-~ ~=~-
c3 e2:rrnv/kT-1 '

",-5
(b) u,. = 16n2cn ~;-::-;:-:-=.--­

e2:rrhc/kT,.-1 .

1.16. l1u wlu w = e-a::s; 0.01, where a = 2nfzclkT'A, whence a;;;;;'
~ 4.6; 'A::S; 7.2 [.tm.

1.17. (a) by the factor of 4.75; (b) 0.60 W/cm 2•

c (" n 2 k I

1.18. (a) 1=7; J u w dw=60 c2 fi3 T~; (b) from the condition

du,jd'A=O, we obtain the equation 5-x=5e-x , where x=2nnclkb.
The root of this equation is found by inspection or from the
graph: xo=4.965. Whence b::::::0.29 cm.K.

1.19. (a) (w) = 3.84kTln = 1.0.1015 S-1; (b) T = 2.33nc/k ('A) =
= 2.00.103 K.

dN = dn 118 cos {}. c I1t.

(b) n=0.243(kT/lic)3=5.5.108 cm-3 •

1.21. (a) from the condition dnjdw = 0, we get .2 - x = 2e-x ,

where x = nwlkT. The root of this equation is found by inspection
or from the grapl'i: Xo = 1.6. Whence
fzw pr = 1.6 kT = 0.14 eVi (b) 2.7 kT=
= 0.23 eV.

1.22. Of n photons confined within
a unit volume, the number of photons
that move within the elementary solid
angle dQ is dn = n·dQ/4n. Then we
single out those photons that move within
the solid angle dQ that makes the angle
{} with the normal of the area 118. These
photons move practically parallel to
one another, so that the number of pho­
tons reaching the area 118 per unit time
I1t can be found from the volume of the oblique cylinder with base
118 and height eM cos {} (Fig. 54):
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ANSWERS AND SOLUTIONS

1.1. The ordinate of the curve U 2 (w) corresponding to the frequency
W 2 relates to the ordinate of the curve U 1 (w) corresponding to the
frequency WI such that w11T1 = w21T 2 , as U1 (WI) = (T 1IT 2? U2 (w 2 )·

1.2. (a) From the condition du,jdw = 0, we obtain 3j (x) +
+ xj~ (x) = 0, where x = wiT. The root of this equation is xo,
and, hence, Wpr 0:: T. (b) According to Eq. (1.1), M 0:: U=

00 00

= \ w3j(wIT)dw=T~ \ x3j(x)dxo::T", where x=wIT.
o '0

1.3. (a) Transform Wien's formula (1.2) from the variable U w to
u,.: u,. = 'A-5F ('AT). From the condition du,.ld'A = 0, we obtain
5F (x) + xF~ (x) = 0, where x = 'AT. The root of this equation is x o,
and therefore 'Apr ex: 11T. (b) (u")max = 'Ap~F ('AprT) ex: 'Ap~ ex: To.

1.4. Decreases by 3.0.102 K.
1.5. 2.9 [.tm.
1.6. 4.6.1020 MW (5.109 kg/s); 1011 years.

1.7. T 2 =T1VrIR=3.8.102 K.
1.8. (a) :::::: 1.6.104 GPa; (b) :::::: 19.106 K.
1.9. t = cpr (n3 -1)/9aT~ = 1.6 hours, p is the density of copper.

1.10. (a) wpr=3Tla=7.85.10H S-l; (b) (w)= 4~.
1.11. (a) 'Apr = 2ncal5 T = 1.44 [.tm ; (b) ('A) = 2ncal3 T =

= 2.40 [.tm.
1.12. uCulUrad = 3Rpcl4MaT3 = 1.8.1014, where R is the uni­

versal gas constant, p is the density of copper, c is the velocity of
light, M is the mass of a mole of copper, a is the Stefan-Boltzmann
constant.

1.13. (a) e=kT, u w dw=(kTln2c3)w2 dw is the Rayleigh-Jeans
formula;

"'nn"'e-nhw/kT ~nn(Oe-anhw

(b) () '" '" where a = 1/kT. Here
e = '" -nnw/kT = "'e-annw '..:....e ,(...0

the summation is carried over n from 0 to 00. The latter expres-
sion can be obtained as follows:

(e) = - 8~ In (~e-annw)= - 88(7" In 1_e1-anw enw;k~-1 ;

n (03 d(O I
U w dw = -:;;-2

C
3 • is Planck's formu a.

"' enw /kT -1



For visible light, when the angle 'fr does not approach n12, the last
term in parentheses can be neglected. Then

(J

C
Fig. 58

Gu

Fig. 57

Gs

A,

w'-w v
--,-o:::::::-cosil.w c

mM Llw1.32. d (nUl) = - y -.,- dr - = 1- e-yM/Rc2 where y is the
,..... 'CD '

gravitational constant; m = nUllc2 is the mass of the photon;
(a) 11')·.)'A 0::::::: yM/Rc 2 = 2.1.10-6 ; (b) 0.09.

1.33. 12.4 A·kV.
1.34. 1.0 A.
1.35. 31 kV.

---.,.--=
1.36. v = c Va (a + 2)/(a + 1) = 0.50c, a = 2nfilmc'Amin .

1.37. (b) 'I'] = JtotlP = 0.8·1O-6ZVkv 0::::::: 0.5%.
1.38. 'APf = 1.5'Amin = 3nnc/eV = 0.6 'A.
1.39. (a) 0.66 and 0.235 !tm; (b) 5.5.105 m/s (2n); 3.4.105 m/s

(Ag); electrons are not emitted (Ni).
1.40. 1.7 V.
1.41. 'Ao = (2nncIA) ('I'] - n)/('I'] - 1) = 0.26 !tm.
1.42. Tmax = n (Ul + Ulo) - A = 0.38 eV.
1.43. The upper levels in both metals are located at the same

height (Fig. 57). J'herefore, the electrons liberated from the upper

level in cesium perform the work Al + Ae = A 2 , where Ae is the
work performed to overcome the external contact potential differ­
ence; (a) 0.28 !tm; (b) 6.4.105 m/s.

1.44. From the condition nUl = A zn + e (Ye + Yo), we find
Ve = -0.5 V, i.e. the polarity of the contact potential is opposite
to the external difference of potentials.

1.45. 0.196, 0.213, and 0.224 !tm.
1.46. po:::::::V(nUl)2+2mec2(!iUl-E)lc=96 keY/c.
1.47. From the laws of conservation of energy and momentum

nUl -T- mc2 = mc21V1 - ~2; nUlIc = mvlV 1 - ~2, where ~ = vic,
it follows that ~ is equal either to 0 or to 1. Both results have no
physical meaning.

1.48. (a) In the general case a recoil electron is relativistic, and
the laws of conservation of energy and momentum have therefore to

1.31. From the laws of conservation of energy and momentum
(Fig. 56), we obtain

Fig. 56

iiw'

~
mo

Here the figure 'two' in front of the integral allows for the fact that
at thermal equilibrium each incident photon is accompanied with
a photon emitted by the wall in the opposite direction.

2 '2
.!!!:!!- I A E =~+ nUl"2 III 2 '

(
!1w' )2 !iw'(mv')2= -c- +(mv)2-2mv-c-cos'fr.

Here I1E = nUl is the decrement of the internal energy of the atom.
Eliminating v' from these equations, we get

, ) r.' ( V .Q, !iW')n(Ul - Ul = nUl c cos v - 2mc2 •

1.23. 2.1013 cm-2 ·s-1 in both cases.
1.24. 2.5 eV/s; 5 keV/s and 0.6 MeVis.

1 25 dp - r nw dN - ~ where dN = <!>w dw is the photon. ·crt-J c (U-c' (U!iw

flux within the frequency interval (Ul, Ul + dUl).
1.26. (p) = 4E (1 + p)/nd2cT: = 5.103 kPa.
1.27. Having drawn the triangle of momenta (at the bottom of

Fig. 55, where Po, p~, and p are the momenta of the incident beam,
reflected beam, and the momentum trans­
ferred to the plate), we obtain

P= ~V1+p2 + 2p cos 2'fr = 3.5.10-3 g.cm/s.
c

1.28. (a) ; JS cos2 'fr; (b) 2
i
c JS; (c) 2

3
c .rS.

1.29. F = NI2c (1 + l21r2) = 5.10-3 dyne.
1.30. The solution is similar to that of Prob-

lem 1.22. The normal component of the total
momentum transferred to the area dS of the
wall during the time interval I1t is

I1Pn = 2 ~ 6p cos 'fr = ~ dS I1t;
!iw dQ&p = - nw dUl dV -4• Fig. 55
c n
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be written in the form

liw + me2= liw' + -V p2e2 + m2e";

p2e2= (liW)2 + (liW')2 - 2liwliw' cos "',

where wand w' are the frequencies of the photon before and after
scattering; p and m are the momentum and rest mass of the electron.
The second relation follows directly from the triangle of momenta
(Fig. 58).

Transfer the term nw' of the first equation from the right-hand side
to the left-hand side and then square both sides. From the expression
thus obtained subtract the second equation to get

_1__.i-=~sin2-!.. 'A' - 'A = 4n --!!- sin2~ .
00' 00 mc2 2 ' me 2 '

2.3. From the energy conservation law it follows that the mag~

nitude of the momentum of a scattered particle remains the same as
before scattering. Hence the scattered particle has the increment of
the momentum vector whose modulus is

I ~p I = 2po sin ('fr/2).

On the other hand, from Fig. 59 it follows that

I A I - ~ I dt _ ~ 'qlqzr cos Z dt = ~ sin (cp--&/2) dcp
LlP - n - r3 q1q2 .'

rZcp

where In is the projection of the interaction force vector on the
direction of the vector ~p. In accordance with the law of conservation

1.3.102 MeV/e;

Comparing the latter expression with the first one, we get formu­
la (2.1).

2.4. 6.10-11 cm.
.. / 8mT

2.5. (a) I ~p I = V 11-(bT/Ze2)2
Ze 2

(b) T=-b-=1.3 MeV; n12.

6 ZeZ (1 {} ) - '1 (~ 10-11 b 6 6 10-122.• rmln=-zr +cscT - .v· cm; =.' cm.

~ M V-- ~ M
2.7. p= +M 2mT; T= -'-- 'I' T.m Tn,"

2.9. T' = ( mZ-ml ')2 T.
mZ+ml

2.10. 'frmax = arcsin (m1Im2) = 30°.
~

sin {}
2.11. tan{t=-----

cos ~+ml/m2

Fig. 59
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of angular momentum, the integrand's denominator is r2 cp =
= -bvo' where Vo is the velocity of the particle far from the nucleus.
After integration we obtain

I ~P I = (2q1Qzlbvo) cos ('fr/2).

f

(b) cot <p = (1 + liwlme2) tan ('fr/2).

1.49. (a) liw' = 1+2 (liw' /;~) sin2 (-&/2) = 0.20 MeV;

(b) T = 28
2

sin
z

(-&/2) 2 0 26 M V h ~ I 2
1 2 ." me =. e, were 8 = f&W me •+ 8 sin2 (u/2)

1.50. T = 1 + 2 (P/~:) sin2 (-&/2) -ElJ = 31 keV.

1.51. 'A = ( ::cli ) tV1+ 2me21Tmax -1) = 0.020 A.
1.52. 0.020 A; 0.61 and 0.43 MeV.
1.53. 105°.
1.54. 2mc = 1.02 MeV/c.
1.55. 29°.
1.56. (a) 0.012 A; (b) 0.0030 A.
1.57. liw = (TI2) [1 + V 1+ 2me21T sin2 ('1'1'/2) ] = 0.94 MeV.
1.58. T = nW'l']/(1 + '1']) = 0.20 MeV.
1.59. (a) 'A - 'A' = (4nli/me) sinz ('fr/2) = 0.012 A; (b) 0.17 MeV.
1.60. (a) The Compton shift equation is obtained on the assump-

tion that photons are scattered by free electrons. The electrons in
a substance behave as free ones when their binding energy is con­
siderably less than the energy transferred to them by the photons.
Consequently, the hard radiation should be employed.

(b) Due to scattering by free electrons.
(c) This component is due to scattering of photons by strongly

bound electrons and nuclei.
(d) Due to the increase in the number of electrons becoming free

(see item (a».
(e) Due to scattering of photons by moving electrons.
2.1. (a) r=3e2/2E=1.6·1O-s crn; (b) W= V e2lmr3 ; 3.10-8 cm.
2.2. (a) 5.9.10-10 cm; (b) rmin = (q1qzIT) (1 + ma.lmLi) =

= 3.4.10-11 cm.
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2.33. 0.116, 0.540, and 1.014 !lm. .
2.34. Correspondingly: 0.091 --;-- 0.122, 0.365 --;-- 0.657, 0.821--;-

-=-- 1.875 ~tm. h f 1
. 2.35. (a) 0.657, 0.487, and 0.434 !-tm; (h) from t e ormu a

')j{)'A = kN, we obtain N = 2.0.103 •

2.36. The Brackett series, 'A6~4 = 2.63 !-tm. .
2.37. (a) 0.122, 0.103, and 0.097 !lm (Lyman s~rIe~); 0.657 and

0.486 !lm (Balmer series); 1.875 !-tm (Paschen serIes), (h) n (n
-1)/2 = 45. 0

2.38. 1216, 1026, and 973 A.
2.39. (a) 4; (h) 3.
2.40. Z = 3, Li++.
2.41. 54.4 eV (~e+).

2.42. E = Eo + 4'ttR* = 79 eV.
2.43. 2.3.106 m/s.
2.44. 3.1.106 m/s.

2.45. Vmln=V""'bn-C--:-n--;:R~/m-=6.25.104m/s,m is the mass of the

atom. 2 55
2.46. v;:::::; 3hR*/4Mc = 3.25 m/s; ~cle ;:::::; (3/8)hR*IMc = O. X

X 10-6 %; M is the mass of the atom.
2.47. 7.105 m/s.
2.48. From the formula w'=wV(1+B)/(1-B), B=vlc, we get

/3=0.29. B h ' t' t'2 49 Let us write the motion equation and 0 r s quan Iza IOn
d· 't: 2a - e21a2. lIa2w - nh where!l is the reduced mass ofcon I IOn: !lw - , , -, h d' t b t the

the svstem' w is the angular velocity; a is t e IS ance e ween
elect;on an'd the nucleus. From these equations, we find

1i2 2. E _ fte1 _1_ R* _ f-le 4

an = fte2 n, b - 21i2 n2' - 21i3 •

When the motion of the nucleus is neglected, Eb and R* turn out to
be greater by mlM = 0.055 %,where m and M are the masses of the
electron and nucleus. 3

2.50. mp/m e = (n - Yj)/n (Yj - 1) = 1.84·10 . .
2.51. (a) ED - E H = 3.7.10-3 eV; (h) VD - VH = 2.8 mY,

(c) 'AH - 'An = 0.33 A. 0 2 7 k V
2.52. (a) 2.85.10-11 em; (h) 6.54 A; (c) 2.53 and.6 e.

System I '1 and '2. 10-S em I VI and v2. 10 6 m/s IT and E b • evl VI. V I "'12. A

H 0.529 2.12 2.19 1.09 13.6 10.2 1215
He+ 0.264 1.06 4.38 2.19 54.4 110.8 304

0.176 0.70 6.57 3.28 122.5 91.5 135LiH

e V4 r 1+YJ 5
2.13. Vrel = ,;-. -1-- = 3.8·10 mis, where !-t is thev f.lb -11

reduced mass, 'll = m i lm2
•

2.14. b = e
2

tan {}' (1 + ntp ) = 2,4.10-11 cm.
T nta

2.15. b= e

2
(1 + I:ad )=5.10-11 cm, where f}= ~ +

T tan ('&/2)

+arcsin md •
ma

2.16. The solution is similar to that of Problem 2.6, only in this
<case the calculation is performed in the C frame with the substitution

m -+!-t, T-+T, and ofr-+ .fr, where !-t is the reduced mass; T and ~
are the total kinetic energy of the particles and scattering angle in
the C frame. rmin = (3e2IT) (1 + malmLi) (1 + csc W) = 6.10-11 em.

2.17. (a) cos (ofr/2) = bl(R + r); (h) dw = (1/2) sin ofrdofr; w = 1/2.

2.18. dNIN = n da, where da = (Ze2/2T)2 2~~~~~~t
2.19. 4.10-4 •

2.20. ~a = n (Ze2/2T)2 cot2 (ofr/2) = 2.1.10-22 cm2•

2 21 I 2n sin '&
•• da dofr=(Ze2/2T)2 sin1 ('&/2) =3.0.1O-22 cm 2/rad.

daldQ = (daldofr)/2n sin ofr = 4.8.10-23 cm2/sr.
2.22. ~a = n sin2 ofro·daldQ = 5.5.10-22 cm2•

2.23. (a) 6.10-5
; (h) w = nn (Ze2IT)2 [csc2 (ofr

l
/2) - csc2 (ofr

2
/2)J=

= 5.10-4•

2.24. (a) 1.3.104
; (h) ~N = N'mn (Ze2IT)2 cot 2 (ofr o/2) = 1.6.105 ;

(c) ~N = NT: [1 - nn (Ze2IT)2 cot2 (ofro/2)J = 1.5.107•

/':,.N ne I (Z2 Z2 ) '&
2.25. ---g- = 4T2 O. 7~ + 0.3 A:P dNA cot2T = 2.7.10-3,

where Zi and Z2 are the atomic numbers of copper and zinc;
Ai and A 2 are the masses of their moles; N A is the Avogadro
constant.

2 26 3:5!... (ofr ) - _yJ_ tan
2

('&/2) _ 1 0 10-23 21
• • dQ 0 - 4nn sin" ('&0/2) - .' cm sr.

2.27. N' = 4nNon (qiq2/4T)2 [csc2(&i/2) - csc2 (&2 /2 )J.
2.28. T: = m2c3r~/4eq ;:::::; 10-11 s.

2.29. rn = V (nlmw) n, En = nnw, where n = 1, 2, ... ; w = V xlm.
2.30. 2.27.1039.

t54
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0}4~3~~~) 1.06.10-
8

cm; (b) 6.8 and 5.1 V; (e) 1.03.1016 S-1;

( )
2·E54. (a) En = (rrHt2/2ml2) n2; (b) En = nw· n w = Y x/me

e n = (n2/2mr2) n2; (d) En = -maN2n2n2. ' "
3.1. 0.39 and 0.0091 A; 0.15 keY and 0.082 eVe
3.2. 1.50 A.-
3.3. 1.32 A.
3.4. 0.12 MeV.
3.5. 0.38 keY.

3.6. 'A'='A V(n+1)/(n-1)=0.022A.

3.7. 'A='An(1+mnlmHe)=0.7A, where 'A =2n1il1/ 2m T
,...., n Y n.

3.8. 'A = 'A (1 +Y)/(1- Y) = 1.0 A, where y) = mHlmHe.

3.9. (a) 'A= 2nn. 1 . (b) T:::;:::{ 20keV (electron),
Y2mT Y1+T/2mc 2

' "'" 37MeV (proton).
3.10. T = mc2 (Y 1+ 4n 2 -1) =0 2.74 MeV.
3.11. 0.033 A.

3.12. 1 ('A) oc 'A-4 exp (-2'A;;0,,2), 'Am = nnlY mkT = 0.90 A.
3.13. 1('A) OC 'A-5exp(-5'A~/2'A2), 'Am = 2nli/V5mkT =0.57 A.
3.14. T ,= (21m) (n1il/d ~X)2 = 24 eV.
3.15. Vo= n2n2/2med2 (Y ~ _ jl I 2

-1)2 sin21'J' = 0.15 kV.

3.16.
0

d=nnkIV2mTcos(a/2)=
= 2.1 A.

.3.17. d=nnklY2mTsin 1'J'=2.3A, d
wIth tan 21'J' = r/l.

3.18. (a) n=Y1+V';V=1.05'
(b) VlV i J- 50. l ,

3.19. (a) The maxima are observed Fig. 60

when the optical pathlength difference of beams 1 and 2 (Fig. 60)

~ = (ABC) - (AD) = (2dlsin it') n - 2d cot W cos 1'J' = kA.,

where n is the refractive index. Consequently 2d 1/~2---
= k'A. (b) Vi = (nlik)2/2med2- V sin21'J' = 15 V' V n -cos~ t't =

3.20. En = (n 2n2/2ml2)n; n = 1, 2, . . . . .
3.21. 2nr = n'A' n - 1 2 . 'A 2 .radius. ,- , , ... , = nr1n; r1 IS the first Bohr

3.22. (a) In accordance with the condition qr (
k +Ak X, t) =

= oJ Ae
i
(wi-h) dk. Expand the function w (k) into a series of

ko-!J.k
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k-ko' w~wo+(dwldk)o(k-ko) and designate 'S=k-ko; then
+!J.k

t\J (x, t) = ae i (Ulot-kox) \' ei [(dwldk)o I-x] ~ d'S = A (x, t) ei (wot-koxl,

-'!J.k

h A ( t) - 2 sin [(dw/dk)o t-x] M
were x, - a (dw/dk)o t-x •

(b) The maximum of the function A (x, t) is at the point x =
= (dwldk)ot; whence the velocity of displacement of the maximum
(group velocity) v = (dwldk)o.

3 23 dw dE d 1 / ~2""""2-'-""""2-:4
.. Vgr = dk =djJ= dp V pC ..,m c =V.

3.25. A scattered photon that passed through an objective lens
has Px < (liwlc) tan 'fro The right-hand side of this inequality states at
the same time the uncertainty ~Px for an electron: ~Px oc (liwlc) X
X tan 'fr~ (2nli/'A) sin 'fr. The uncertainty in the electron's coordi-

nate ~x ex: d = 'A/sin 'fro Whence, ~x· ~Px ex: 2nn.
3.26. To determine through which slit a particle has passed its

y coordinate has to be determined (by means of an indicator I) with
uncertainty ~y < d12; d is the distance between the slits. In accor­
dance with the uncertainty principle this means that the indicator
must introduce th~ uncertainty in the y projection of the particle's
momentum ~p~ -.;}Ii 21i/d.

On the other hand, the condition for the diffraction pattern not
being disturbed is ~p~« p'fr1 , where p = 2nli/'A; 'fr1 ~ 'AId; 'A is
the particle's wavelength, Le. ~P{I« 2nli/d.

Thus, the uncertainty in the momentum ~Py introduced by the
indicator turns out to be muc.h greater than the uncertainty ~p~

at which the diffraction pattern would remain unblurred .
3.27. Assuming ~x = 0.5 !lm, we obtain 2·10\ 1·10, and 5 X

X 10-2 cm/s.
3.28. ~v ~ 106 m/s; VI = 2.2.106 m/s.
3.29. (a) T min ex: 2li21ml2 = 15 eV, here ~x = l/2 and P ex:

oc ~P; (b) ~vlv ex: 2li/lY2mT = 1.2.10-4
; here ~x = l/2.

3.30. To compress the well by the value 6[, the work BA = FBl
should be performed that transforms into the increment dE of the
particle's energy. Whence F = dEldl ex: 4li21mP = 2Emin/l. It is
taken into account here that ~x = l/2 and P ex: ~p.

3.31. Assuming that ~x ex: X and v ex: ~v, we obtain the total
energy of the particle E = T + U ~ li2 /2mx2 + xx2/2. From the
condition dEldx = 0, we obtain E min ~ liw. The strict solution
yields Ii w12.

3.32. Assuming ~r ex: r and v ex: ~v, we obtain
e2 f/"

E b = I U I-T ~ -r --2-m-r-2 .

From the condition dEbldr = °we find r ~ li21me2 = 0.5.10-8 cm
and E b ~ me4/2n 2 = 13.6 eV.
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-00-00

-00

+00 +00

J
" 1 '0 . l sin S

,h (x) - a e,kx dk a -, - \ ,I· (x) e-1kx dx = - --
't' - k ,k - 2n: .~,. :rt s '

1jJ (x) = (Vn/a2) e-x2/4a'eikoX, w (x) = (n/a2) e- x '/2a'.

The effective localization region is assumed to be confined between
the points at which w (x) is less than in the centre by a factor of "e".

Hence, I1x = 2y2a.
3.38. (a) Represent the function ~) (x) by means of the Fourier

integral

-00

u = s- c/2. Then ~ e- s2+cs ds = Ynec'/4 and
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,
where S = ak, c = i (ko - k)/a. The latter integral is calculated
the way it was done in Problem 3.37, (b).

The effective interval of wave numbers is assumed to be confined
between the points at which ak is less than in the centre by a factor
of "e". Hence, 11k ~ 2a.

3.39. When U depends on time implicitly, the total Schrodinger
equation allows the solutions of the form -qr (x, t) = 1jJ (x) t (t). Sub­
stituting this expression into the total Schrodinger equation, we
obtain two equations:

tp" + 2n~ (E - U) 1jJ = 0; i+ i ~ t = O.

The solution of the first equation gives the eigenfunctions 1jJn (x)
corresponding to the energy eigenvalues En. The solution of the
second equation: t (t).-" e-iwnl , Ctl n = En/Ii. Finally, we obtain
-qrn (x, t) = 1jJ (x)e- iWnl .

3.40. Only the time-dependent coefficient of the total wave func­
tion will change. However, the physical meaning can be ascribed
only to the square of the modulus of that function, the change in the
time-dependent coefficient will not manifest itself in any way.

3.41. Assuming U = 0, we look for the solution of the total
Schrodinger equation in the form l(f (x, t) = tp (x) t (t). As a result,

-qr (x, t) = Ae- i(wl-kx); Ctl = E/Ii; k = p/Ii.

where S = (ko - lc)l. Plotting the function a (£) oc Sj~ s one can

easily see that the spectrum of the wave numbers corresponding to
the considered train of waves is practically confined within the region
11£~ 2n. Hence, 11k ~ 2nll which agrees with the uncertainty prin­
ciple.

(b) In this caseFig. 61

w

where the term e2
/2r accounts for the energy of interaction of the

electrons. The minimum of E corresponds to r ~ 4fiN7me2 =
=0.3.10-8 em' E .,...... 49 me4

, mJn,......-16·~ =

= - 83 eV. The experiment yields
-79 eV.

3.34. 2.103 •

~.35. A train of waves spreads
OWIng to the velocity spread ~v ~

~ fi./m .l1x. After the time dt its
WIdth Increment is d (l1x) = I1vx
X dt = (fi./m I1x) dt. Having inte­
grated this equation, we get: T ~ -2!"''7T'----''''''F---+-~~=::..,..--­
~ 'YJ2ml2/2fi. ~ 10-12 S. -J[ 0 :IT 2'ff 5

3.36. The width of the image
s ~ 6 + 6', where 6 is the width of
th~ slit, 6' is the additional. broadening due to the velocit uncer­
~~~~t~ I1v y g~sedlYhthe shti 6' ~ (2fi./m6)l!v (it is assu~d here

. x - a~ t e velocIty of spread of the train of waves is
dIrectylY~rtlOnalto I1v y ). The function s (6) is minimal at
6 ~ 2fi.l!mv = 10-3 em.

ko+6k

3.37. (a) 1jJ (x) = r aeikx dk = 2a sin (x 11k) e ikox .
J x'

k o-6k

3.33.. Assuming for both electrons ~r oc r and v oc ~v, write the
expressIOn for the total energy

E~2(.p2 _2e2)+~~~_7e2
2m r '2r mr2 2r'

The latter integral is readily transformed to the form

...!... r e-s'+cs de.
C(, J -,

where £ = ak c - 2k +. 1 Tin de f h ' - oa lX a. 0 calculate it, supplement the
x 0 t e exponent to make a square and put in the substitution
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w(x)= /1jJ(X)12=4a2(l1k)2 Si~2s ; s=xl1k.

The function .w. (£) is shown in Fig. 61. It is seen from the fi ure
:hat the probab~hty o~ the particle being at a certain location di~ers
r~:nhzero practl~ally In the region 11£ ~ 2n. Whence, I1x ~ 2nll1k

, w IC agrees WIth the uncertainty principle. '
+00

(h) 1jJ (x) = .\ akeikx dk = e-a'kij Je-a'k'+(2koa'-ix) k dk.
-00



As a result,

E _ :rt2!i2 (n r n~ ) • _ .. /4. :rtn1x • :rtn2 y
n,n, - ---;;:m aT + b2. ' tjJn,n2 - V a;; SIll -a-' sm -b-·

3.42. Assuming U = 0 in the Schrodinger equation, we obtain
the solution tjJ = Ae±ikx; k = V2mEIti. This solution is seen to be
finite at any values of E > O.

:rt2!i2n2 .. /2. :rtnx
3.43 (a) En = 2mZ2 , tjJn = V T SIll -z- ;

1 Y3
(b) w=3+2"n=0.61;

(c) dNE =(l/nii)Vm!2EdE.
3.44. (a) The solution of the Schrodinger equation in the well can

be readily found in the form of a product of sine functions: tjJ (x, y) =
= A sin kIx·sin k 2y, since the wave function must turn to zero at
x = 0 and y = O. The allowed values of k I and k 2 are found from the
boundary conditions:

Kl

Fig. 62
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those intersection points for which tan kl < 0, Le. they ar~ in t~e
even quarters of a circumference. (These sections of the abscI~sa aXIS
are shown in Fig. 62 with heavy lines.) It.can.be.seen that m.some
cases the roots do not exist; the dotted hne mdicate the ultImate

Position of the straight line.
t l 2UO = (2n - 1)2n2ii2/8m; four(c) The nth level appears a

levels.
(d) 9n2ii2/16m; Xpr = 21/3; 0.15.

11-0339

3.46. Integrate the Schrodinger; equation over the narrow interval
enclosing the discontinuity of the potential energy:

+6

tjJ' ( + 8) - tjJ' ( - 8) = ~. ~~ (E - U) tjJ dx.
-6

Since the discontinuity of U is finite, the integral approaches zero
if I 8 1-- O. Hence tjJ' (+0) = tjJ' (-0). .

3.47. (a) Write the Schrodinger equation for two regIOns:

O~x~ l, tjJ; + kitpl = 0, k 1 = V2mE/ii;

x~ l, tjJ; + k~tjJ2 = 0, k 2= V2m (E - Uo)/ii.

The solutions are: tjJI = a sin kIx, tjJ2 = b sin .(k2x + ex). From t~e
condition of continuity of tjJ and tjJ' at the pomt x = l, we obtam
tan (k

2
l + ex) = (k 2/k I) tan kIlo The latter equation holds for any E

because it has an arbitrary constant ex.
(b) Write the Schrodinger equation for two regions:

O~x~l, tjJ;+k2tjJI=0, k=V2mE/ii;

x~ l, tjJ; - X2tjJ2 = 0, X= V2m (UO -- E)Iti.

The solutions tjJI ~'a sin kx; tjJ2 =. b~-xX satisfy t?e standard ~nd
boundary conditions. Fro~ th~ condItIOn of contmmty of tjJ and tjJ at
the point x = l, we obtam

tan kl = - k/x, or sin kl = + V ii2/2ml 2U 0 kl.

The graphical solution of this equation (Fig. 62) gives the roots corre­
sponding to the eigenvalues of E. The roots are found by means of

n I = 1, 2, 3, ... ,

n 2 = 1, 2, 3, .•..

tjJ (a, y) = 0, k I = nInja,

tjJ (x, b) = 0, k 2 = n 2n/b,

(b) 0.038.
(c) 2, 5, 8, and 10 units of n 2ii2/2ml2

• (d) Each pair of numbers n1
and n 2 has a corresponding state. The number of states within the
interval dnI and dn 2 in the vicinity of the values n I and n 2 is dN =
= dnI dn 2•

Let us mark the values k I = nInja and k 2 = n 2n/b on the coor­
dinate axes. Then we draw the circle k~ + k: = k 2 in this k-space.
All points of the circle correspond to the same magnitude of ener­
gy E. Since the values k I and k 2 are positive, we shall consider only
one quadrant of the circle. The number of points (states) enclosed
within one quarter of the ring, formed by two circles with radii k
and k + dk, is

8N = ~ dnl dn2 = J~~ dk1 dk2= 1~ 2nk dk; S = abo

Taking into account that E = (ii 2/2m)k2 , we get 8N = (Sm/2nii2) dE.

:n:
2

11,
2

( n 2 n 2 n 2
) .. /"8

3.45. (a) En,n,n. = 2m 7 + b; + et ,tjJn,n2n. = V abc X

• :n:nlx • :n:n 2 lf • :rtnsz h . I
X sm--· sIn-

b
-' . sm -- ,were nit n2' n3 are Illtegers not equa

a c
to zero; (b) t<..E = n2ii2/ml 2 ; (c) for the sixth level ni + n: + n; =
= 14. It can be easily found by inspection that this number is
the sum of squares of the single triad of numbers: 1, 2, and 3.
The number of different states corresponding to the given level
is equal in our case to the number of permutations of this triad,
i.e. six; (d) dNE = (Vm 3/ 2 /V2 n 2ii3 ) VE dE. The derivation is
similar to that presented in item (d) of the foregoing problem.
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Fig. 65

k

Fig. 64

From the condition of continuity of'IjJ and 'IjJ' at the well's boundaries
we get tan ex = klx1 and tan (kl + ex) = -klx2, whence

sin ex = nklV 2mU1; sin (kl + ex) = - nk,o/ 2mUz.

Eliminating ex from the two latter equations, we obtain

kl = nn - arcsin !ik - arcsin Jik (1)
V2mU l V2mU

2
'

where n = 1, 2, 3, ... , and the values of arcsin function are taken
for the first quarter (from 0 to n/2). Figure 64 illustrates the left-hand
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and right-hand sides of Eq. (1) as a function of k' here Y Y and
. th . h h d . , l' 2' YaIS e rIg t- an . SIde of the equation at n = 1, 2, 3. Since the
~rgument of arcsm function cannot exceed unity, the value of k
m Eq: (1) canno~ exceed k max = V 2mU1/n if U1 < U2. The points
at whIch t~e straI~ht line kl. cro~ses the Curves Y1' Y2' etc. define the­
roots of thIS equatIOn constItutmg the discrete spectrum of eigen­
values of E.

. (b) It can be. seen from Fi~. 6~ that Eq. (1) has at least one root,.
If at k kmax ItS left-hand SIde IS not less than the right-hand side:-
(lin) V 2mU1? (n/2)-arc sinVU1IU2. For U 2 = 2U the first level
appears at U1 = n2n2/32ml2. 1

3.50. (a) E = nwl2; (b) E = (3/2)nw.
3.51. En = nw (n + 1/2).
3.52. (a) 'iJo = (exZ/n)1/4 e-~2/2; 'iJl = (exZ/4n)1/4 21:e-62/2. ,h_

= (exz/64n)1/4 (4SZ-2)e-62/2. - ''1'2-

(b) The values of xpr fo.r the states n = 0, 1, 2 are equal to O.
+1f~. and +2.5/ex. The dIstribution 'IjJ;' is shown in Fig. 65, X

o
=

3.53. 0.157.
. 3.54. The Sc~rodinger equation for this field in the region x > ()
IS the same as m the case of a linear oscillator. Consequently, its
11*

k

Fig. 63

(e) The problem reduces to the solution of the equation sin kl =
= + (3/5n)kl. Its roots are k 1l = 5n/6 and k 2l = 5.0. Respectively,
E 1 = 0.25Uo and E 2 = 0.91Uo'

3.48. (a) Write the solutions of the Schrodinger equation for three
regions:

x < 0, 'ljJl = aexx , x = V 2m (Uo- E)ln;

O~x~l, 'ljJz=bsin(kx+ex), k=Y2mEln;

x> l, 'ljJ3=ce-xx •

From the continuity of'IjJ and 'IjJ' at the points x = 0 and x = l we
obtain

tan ex = klx; tan (kl + ex) = -klx,

whence sin ex = nktV 2mUo; sin (kl + ex) = -nkIY2mUo' Eliminat­
ing ex from the two latter equations, we get

kl = nn-2 arcsin (nkIV2mUo), n = 1, 2, ... ,

where the values of arcsin function are taken for the first quarter
(from 0 to n/2). Since the argument of arcsin function cannot exceed
unity, the values of k cannot exceed
k max = V2mUoln.

Let us plot the left-hand and right-hand
sides of the latter equation as a function
of k (Fig. 63, Y1' Y2' and Y3 being the right­
hand side of the equation at n = 1, 2, 3).
The points at which the straight line crosses
the curves Y1' Y2' etc. define the roots of this
equation which, as can be seen from the
figure, constitute the discrete spectrum of
eigenvalues E.

With Uo diminishing, kmax shifts to the
left, and the number of intersection points
decreases (for a given l the position of the
straight line remains fixed). When kmax
becomes less than k' (see Fig. 63), the well possesses only one
energy level.

Thus, the given well always possesses at least one energy level.
(b) n 2n2/4m; 0.28.
(c) n2n2/2m. The energy of the ground state is defined by the

equation 2x = n - 2 arcsin x, x = kll2, whence cos x = 2xln.
The root of this equation x ~ 0.93, E 1 = 0.35Uo'

(d) At l2U 0 = (n2n2/2m)n2; three levels.
3.49. (a) Write the Schrodinger equation for three regions:

x < 0, 'ljJl = aeX'x, Xl = V2m (Ul- E)/1i;

O::::;x~l, 'ljJz=bsin(kx+ex), k=V'2mEln;

x>l, 'iJ3=ce-x1x , xz=V2m(Uz-E);1i.
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solutions will be identical with those for the oscillator at odd values
of n because '¢ (0) = 0. The same relates to the energy eigenvalues
which can be given in the form En' = nro (2n' + 3/2), n' = 0, 1,
2, .... It is obvious that for the same value of ro, the energy of the
ground state (n' = 0) triples the energy of the oscillator in the
ground state.

3.55. (a) Let us find the solution in the form '¢ (x, y, z) = X (x) X
X Y (y) Z (z). After substitution in the Schrodinger equation, we obtain

X~+ ~r: (Ex - kxt )X = ° and the similar equations for the

functions Y and Z, with Ex + E y + E z = E. These equations coin­
cide with the equation for a unidimensional oscillator whose eigen­
functions and energy eigenvalues are known. Therefore we can write
directly

'¢nmzns = '¢nl (x) '¢nl (y) '¢ns (z);

En = nro (n + 3/2), n = ni + nz + na_

(b) The degree of degeneracy of a level with a definite value of n
is essentially equal to the number of different combinations of num­
bers nI' n2, and n a whose sum is equal to n. To determine the number
of combinations, let us first count the number of possible triads
nI' n z, n a for a fixed value of ni . It is equal to the number of possible
values of n2 (or na), i.e. to n - ni + 1, for n2 may vary from °to
n - ni' Then the total number of combinations of nI, n2, n a (for
a given n) is

n

N - '" (_ +1)_(n+1)(n+2)
- L.J n nt - 2 •

n,=O

3.56. (a) Write the solutions of the Schr6dinger equation:

x:::;;; 0, '¢1 = a1eik,x + bte-ik,x, k 1= V2mE/n;

x;;;;:: 0, '¢z = azeik,x +bze- ik•x, kz= V2m (E - Uo)/n.

Suppose that the incident wave has the real amplitude aI' and the
reflected wave the amplitude bl • Since in the region x> °there is
only a transmitted wave, b2 = 0. From the condition of continuity
of'¢ and '¢' at the point x = 0, we find b}/aI :

R=(Jl)2=(k}-k2 )2; D=1-R= 4k}k22 .
a l kl +k2 (kl +k2)

(b) In this case the solutions of the Schr6dinger equation take
the form

x < 0, '¢t = a1eikx + bte-ikx , k = V2mE/n;

x>O, '¢z=azexx+bze-xx, x=V2m(Uo-E)/n.

Suppose the incident wave has the real amplitude al • From the
finiteness of the wave function, it follows that a2 = 0. From the
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condition of Continuity of'¢ and '¢' at the point x = 0, we get

R = 1..!!.l12 = I k-ix 1
2

= 1.
al k+ ix

The probability density of finding the particle below the barrier is
w2 (x) ex: e- 2xx. .Hence, Xeff = 1/2x. For an electron Xetf ~ 1 A.

3.57. (a) WrIte the solutions of the Schr6dinger equation for
three regions:

x < 0, '¢t = ateikx+ bte-ikx , k = V2mE/n;

O<x<.l, '¢z=azeikox+bze-ikox, ko= V2m(E+Uo)/n;
x> l, '¢a = aaeikx.

These expressions are written for the case when the incident wave is
characterized by eikx

• Accordingly, the wave function '¢a has only
one term corresponding to the transmitted wave. From the condition
of continuity of'¢ and '¢' at the well's boundaries, we find

as _ 4kkoe-ikl •
~- (k+ko)2eikol_(k_ko)2eikol ,

D= I~12 = [.1 + (kij_k
2

)2 sin2 k1 J- 1 = [1 + Uijsin2 kol J- 1 •
al "4' 4k2kij 0 . 4E (E+Uo) ,

R=1-D=[1+ 4k
2
kij J-1-[1 4E(E+Uo) 1-1

(kij_~2)2sin2kol -. + Uijsin2kol •

(b) From the condition D = 1, we obtain sin kol = 0. Hence
kol = nn, or E = (n2n2/2ml2)n2 - U0; n are integers at which E > 0.
. 3.58. (a) rr:he solution is similar to that of the foregoing problem

(Item (a». Fmally, we obtain the same formulas, in which k o =

= V2m (E - Uo)/h. When E--+ Uo, D--+ (1 + ml2Uo/2n2)-I.
(h) En = (n Zn2/2mlZ)n2 + Uo = 11.5, 16.0, and 23.5 eV. Here

'! = 1, 2, 3, ... (n =1= 0, since for n = °E = Uo and D < 1, see
Item (a) of this problem).

(c) In this case the solution of the Schrodinger equation differs
from the case E> Uo only in the region °< x < l:

'¢z = azexx + bze-xx ; x = V2m (Uo- E)/n.

Th~refore, t~e transparency coefficient can be found by substitution
of IX for ko m the expression (see the solution of Problem 3.57, (a»:

~ 4ixke- ik1 •
a l (k+iX)2 eXl_(k_ix)2 e-XI'

D=I~I=[1+(k
2
+X

2
)2 sinh2 xlJ- 1 =[1+ Uijsinh

2 xl J- 1
al. 2kx 4E(Uo-E) .

D« 1 when xl~ 1. In this case sinh xl::::::: ex1 /2 and

D ~ 16k2x2 - 9 I 16E ( E) -V
~ (k2+X2)2 e ~X = ~ 1- U;; e- 21 2m(Uo-El/h.
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(d) For an electron D ~ 0.27, for a prolon D ~ 10-17
•

3.59. (a) From the solution of the Schrodinger equation for the
three regions, we find the ratio of the amplitudes of the transmitted
and incident waves:

~ = 4klk2e-ih31

al (k
1
+k 2) (k2+ k a) e - ih 21_ (k1 - k 2 ) (ka- k 2) e ih 21 '

where k t =V2mE/Ii;k2 =V2m(E - U2 )/Ii; k3=V2m (E-[J3)/Ii·
The transparency coefficient D = I a3/a1 12. V31vb where V1 and V3
are the velocities of the particle before and after tunnelling
through the barrier; V3/V1 = k31k1. Hence,

D 4klk~ka
k~ (k1 +ka)2+ (kr-k~) (k5-k~) sin2 k 21

(b) The same expressions as in the foregoing item in which
the follOWing substitutions are made: k 2 -+ ix and sin k 2 l -+

-+ sinhxl, where x= V2ni(U2 - E)IIi:

D = 4Jc 1x 2
ka

x 2 (k1 +ka)2+ (k¥-x 2 ) (ki-X2) sinh 2 xl

D - [ 8/ V 2m 3/2] .3.60. (a) -exp - 3hUo (Uo-E) ,

(b) D=exp[ - ~ V ~: (Uo-E)].

4.1. Instruction. Take into account that A2'lJ = A (A'lJ).
4.2. (a) (2 - x2) cos X - 4x sin x; (1 - x2) cos X - 3x sin x;

(b) (2 + 4x + x2) eX, (1 + 3x + x2) e".
4.3. (a) A = 4; (b) A = 1; (c) A = _a2.
4.4. (a) 'lJ (x) = Ceil-x, 'A = 2nnla, n = 0, +1, +2, ;

(b) 'lJ (x) = C sin (V~x), 'A = (nnll)2, n = +1, +2, .

4.6. (a) AC~;Bi)-(~Bi)A=~(iB;-BiA)=~[A,Bd;

(b) A (llC) - (BC) A = ABC - BCA+BAC-Bic=[A, B)C+
" " "+B [A, C).

4.8. [B, A2)=~ [ii, .47]=0, for [B, A7]=[B", id ..4;+A;[B, A"d=O.

4.9. (a) Multiplying the equality AB -BA == 1 by the operator

B first from the left-hand side and then from the right-hand

side, we obtain correspondingly BAB -B2A = Band Ae"2­
-BAB=B. Summing up these equalities, we get: AB2-B2A"=2B.

4.12. The:operators Band C are not commutative in the

general case. For example, the operator py commutes with the

operators f and Px which do not commute with each other.
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4.13. (a) If 'lJ is the common eigenfunction of the operators

A" and 13, then AB~) = ABl/' = BAl/' = BA~;; BA'lJ = BAl/' = AB'lJ =
= ABl/', Le. ABl/' = BAl/' and [A, B] = O.

(b) Let'lJ be the eigenfunction of the operator A and belong to the

eigenvalue A. Since A and B are commutative, AB'lJ = BA'lJ =
= BA'lJ = AB'lJ, Le. A'lJ' = A'lJ', where 'lJ' = B~J. Thus, the eigen­
value A belongs both to the function 'lJ and to the function 'lJ' that
describe therefore the same state. This can happen only when these
functions differ by a constant factor, for example, B: 'lJ' = B'lJ.
But 'lJ' = B'lJ, and therefore B'lJ = B'lJ, Le. the function 'lJ is the com­

mon eigenfunction of the operators ..4 and B.
4.14. (a) f (x, z) eihyY ; (h) Aei(hxx+hyY+hzz); (c) f (Y, z) e±ihxx.

Here k; = pJIi (i = x, y, z); f is an arbitrary function.
4.15. It does only when the function 'lJ A is at the same time the

eigenfunction of the operator B. It does not in the general case. For
example, in the case of degeneracy (in a unidimensional rectangular
potential well two values of the momentum's projection, +Px and
-Px' correspond to, each energy level despite the fact that the op-

erators iI and Px ~ommute).
4.16: Suppose that 'lJ is ap arbitrary eigenfunction of the oper-

ator A, corresponding to the eigenvalue A. Then from hermi­

city of the operator A it follows that ~ 'lJ*A'lJ dx = J'lJA*'lJ* dx

and A ~ 'lJ*'lJ dx = A* .\ 'lJ'lJ* dx, whence A = A*. The latter is pos­

sible only if A is real.

4.17. (a) ~ 'lJtPx'lJ2 dx = '-iii J'lJ: aa~2 dx = - iii [('lJ:'lJ2):!:: -

- I 'lJ2 a:;* dx ] = ~ 'lJ2 (iii :x) 'lJ~ dx = ~ 'lJ2P~'lJ~ dx.

4.18. The operator A+ conjugated with the operator..4 is de­

fined as follows: J'lJ:A'lJ2 dx = J'lJ2 (A+'lJ1)* dx. (a) Pxx; (h) -iPx.
4.19. From the hermicity of the operators Aand B it follows

that

~ 'lJ~..4(B'lJ2) d't = ~ B'lJ2 (A *'lJ~) d't = ~ A*'lJ: (B~2) d't

= ~ 'lJ2B* (A*'lJ*) d't.

Since A and 13 commute, 13*AA* = A*B* and

J'lJ~AB'lJ2d't = J'lJ2A*B*'lJ~ d't.
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4.20. Every operator commutes with itself. Consequently, if the

operator.li is hermitian, the operators A2 = ii and An are also
hermitian.

4.23. (a) The solution of the equation LilJ.' = Lz'lj.? is 'Ij.? (cp) =
= AeiLzrp/ll. From the condition of single-valuedness 'Ij.? (cp) =
= 'Ij.? (cp + 2n) it follows that L z = mli, where m = 0, ±1, ±2, ....
From normalization, we get A = (2n)-1/2. Finally, 'lj.?m (cp) =
= (2n) -1/2eimrp.

(b) The eigenvalues are L~ = m2li 2
, where m = 0, +1, +2, ....

The eigenfunctions have the same form as for the operator i z'
Le. the function 'lj.?m (cp) = (2n)-1/2eimrp is the common[eigenfunction

of the operators Lz and L;. All states with eigenvalues L~ except for
m = 0 are doubly degenerate (in terms of direction of the rotational
moment, L z = +1 m Iii).

4.24. 2li2•

4.25. (a) ) 'Ij.?~ L z'lj.?2 dcp = - iii ('Ij.?~'Ij.?2)~l"t + ) 'lj.?2 ( iii aa~ ) dcp =

= \ 'lj.?2i~'Ij.?1 dcp.

He;e ('Ij.?1'IJ.'2)5l"t = 0, because the functions 'Ij.?! and 'lj.?2 satisfy the condi­
tion of single-valuedness.

(b) ) 'Ij.?~Lz'lj.?2d't= ) ('Ij.?~XPy'lj.?2-'Ij.?~yPx'lj.?2) d't. Since the operators

Px and py are hermitian, the integrand can he transformed as

X'lj.?2P~'Ij.?:- y'lj.?2pNi = 'lj.?2 (xp~ - Yp~) ~l: = 'lj.?2i N:.
- 4.26. ) lP~b'lj.?2 d't =~ ) ('Ij.?~ i~'Ij.?2 + 'Ij.?~iN2 + 'Ij.?~·L~'Ij.?2) d't. Since the

operators ix, i y , and Lz are hermitian, the squares of these op­

erators and consequently the operator 12 are also hermitian.

4.29. (a) [Lx, p~l = [Lx, Pxl pAX +p: [Lx, Pxl = 0, for [Lx, Pxl=O.
4.30. The operator f can be represented in the spherical coor­

dinates as the sum f = f r +b/2mr2 , where i r performs the op­

eration only on the variable r. Since the operator L2 = - li2V'iJ. rp

operates only on the variables 'fr and cp, [b, 1'] = [b, Trl +
+ [b, b/2mr2l = O.

4.31. (a) [ix, iyl = LXLy-LJ,x = (ypz- ZPy) (zPx--,xPz)-

- (zPx-xPz)(YPz-zp y) = [z, pz](xpy - YPx) = iii (xpy - YPx)=
= iliLz.

4.32. (a) [b, Lxl [L~, ixl + [L~, ixl + [i~, Lxl, where

[L~, Lxl = 0; [L~, Lxl = Ly [L y, Lxl + [iv, Lxl L y = -iii (Lyiz +
168

.'.;

1

+ LzLy); [L;, Lxl i z [L n Lxl + [L z, Lxl Lz = iii (LZLy+Lyiz).

Whence it follows that [b, Lxl = O. Similarly for L y and L z.
4.33. In the case of r = ro= const, the operator

A Ji2 1 A

H =- 2ftT~ n. rp = 2flrij L2.

Therefore,

iI'h = _1_ i2'h = E'h.
'I' 2ftT~ 'I' 'I'

Since the eigenvalues of the operator b are equal to li2 l {l + 1)r
then E = li2 l (l + 1)/2!-tr~.

4.34. (a) Since the operator A is hermitian, ) 'Ij.?* A'Ij.? d't =

= ) 'lj.?A*'Ij.?* d't. Consequently, <A) = <A*), which is possible only

for a real <A).
A " in A r * A4.36. Hx - xH = - m Px, therefore <Px) = J 'Ij.? Px'lj.? dx =

= - ~ ) ('Ij.?*Hx'lj.?-'Ij.?*xiI'Ij.?) dx. Due to hermicity of the Hamil-

tonian the integr-a'nd can be written as x'lj.?H'Ij.?* -x'lj.?*H'Ij.? = 0, for

iI'Ij.?* = E'Ij.?* and H'Ij.? = E'Ij.?,
4.37. (8) From the normalizing conditions A2 = 8/31.

I' A Ji2 \ d21jJ 2 rt2Ji2
<T> = J ~)TIJ.' dx = - 2m J 'Ij.? dx2 dx == 3" --,;;[2'

(b) A2 = 30/ZS; <T> = 5li2/ml 2.
4.38. From the normalizing conditions A2 = V 2/n a; <T> =

= <U) = liw/4.
4.39. (a) Here 'lj.?n (x) = V2/l sin (nnx/l) , ({i1X)2) = (x2) - (x)2 =

= ~; (1 - rt~n2); «i1Px)2) = <p~) = (nli/l)2 n2.

(b) From the normalizing conditions A2 = V2/n.a; ({i1X)2) =
= 1/4a2; «(i1Px)2) = a2li2.

(c) A2 = V2/n a; «(i1X)2) = (x2)= 1/4a2; «(i1Px)2) = (p~) - (Px)2 =
= a2li2•

Instruction. While calculating the mean value of the momentum
squared, it is helpful to use the following hermitian property of the

operator Px: (p~) = ) 'Ij.?*P~'Ij.? dx = ) I Px'lj.? 1
2 dx.

4.40. From the normalizing conditions A 2 = 4/3n; (L;) = 4li2/3.
4.41. From the normalizing conditions A2 = fin; «(i1cp)2) =

= (cp2) _ (qJ)2 = n 2/3 _ 1/2; ({i1L z)2) = (L;) = li2.

169



170

\42. Rec~ll~ng that Ai'Ii~x = [iy, i z], we can write (Lx) =

= iii: .\ ('lJ*LyLz'iJ - 'iJ*LzLy~,) d-r:. Since according to the condition

Lz'iJ = Lz'lJ and the operator Lz is hermitian, the integrand can
be transformed as follows: 'lJ*L L 11, - ,1)*L i ,I, = L ,1,*L ,1,_

A A A II Z Y 'i z y't' z't' y't'

- (Ly'lJ) L:.'lJ* = (Ly'lJ) (Lz'iJ* - L:'lJ*). The latter expression in pa­
rentheses IS equal ~to zero because an eigenvalue of a hermitian
operator is real (L z = L:). Similarly for the operator L

y
•

4.43. (£2) = J'lJ-1b'lJ dQ = 211,2, where dQ = sin 'I't d'l't dcp.

4.~4._Sinc~ the axe~ x, y, z ar~ equiv?l.ent, (L2) = (L~) + (L~) +
+(L z) - 3 (L z )· Allowmg for eqUlprobabIhty of various possible
values of L z , we obtain
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From here it follows that the coefficients I Ck 12 are the probabilities
of observing definite values of the mechanical quantity A h •

4.48. First, the normalizing coefficient A should be calculated.
The probability of the particle being on the nth level is defined by
the squared modulus of the coefficient Cn of expansion of the function

'lJ (x) in terms of eigenfunctions 'lJn (x) of the operator B: Cn =

= \ 'I/J (x)'lJn (x) dx, where 'lJn (x) = V2/l sin (nnx/l).

(a) A 2 = 8/3l. The probability sought is WI = c; = 256/27n2 =
= 0.96.

(b) A2=301l5 ; wn=c~= (~~~6 [1_(_1)"]2, that is, Wn differs

from zero only for odd levels (n = 1, 3, 5, ... ); for them W n =
= 960/(nn)6; Wi:::::::; 0.999; Wg:::::::; 0.00t.

4.49. (a) First calculate the normalizing coefficient A = 2!V 3n.
Then expand the function 'I/J (cp) in terms of eigenfunctions of the

operator i z (they have the form 'lJm (cp) = (2n)-1/2eim<:p):

'lJ (cp) = Asin2cp = 1 (1- cos 2cp) =~ (1-i- e2i <:p_~ e- 2i<:P)
lf3n V3n 2 2

.. /2 1 1
-:,,v "3 11i o- VB 'lJ+2 - VB 'lJ-2'

From here it can be seen that L z = 0, +211" and -211,. Their proba­
bilities: Wo = 2/3; W+2 = W!.2 = 1/6. (b) L z = 0, +11" +211, and
Wo = 36170; W+1 = W-1 = 16170; W+2 = W- 2= 1170.

4.50. (a) Find the coefficients of expansion of the wave function

'lJn (x) = V2/l sin (nnx/l) in terms of eigenfunctions of the operator Ie:
r -- 1_(_1)n e- i kl

Ck = J ~in (x) 'lJk (x) dx = n V nl n 2n2 -k2 [2 ~

whence

2 4nln 2 { cos2 (kl/2), if n is odd,
wk=lckl= (n 2n2-k2[2)2' sin~(kl/2), if n is even.

(b) From the normalizing conditions A2 = V21n a; Wk = ICk 12 =
_ 1 e-k2/2a'

aV2n .
The corresponding integral can be found by the procedure indicated
in the solution of Problem 3.37, (b). It can be readily shown here that

the total probability ~ Wk dk = t.

4.51. It can be a solution of the time-dependent SchrOdinger
equation.

4.52. Expand the function sought in terms of the eigenfunctions
of stationary states

'I' (x, t) = ~ cn'lJn (x) e-;oon',

to hermicity

(L~) = 11, (m2) = 1,2
2[+1

and (£2) = 1i2l (l +1).

4.45. We have A'lJi = Ai'lJi and A'lJ2 = A2'iJ2" Due
of the operator A, its eigenvalues are real and

) 'lJ:A'IJ-'2 d-r: .J 'lJ2A*'lJ: d-r:,
Or

A2 J~jiljJ2 d-r: = Ai ) 'lJ2'lJ~ d-r:.

Since ~i =1= A2 , the latter equality is possible only under the con-
d't' \ * .

1 IOn J 'l/Jl 'l/J2 d-r: = 0, l.e. the functions 'lJi and 'lJ2 are orthogonal.

4.~7. (a) Multi~ly both sides of the expansion 'I/J (x) = ); Ck'I/Jk (x)
by'I/Jz (x) and then mtegrate with respect to x: -

J'lJr'iJ dx = ~ Ck J ~)Nk dx.

The. eigenfun.ctions of the operator A are orthonormal, and therefore
allmtegrals III the right-hand side of the equation, with the exception

of the one for which k = l, turn to zero. Thus, CI = J'l/Jr (x) 'I/J (x) dx.

(b) (A) = J'lJ*A'I/J dx = J(~ cN~) (~ czA,'lJ') dx = ~ c:czAzX

r * " k. I
~ J 'lJk'lJZ dx= L.J ICk/ 2Ak• Note that ~ ICkI2=1 which follows

dIrectly from the normalization of the function 'lJ (x):

J'lJ*'lJ dx = ~ c~cz J'lJNz dx = 1.



1jJn (x) = V2/l sin (nnx/l). The coefficients en are found from the
initial condition

f 23/ 2 l 5/ 2

Cn = J 'Y (x, 0) 1jJn (x) dx = A (nn)3 [1- ( -1)n].

Fro~ ~ere it is s.een that Cn =1= 0 only for odd n. From the normalizing
condItIOns applIed to the function 'Y (x, 0), we find A 2 = 30!l". As
a result,

'Y (x t) = ~1/ 30 "...!... . nnx -iwnt.
, n 3 l ~ n3 SIn l e ,

<Un=En/n=(n2ft/2ml2)n2, where n=1, 3,5, ....
4.53. First, separating the variables <p and t, find the stationary

solutions of the Schrodinger equation:

in aw =H'Y' 'Y (rn t)=_1_
e

i(mqJ-wmt).
at 'm 't" Y2 '

<U m = Em/n = (ft/2I)m2
, where m = 0, +1, +2, .... Then expand

the function sought 'Y (<p, t) in terms of 1p'm (<p, t): 1p' (<p, t) =
= ~cm1p'm (<p, t), where the coefficients Cm are found from the initial
c~ndition 1p' (<p, 0) = ~cmeimqJ (see the solution of Problem 4.49).
Fmally, we get 1p' (<p, t) = (A/2)(1 + cos 2<p·ei2ht / I ). From this
expression it is in particular seen that the rotator comes back to the
initial state after the time interval M = nl/n.

4.54. (a) Recalling that (A) = J'Y* A'Y dT:, we obtain

:t (A) = Ja~* A'Y dT + J'Y* ~1 'Y dT + J1f*A aa; dT:.

. aw i A aw* i A

But Slllce 7ft = - T H'Y and fit = T H'Y*, then

:t (A) = ~ J(Hqr*) A'Y dT + Jqr* ~1 'Y dT: - +Jqr* AHqr dT.

. Due to hermic~tyof the operator H the first integral of this expres­
SIOn can be reWritten in the form and then

dAr * [ill , i A A A A ]dt( )= J 'Y 8[TT(HA-AH) 'YdT:.

Wh · dA ilA i A A A A

ence It is seen that -d =-+-(HA-AH)t at fi •

4.56. Take into account that the operators; and Px do not
depend on time explicitly.

4.59. The operator Lx does not d~pend on time explicitly, and

therefore ~ Lx = ~ [H, ix] = ~ [:~, LxJ+ ~ [U, Lx]. Since
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p2 and Lx are commutative (see Problem 4.29), the first jterm
is equal to zero. Only the second term is to be calculated.

4.60. Differentiating the equation A'Y = A'Y with respect to
. '. aA A aw dA

time and taklllg lllto account that at = 0, we get A 7ft = dt 1f+
aw aw i A •

+ A- After the substitution - = ----,;- H'Y, we obtalllm' m n

dA '¥=....!...-(AiI-.AH)'¥. If A and H commute, then AH'¥=
dt fi

=HA'Y=AH'Y and dA/dt=O.
4.61. The solution is reduced to checking whether the operators of

indicated mechanical quantities commute with the Hamiltonian

H = p2/2m + U = T + U, where T is the kinetic energy operator.

The operators Px, py, PZl ix, Ly, i z, and i 2 all commute with the

operator T (see Problems 4.29 and 4.30), and, therefore, we have to
investigate if all these operators commute with the operator U.

(a) aJi/iJt = 0 and U = O. All quantities retain their values in the

course of time. (b) aH/at = O. The values of E, Px' Py, and L z do not
t l

It. A A A '""2
vary with time. (c) aH/at = O. The operators Lx, L y , L z, and L
commute with the operator U (r). (This fact becomes evident as
soon as the operators are written in spherical coordinates: they oper­
ate only on {} and <p.) The values of E, Lx, L y , L z, L2 do not vary

with time. (d) aH/at=l= O. Only Px, Py, and L z do not vary with time.
d . r A A

4.62. (a) dt (A) = i- J '¥* [H, A] 'If dT: = 0, i.e. (A) = const.

(b) Since the operators A and H commute, they have common

eigenfunctions 1jJn (x): A1jJn = A1jJn and H1jJn = E n1jJn. Expand the
function 1p' (x, t) in terms of the eigenfunctions 1jJn which are the func-

tions of the stationary states (H1jJn = E n1jJn), so that '¥ (x, t) =
= ~cn1jJn (x) e- iwnt = ~c~ (t) 1jJn (x); <Un = En I'tt , where c~ (t) =
= Cn (0) e-iwnt• The latter summation is an expansion in terms of

eigenfunctions of the operator A, and therefore the squares of moduli
of the expansion coefficients define the probabilities of various values
of the mechanical quantity An at the moment t, Le. w (An, t). Thus
w (An, t) = I C~ (t) 12 = I C~ (0) 12 = const.

A fi2 (a 2 2 il) . k4.63. T r = - 2m ar2 +r ar IS the inetic energy operator

in the case of a radial motion.
4.64. (a) Write the Hamiltonian in the Schrodinger equation

H1jJ = E1jJ in the form H = Tr + b12fLr2 + V, where Tr is the
kinetic energy operator in the case of a radial motion (see the answer
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to the f~:e?oing probl?m). Substituting the function 'IjJ = RY into
the Schrodmger equatIOn, we obtain the following expression

YTrR+ 2:r2L2Y+YUR=YER.

Taking into account that by = n2 l (l + 1) Y, we get

(f + ft
2

(l+1) + U) R=ER
r 2J.!r 2 •

The latter equation defines the energy eigenvalues E. It can be easily
reduced to the sought form.

(b) SUbstitu~e the function Y in the form Y = e ('6') <l> (<p) into

the. equation L2Y = I..Y, where L2 = -n2'V~, ll" and separate the
vanables 'fr and cpo Denoting the separation constant by m2 we get
the equation for the function <l> (<p): '

o2<l>/O<p2 = -m2<l>; <l> (<p) = Aeimll'.

From the condition of single-valuedness, it follows that m =
= 0, +1, +2, .... Thus, 'IjJ = R (r) e ('6') eimrp.

4.65. The fu~ction I.Yz, m /2 specifies the probability -density,
related to a umt of solId angle of the particle with the quantum
numbers land m being in the vicinity of 'fr: IY 12 = dw/dQ. (a) Y3/41£'
(b) V 15/81£. '

4.66. (a) After the substitution into the Schr6dinger equation
we o~tai~ X" + x

2
X = 0; X = V 2mE/n. The solution of thi~

equatI?n IS to be sought .in the form X (r) = A sin (xr + ex). From
the fimteness of the functIOn 'IjJ (r) at the point r = 0 it follows that

- A sin xr '
ex - O. Thus, 'IjJ (r) = r . From the boundary condition

'IjJ (ro) = 0, we have xro = nl£, n = 1, 2, ... , whence

E 11.2ft2 1 . sin xr
ns ="'22" n2

; 1/Js (r) = ._-
mro V211.ro r •

The coefficient A is found from the normalizing conditionroJ'ljJ241£r2 dr = 1.
o

(b) ro/2; 50%. (c) Transform the equation for the function R
1

(r)

to the form R;+; R;+(x2r2_-2)R1 =0; x=V2mE/n. Having

written the similar equation for Ro(r), differentiate it with
respect to r:

R'" + l:... R" +( 2 2 - 2) R' - 0OrO xr 0- •

From the comparison of these two equations, it can be seen that

Rdr)=R~(r)= ~ (xrcos xr-sinxr),
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where A is the normalizing coefficient. (d) From the boundary con­
dition, we get tan xro = xro• The roots of this equation are found
either by inspection or by graphical means. The least value is xro =
= 4.5. Consequently, E IP ~ 101i,2jmr~ ~ 2Eu .

4.67. (a) (r) = ro/2; (r2) = 1(1- 2n~n2 ) ; «Llr)2) = (r2) - (r)2=

_ r~ (1 .__6 ).
- 12 11.2n2 '

(b) (T) = ~1 li2/mr~; (c) expand the function ~)1s (r) in terms
A

of eigenfunctions of the operator k:

~Jls(r)=(2Jt)-3/2 ~ ckeikrdk,

where Ck = (2Jt)-3/2 ) 'l\Jls (r) e- ikr dV. The latter integral is to be

computed in spherical coordinates with the polar axis being
directed along the vector k:

Ck = 1 .\ sin (nr/ro) e-ikr cos 'itr 2dr sin {l' d{l' d<p
(211.)2 V ro ~ r

Vro sin kro
= k (11.2-k2r3)

Therefore the probability ,density of the given wave vector is

ICkl 2 = ro sin
2

kro . To find the probability of (the modulusk2(11.2-k2r~)2

of the wave vector being between the values k and k + dk,
integrate the latter expression with respect to all po.ssible
directions of the vector k, i.e. miltiply it by 4Jtk2dk. Fmally
we get

(k) dk -, 4nro sin 2 kro dk
w - (11.2-k2r3)2 .

4.68. (a) The solutions of the Schr6dinger equation for the­
function X (r) are

r<ro, Xl=Asin(kr+ex), k=V'2mE/Ii;

r> ro, X2 = Bexr +Ce- xr , x = V 2m (Uo- E)/Ii.

From the finiteness of the function 'IjJ (r) throughout the space,
it follows that ex = 0 and B = O. Thus,

,h _ A sin kr . ,h _ C e-
XT

'1'1 - -r-' '1'2 - r·

From the condition of continuity of 'IjJ and 'IjJ' at the point r = ro,
we obtain tan kro = -k/x, or sin kro = +V li2/2mr~Uokro' This
equation; as it is shown in the solution of Problem 3.47, defines the
discrete· spectrum of energy eigenvalues.
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leus to the expression obtained, we get

cP (r) = ( ..:... +~) e- 2r/rt .
... rl r

4.77. See the solution of Problem 4.67, (c), w(k)dk=
32rOk2 dk

:n: (1+k2rD~ , where r1 is the first Bohr radius .
5.1. 5.14 and 2.1 V.
5.2. 0.41, 0.04, and 0.00.
5.3. Having calculated the quantum defect of S terms, we find

E b = 5.4 eV.
5.4. (a) 6; (b) 12.
5.5. 0.27 and 0.05; 0.178 !-tm.
5.6. a = 1.74; n = 2.
5.7. 7.2.10-3 eV; 1.62 eV.
5.8. 555 cm -1.

5.10. (a) I1T = a 2RZ4 (n - 1)/n4 = 5.85. 2.31 and 1.10 em-I;
(h) 1.73 and 0.58 em -1 (three sublevels).

5.11. 111. = a 2!9R = 5.4.10-3 A (equal
for Hand He+).

5.12. Z = 3, i.e. Li H
•

5.13. (a) See Fig.. 66; I1V51 = V5-VI=

= 7.58 em-I, 111.51 = 0.204 A; (b) I1v =
= 2.46 cm -1, 111. = 0.54 A.'

5.14. 1./81. :> v/(v 3 - v2) = 4.2.105

(see Fig. 66).

5.15. In units of Ii: V3.'")/2, V15/2, n

and V3/2(4P); 2VS, 2 V3, VEi, V:2,
and 0 (5D).

5.16. (a) lP I and 3PO, t, 2; (h) lP ..
1D2, lF3, 3Po, 1,2' 3D1, 2, 3' 3F2, 3, 4; (c) 2Pl/2,3/2, 2D3/2,5/2,
2F5/ 2 ,7/2, 4P1/2, 3/2, 5/2, 4D1/2 , 3/2, 5/2,7/2, 4F3 /2, 5/2,7/2,9/2·

.5.17. 20 (5 singlet and 15 triplet types).
5.18. ISO' IP 1 , ID 2 , 3S17 3P O,I,2' 3D I,2,3'

5.19. (a) 2, 4, 6, 8; (b) respectively, 2; 1, 3; 2, 4; 1, 3, 5.

5.20. V30 flo
5.21. Respectively, Ps:> V:2 Ii and Ps = V:2 Ii.
5.22. (a) 35.2°; (b) 34.4°.
5.23. 10 (the number of states with different values of m J ).

5.24. V30 n; 5H3 •

5.25. 125°15'.
5.26. (a) ~ (2J + 1) = (2S + 1)· (2£ + 1); (h) 2 (2l1 + 1) X

J

X 2 (2l2 + 1) = 60; (c) the number of states with identical quan-

(h) 1fNi2!8m<r~Uo<9'JTNi2/8m. (c) In this case there is a single
. 3 -y3 2 2:n: 2 ti2

level: smkro=-4-kro; kro=-3 n; E=-"-·-2' From the
:n: " mro

,condition () (r21jJ2)/(}r = 0, we find rpr = 3ro/4; 34%.

4 69 fJ2R 2 fJR ( I 2Z l(l+1»)
• • fJp2 +p ap+ 8,p- p2 R=O, p=r/r.. 8=

=E/Ei •
4.70. (a) Neglecting the small values, reduce the Schrodinger

equation to the form X" - x2X = 0, X = V 2m IE 111i. Its solution
is X (r) = Aexr + Be-xr . From the finiteness of R (r), it follows that
A = 0 and R (r) ex e-xr!r. (b) Transform the Schrodinger equation

to the form XII - l (l-t 1) X = O. Its solution is to be found in the
r

form X = ArGt • After the substitution into the equation, we find
two values of a: 1 + land -l. The function R (r) is finite only if
.0. = 1 + l. Hence, R (r) ex r l

•

4.71. (a) Substituting this function into the Schrodinger equa-

tion, we obtain B (a, a, E) + rC (a, a, E) + i.D (a, a) = 0, where
r

B, C, and D are certain polynomials. This equality holds for any
values of r only when B = C = D = 0, whence

a = 0. = -1I2rI = -me2/2li2; E = -me4/8li2.

(b) A=+(2nr~)-1/2; r1 is the first Bohr radius.

4.72. (a) rpr = r I, where r l is the first Bohr radius; 32.3%;
(b) 23.8%.

4.73. (a) (r) = 3r1/2; (r2) = 3r~; «(M)2) = (r2) - (r)2 = 3r~/4; r1 is
the first Bohr radius; (h) (F) = 2e2/ri; (U) = -e2/r1; (c) (T) =

= ~ lIJT1jJ d'T = me4/2li2; V (v2) = e211i = 2.2.106 m/s.

4.74. (a) 4r1 and 9rl; (h) 5r; and 15.75r;; r1 is the first Bohr
radius.

4.75. CPo== ~ p;r) 4nr2dr= :1' where p(r)=e1jJfs(r) is the

volume density of charge; r1 is the first Bohr radius.
4.76. Write Poisson's equation in spherical coordinates:

1 fJ2 2
- -fJ2 (rcpe) = 4necpIs (r), e > O.
r r

Integrating this equation twice, we get

CPe (r) = ( :1 + ~ ) e- 2r/r1 + .4 + ~ ,
where r l is the first Bohr radius. A and B are the integration con­
.stants. Choose these constants so that cP e (00) = 0 and cP e (0) be finite.
Hence, A = 0, B = -e. Adding the potential induced by the nuc-
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tum numbers nand l is N = 2 (2l + 1). While distributing k
electrons over these states, the Pauli exclusion principle should be
taken into account. Consequently, the problem reduces to finding
the number of combinations of N elements taken k at a time:

Ck _ N(N-l)(N-2) ... (N-k+1) -120
N- k! -.

5.27. (a) 15; (h) 46.
5.28. (a) 2 (2l + 1); (h) 2n2.
5.29. (a) C: 1s22s22p 2(SP o); N: 1s22s22p3(48a/2);
(h) S: 1s22s22p63s23p4(3P 2); CI: 1s22s22p63s23p5(2P 3/ 2)'
5.30. (a) sF2; (h) 4F3/ 2.
5.31. 685/ 2 ,

5.32. The basic term 5D". The degeneracy 2J + 1 = 9.
5.33. Let us compile the table of possible distributions of elec­

trons over quantum states (numbers) with the Pauli exclusion
principle taken into account (Tables 1 and 2). While doing this,
we can leave out those distributions that provide the negative values
of the sum of projections M Land M s; such distributions do not
submit anything new, which can be proved directly.

To illustrate, let us denote the spin projection m. of each electron
by the arrow pointing either up (if m s = +112) or down (if
m s = -1/2).

Table 1 Table 2

T
:, 5.34. Both configurations have the following identical type$r of terms: (a) 2p; (h) IS, ID, and 3p; (c) 2D. This follows from the fact
1., that the absence of an electron in a subshell can be treated as "a hole"
~ whose state is determined by the same quantum numbers as those

of the absent electron.
5.35. Let us compile the table of possible distributions of elec­

trons over quantum states, taking into account that the Pauli
exclusion principle imposes limitations only on cquivalent elec­
trons.

(a) See Table 3 in which thc thin arrows indicate spin projections
of a p-electron and heavy arrows those of an s-electron.

Table 3

111
8

+1 t t t t • t H -I

0 tt H t t It t t Ht
-1 - - t . - t - -

Ms 3/2 ,,' 1/2 3/2 1 'J 1/2 1;2 1/2 1/2.~

M L 1 1 0 0 1 0 2 0
,

(a) See Table 1. The presence of the state with M L = 2 and
Ai s = 0 indicates that there is a term ID; consequently, there must
also be two other states: M L = 1 and M L = 0 (for both M s = 0).
From other distributions the state with M L = 1 and M s = 1
points to the existence of the sp term; therefore, there must be stilI
another state with M L = 0 and M s = 1. The last remaining state
with M L = 0 and M s = 0 belongs to the 18 term. Consequently,
three types of terms correspond to the given configuration: 18, ID,
and sp.

(h) See Table 2. Via similar reasoning, we get 2D, 2p, and 48.
(c) 18, ID, IG, sP, and SF.
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The possible types of terms: 2D, 2p, 2S, and 4P.
(h) 2S, 2p (three terms), 2D, 2F, 48, 4p, and 4D.
5.36. N 2/N1 = (g2/g1) e- nw /hT = 2.4.10-3

, where gl = 2, g2 =
= 4 2.

5.37. 3.10-17 •

5.38. From the condition -dN = AN dt, where A is a constant,

we find N = N oe- At • On the other hand, T = \ t dN = 11A, where

the integration is performed with respect to t'going from 0 to 00,

The rest of the proof is obvious.
5.39. T = l/v In Y] = 1.2.10-6 s; r ~ 5.5.10-10 eV.
5.40. N = TU/2Jtnc = 7.109 •

5.41. T = N1lm. £ e- l.w/ kT = 7.10-8 s wherc g' = 4 ..-L 2 g = ...I g , "~.

It is taken into account here that the concentration of atoms on the
ground level practically coincides with the total concentration
since nw ~ kT.

5.42. (a) The number of direct and reverse transitions per unit
time Z21 = (A 21 + B 21U u,) N 2; Z12 = B 12U wN 1. Taking into ac­
count the Boltzmann distribution and the fact that Z21 = Zw
we obtain

17-912*

+1 t t t t H ti- t
0 t t t t t - H

-1 t t t t - t -

Ms 3/2 1/2 1/2 1/2 1/2 1/2 1/2
M L 0 0 0 0 2 1 1

ms

+1 t t t t H -
0 t - t - - H

-1 - t - t - -

Ms 1 1 0 0 0 0
ML 1 0 1 0 2 0



(2)

Fig. 67
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frequency distribution of radiating atoms: n w dffi = n (vx ) du;x.
Finally, it remains to take into account that the spectral radiation
intensity I w oc n w •

5.52. «')'),Dop/«')'),nat ~ 103
•

5.53. T~1.25·1O-3ex4mc2/k=39K, where ex is the fine struc-
ture constant, m is the atomic mass.

5.54. About 2'.
5.55. 8.45 and 1.80 A; 1.47 and 6.9 keY.
5.56. 12.2 'A (Na).
5.57. (a) Fe, Co, Ni, Zn; Cu is omitted (1.54 A); (b) three ele-

ments.
5.58. 0.25, 0.0, and -2.0.
5.59. 15 kV.
5.60. Cu.
5.61. 5.5 and 70 kV.
5.62. In molybdenum, all series; in silver, all series with the

exception of K series.
5.63. (h) Ti; 29 A. 0

5.64. (a) 5.47 and 0.52 keY; (h) 2.5 A.

5.65. E L = 2nc/:~A_1=0.5 keY, where (j)= ~ R*(Z-l)2.

5.66. aK = 2.84'; aL = 10.
5.67. 1.54 keY.
5.68. 0.26 keY.
5.69. (a) TplJoto=fiffi-EK=4.7keV; TAUger=(EK-EL)­

- E L = 10.4 keY, where E K and E Lo are
the binding energies of K and L electrons;
(b) 0.5 A.

5.71. (a) 2P3/2; (b) 2SI / 2 and 2P 3/2 , 1/2;
2S1/2 ; 2P 3/2, liz and 2Ds/2 , 3/2'

5.72. K ~ L, M, two lines each; L ~M,
seven lines.

5.73. (a) 0.215 'A.(Ka,) and 0.209 }, (Ka2); ~L

(h) 4.9.10-3 'A.
5.74. 115.5, 21.9, 21.0, and 17.2 keY.
6.1. From the vector model (Fig. 67 in

which ~s and ~L are drawn, for the sake
of simplicity, coinciding in direction with
5 and L), it follows that

11 = ~L cos (L, J) + ~s cos (5, J), (1)
-::--,...".--,...,-

where ~L=L*J.lB; ~S=2S*J.lB; L=V L(L+l); S*=V S(S+1);

J* = V J (J + 1). According to the cosine law

L*2 = J*2 + S*2 - 2J*S* cos (5, J);}
S*2=J*2+L*2_2J*L*cos(L, J).

00

\ n6w
5.50. (b) I = 2 .1 I w dw = -2- J o-

lJ)o

When T ~ 00, U w~ 00, and therefore g1B12 = g2B21; besides, from
the comparison with Planck's formula, it follows that

B 21 = (n2c2/fiffi3) A 2l•

(b) A21 /{2 -nc,)/kT nw3 -nw/IJT (W- 'f 1 )uW=-B ·-e =~e len s ormu a .
12 gl n c

5.43. (a) Wind/WsP is of the order of 10-34 ; (b) T = 3nficR/2k In 2=
= 1. 7 .105 K.

5.44. Let I w be the intensity of the transmitted light. On passing
through the layer of gas of thickness dx this quantity diminishes as

-dlw=cxwlwdx=(N1B1Z-NzBzd I; fiffidx,

where N 1 and N z are the concentrations of atoms on the lower and
upper levels, BIZ and B 21 are the Einstein coefficients. Hence,

nw N B (1 !fIN 2 )xw=-c- 1 12 -- {!,2 N I •

Then take into account the Boltzmann distribution and the fact that
/iffi » kT (in this case N I ~ No, the total concentration of atoms).

5.45. It follows from the solution of the foregoing problem that
light is amplified if x w < 0, i.e. g1N2 > g2Nl' This is feasible pro­
vided the thermodynamically nonequilibium state is realized.
N D : N p = g D : g p = 5 : 3.

5.46. In the stationary case the concentrations of atoms on the
upper and lower levels are equal to N 2 = q/A ZI and N 1 = q/A IO
respectively. As it follows from the solution of Problem 5.44, the
light amplification requires that glNz > gzN1. The rest of the proof
is obvious.

5.47. Solving the system of equations N z = q - AzNz; N 1 =
= A 21N 2 - AzoN I , where A z = A 20 + A 21 , we obtain

A A -AIot A -A2t )
Nl(t)=~ (1- 2

e - IO
e

.
A IO A2 A 2 -AIO

5.48. 2.10-4 A.
5.49. (a) «')ffi = y; (b) 'r = '),2/2nc«')'), = 1.2.10-9 S.

5.51. (a) Suppose v:>: is the projection of the velocity vector of a
radiating atom on the direction of observation line. The number of
atoms whose velocity projections fall into the interval v;x, V;x + dv:>: is

2
nv dvxoc e-mvx/2kT dvx·

x

The frequency of a photon emitted by the atom moving with the
velocity V;x is w = ffio (1 + vx/c). Using this expression, find the
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The shifts:

A ,5 + 3 + 1 1 3 5 (. eB . t"" )
ti(() = -r"3' "3 ' '3' - '3' - "3' -"3 III 2mc UUl S •

6.18. 8='l(a-+;~b)f.tR ~~ =5mm, f!B=gJ~tB'

6.19. (a) ~v = Lf!BB/Jr,lic = 0.56 cm-1; (b) 1F3 •

6.20. Three components in both cases.
6.21. ~A = A2eB/2Jr,mc2 = 0.35 j\.
6.22. ~E = Jr,cli ~A/A2 = 5.10-5 eV.
6.23. (a) 2 kG; (b) 4 kG.

_ 2nnc . !'1'}. {28 kG for P S/ 2 term
6.24. (a) B - 0.1 gf.tB· ",2 55 kG for P

1
/
2

term;

nncry,,2RZ4 {0.59 kG for P S/ 2 term
(b) Ii = 01 =

. gf.tBn 3 1.18 kG for Pt/2 term;

(c) 9.4 kG (for P3/ 2 ) and 19 kG (for P1/ 2 ).

6.26. (a) Normal; anomalous; normal; normal (in the latter
case the Lande splitting factor is the same for both terms).

(b) In atoms with an odd number of electrons, the anomalous
Zeeman effect; in the remaining atoms, both normal (for singlet
lines) and anomalous (for lines of other multiplicity) Zeeman effects.

6.27. See Fig. 69. (a) To find the possible shifts, i.e. the values
of m I g1 - m 2g2 , l~t us draw the following diagram:

~t

(j -1/2

Fig. 69

(j :J(

I 2 3 4 5 6

,/z
~

Fig. 68

Eliminating the cosines from Eqs. (1) and (2), we obtain the sought
expression.

6.2. (a) 2(8), 2/3 and 4/3(P), 4/5 and 6/5(D); (h) 0/0(3PO),

3/2(3P1 and 3P 2 ); (c) g = 2 with the exception of the singlet state
for which g = 0/0; (d) g = 1.

6.3. (a) 2F5/ 2 ; (h) 3D 3 .

6.4. (a) 2 V 3f!B; (h) 2 V 3/5f!B.
6.5. 8 = 3; the multiplicity 28 1 = 7.

6.6. 4/V 3; Bill 15, and 4 V 7/5 f!B.

6.7. V3 f!B·

6.8. For both terms g = 0; ~l.J -l J.

6.9. V 21i and V61i.

6.10. (a) The ground state 2P3/ 2 , g=4/3,f!=2V5/3f!B;

(h) the groud state 4F3/2, g ~~ 2/5, f! = V 3/5 f!B.
6.11. On the one hand, dJ = [M, III dt, where M is the magnetic

moment of the atom. On the other hand (Fig. 68), I dJ I =

m
+3/2
+1/2
1/2

-3/2

6.30. (a) ~(() = 0, ±~ ±2; (b) ~(() = ±\+2

In the diagram the arrows connect only those values of mg whose
difference (Le. the corresponding transition) satisfies the selection
rule ~m = 0, +1. The vertical arrows denote Jr, components, the
oblique ones, a components.

(b) 0.78 cm-1 .

6.28. 2.7.105 .

= J* sin {}. (() dt, where J* = Ii V J (J + 1). Comparing the two
expressions, we obtain the sought formula.

6.12. (a) 0.88.1010 , 1.17.1010, and 0 S-1; (b) 1.32.1010 S-1 (3P 2 ).

6.13. 2V51i and 5V5i4f!B. Here g=1.25; J=4.

6.14. Here g= -2/3, that is why MttJ(not t~ as usual).

6 15 t oS 2niR2zf!B = 4.1.10-27 N..( . . ... f!B 7h:= C (R2-1-z2)5/2

6.16. °iJR = (m~2b~ = 7 kG/em.
z a a-j- f!B

i 6.17. (a) 0.6, 5, and 6 f!B; (b) fIve components; no splitting for
~ = 0 (g = 0).

6.29. (a)

(b) ~(() =

A +4, +8, +12, ±16, ±24 .
ti(() = 15 '

+1, + 3, ±15, +17, ±19, ~l::21,

15
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the central n: component is absent, for the transition I1J = 0,
11m = 0 is forbidden.

6.31. In the strong magnetic field both vectors, Land S, behave
independently of each other in the first approximation, and the
energy of interaction of the atom with the field is

I1E = -(f.1LhB - (f.1shB = (mL + 2ms) f.1BB .

When a transition takes place between two levels, the Zeeman com­
ponent shift is 11m = (I1mL + 2l1ms) f.1BB/li. The selection rules
I1mL = 0, +1 and I1ms = 0 result in the normal Zeeman effect.

nne ~A 36 kG6.32. B = - 'i""2" n = •
fLB '"

6.34. In the constant field B the magnetic moments of atoms are
oriented in a certain way relative to the vector B (spatial quantiza­
tion). The magnetic moment can change its orientation only due to
absorption of a quantum of energy from an ac field. This happens
when this quantum of energy is equal to the difference in energies of
both states (orientations). Thus, lim = (f.1B - f.1'B) B, where f.1 B =
= gmf.1B, m is the magnetic quantum number. Taking into account
the selection rule 11m = +1, we obtain lim = gf.1BB.

6.35. B = 2n:liv/gf.1B = 2.5 kG.
6.36. 5.6f.1B.
6.37. 3.4.10-6 and 7.7·10-°f.1B.

aB 121[2[2R4Z X -S6
6.39. f=fla;: e2(R2+z2)4 NA ~7·10 N.
6.40. The angular frequency of Larmor precession of an electronic

shell of atoms is equivalent to the diamagnetic current [ = ZemL/2n:.
The magnetic moment of circular current is f.1 = n: (p2)[/e, where
(p2) = (x2) + (y2) is the mean squared separation of electrons
from the z axis taken in the direction of the field B. For the spherically
symmetric distribution of the charge in an atom (x2) = (y2) = (Z2)
and (r2) = (x2) + (y2) + (Z2) = (3/2)(p2). Whence, X = f.1N/B =
= - (Ze2N/6me2) (r2).

ex>

6.41. (r Z) = \ r z'¢z4n:rzdr = 3d; X= - 2.37 .10-6 ems/mol.
b

6.42. 0.58, 0.52, and 1.04 A.
ex>

6.43. Bo= - geB2 Vo' where Vo=4n: r p(r)rdr, p(r) is the vol-
me )

o
ume density of the electric charge in the atom at the distance
r from the nucleus.

6.44. (a) The number of molecules, whose vectors,.., are confined
in the elementary solid angle dQ = 2n: sin {} d{}, is equal to

dN = Cea co, tr sin {} d{}, a = f.1B/kT,
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where C is the constant. This is the number of those molecules whose
magnetic moment projections are equal to f.1B = f.1 cos {t. Hence,

I f,tB dN ( 1 )
(f.1B)=· SdN =fl cotha--;- .

The integration with respect to {t is performed between the limits
from 0 to n:.

(b) f.12B /3kT and f.1 respectively.
6.45. 0.45 cm3 ·K/mol, 1.9f.1B'
6.46. 1.6.10-7 .

6.47. (a) 'I'] = tanh a; a = mgf.1BB/kT; m is the magnetic quan­
tum number; g is the Lande splitting factor. In this case 'I'] ~ a =
= 0.0056; (b) 'I'] = coth b - cosech b; b = g V J (J + 1) f.1BB/kT.
In this case 'I'] ~ b/2 = 0.0049.

6.48. [ = Nf.1B tanh a; a = f.1BB/kT; [= Nf.1~B/kT at a <R: 1.
2 sinh a 2 /

6.49. (a) '1']= 1+2cosha ~3a=0.0037; a=JgflBB kT;

(b) 'l1=sinhb+sinh3b ~2b~ 0.0060' b=gIl.BB/kT.
'I coshb+cosh3b 'r

~ IJ,B/kT '\' am
6.50. (f.1B) = LJf,tBe = gf,tB.Llme I a = gf.1BB/kT. Here

~eIJ,B/kT Leam
the summation is carried out with respect to m (magnetic
quantum number) from - J; to +J. For a weak magnetic field
a «1 and therefore eam = 1 + am. Then 1:: meam = a1::m2 =
= aJ X (J + 1) (2J + 1)/3; 1::eam = 2J + 1. The rest ofj the
proof is obvious.

6.51. (a) 0.375 cm3 • K/mol; (b) 0.18 erg/G.
6.52. 6.6.10-0 cm3/g.
7.1. (a) 1.5.10-2 and 4.2.10-4 eV; (b) 3.3.1013 and 6.4.1011 S-1.

7.2. 2 and 3.
7.3. 3.46li.
7.4. 117 and 3.8 K.
7.5. N 1/N 2 = (g1/g2) e4hB/kT = 1.9.
7.6. 5.7.100 and 1.9.106 dyne/cm.

7.7. Uo=D+lim/2=4.75 eV; a=mroVfl/2Uo=1.43.

7.8. (a) xo = V li/mf.1 = 0.124 A; (b) V (xZ) = V li/2mf.1 = 0.088 A.
7.9. lim (1 - 2x) = 0.514 eV; 33.7 times.
7.10. 534 K.
7.11. I1E = lim (1 - 2x) - nBJ (J + 1) = 0.37 eV.
7.12. 13 levels.
7.13. Vmax ~ 1/2x; E max ~ nm/4x and D = lim (1 - 2x)/4x. For

a hydrogen molecule vmax = 17. E max = 4.8 eV, D = 4.5 eV.
7.14. x ~ 0.007.

7.15. Dn -DH =(limH /2)(1-V f.1H/f.1n):=0.080 eV.
7.16. N z/N 1 = e- hw(1-4x)/kT = O. 02. At 1545 K.
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- ~[1 -
\l1v ro t I = -- Vrot

It

is the reduced mass of

N 2 17.17. N
1

= 2J+1 e-[l,w(I-2x)-7,BJ(J+1)]/hT ==0.01.

)'E e- Ev / hT );E e- aEv
7.18. (E)= C-.I. v =.'--J v ,

)'e-Ev/hT \'e-aEv
._J "'-I

where E v = nw (v + 112), a = 1IkT, with the summation being
carried out with respect to v in the interval from 0 to 00. The cal­
culation is performed as follows

d ( ) d e- ahw
/

2 Jim hw
(E)= --d In 2;e- aEv = --In =-2+ e',W/kT_1 •a da 1_e-ahw

7.19. (a) T·~ k~: 3 = 740 K;

hm 30
(b) T= kIn [1+m/BJ(J+1)] = 6 K.

. R (hm/kT)2 ehW./kT ~ { R (nw/kT)2 e-
hW

/
kT

7.20. CVlbr - hw/kT . ~ R •
(e -1)2 .

Here R is the universal gas constant.
7.21. 0.134, 0.56, and 0.77R; R is the universal gas constant.
7.22. 1.93.10-40 g·cm2; 1.12 A.
7.23. (a) B' = ().2 - ).1)/2).1).2 = 11 em-I; 2.6.10-40 g·cm2 ;

(b) 4 -+ 3 and 3 -+ 2 respectively.
7.24. Decreases by 1.0n (J = 2 -+ J = 1).
7.25. 13 lines.

- - 1 2v -v7.26. w=2nc(3vol-voz)=5.0.10tl's-l; X=T _01 02 0.017.
3V01-V02

7.27. From the condition nw = nwo + I1EJ ,J. we get

w = wo + B [J' (J' + 1) - J (J + 1)].

Taking into account the selection rules I1J = +1, we find

J' = J + 1, w = w0 + 2B (J + 1), J = 0, 1, 2, . . .,

J' = J - 1, w = wo - 2BJ, J = 1, 2, 3,

It can be readily noticed that both formulas can be combined into
the one given in the problem.

7.28. B' = 21 em-I, 1= hl4ncB' = 1.33.10-40 g·cm2 • The wave
number of the "zero" line which is absent due to exclusion I1J =!= 0
is ~10 = 3958 em-I. From the ratio v10 = v (1 - 2x), we obtain
x = 0.022.

7.29. 11)./). = 11f!/f! = 1.5.10-3 ; f! is the reduced mass of the
molecule.

- ~It -
7.30. Il1vVib I = 2f:L Vvib = 28 em-I;

= 0.10 em-I; I1vvib / I1v~t = 280. Here f!
the molecule.

'.l.86

7.31. w=nc ( ",1
v
-i-) =1.37.1014 S-I; 5.0.105 dyne/em.

2 -2 V1+(~",/",)2_1 -7 8.1014 -I
7.3 . w- nc (1-2x)~A. -. s .
7.33. I v/lr ~ e- 7,w(1-2x l/kT ~ 0.07. Will increase 3.8 times.
7.34. In the transition Eo-+E x (the first stage of the process)

J x = J 0 + 1. In the transition to the final state Ex -+ E (the second
stage) J = J x + 1 = (Jo + 1) + 1, i.e. I1J = 0, +2.

7.35. (a) From the condition !tw = !two - I1EJ 'J, we get

w = W o - B [J' (J' + 1) - J (J + 1)].

Thus, taking into account the selection rule I1J = +2 (for shifted
components), we obtain

J' = J + 2, w = W o - 28 (2J + 3), J = 0, 1, 2, ,

J' = J - 2, w = Wo + 2B (2J - 1), .J = 2, 3, 4, ..

Both formulas, as one can easily see, can be combined into one given
in the text of the Problem; (h) 1.9.10-39 g·cm2, 1.2 A.

7.36. B' = 11A,/12A,~ = 2.0 cm-\ 1.4.10-39 g·cm2.
8.1. 4.29 and 3.62 A.
8.2. 2.17 and U}5 g/cm3

.

8.3. The plane thkl) lying closest to the origin placed at one of
the sites of the lattice cuts off the sections a/h, a/k, and all on the
coordinate axes. The distanee between that plane and the origin
is equal to the interplanar distance d. Denoting the angles between
the plane's normal and the coordinate axes x, y, z by a, ~, 'V respec­
tively, we obtain: cos a = hd/a; cos ~ = kd/a; cos 'V = ldla. Now
take into account that the sum of the squares of these cosines is
equal to unity.

8.4. (a) a, ;2' ;3; (h) ~, ;3' 2 V3 ; (c) -;-,

a a

2 V2' V3·
8.5. 10 and 8 A.

( 1: V2 :V3 (simple),

8.6. 1100 : 1110 : 1111 = J 1 :V~: V3!~ (space-centered),

l1 : V2/2: V3 (face-centered).
8.7. Suppose the edge of the lattice cell is a = nd1 , where n is

an integer. It can be easily found that when n = 1, the cell con­
tains 1/4 of an atom which is impossible. When n = 2, the cell
has two atoms. In our case the crystal belongs to the cubic system
with 4-fold symmetry axes, and therefore the second atom should
he located at the cell's centre. If it is the case, then d 2 must be equal
to d1 V-Z, which is indeed so according to the condition of the
problem. Consequently, the lattice is space-centered cubic.

187



189

(
1 l' 1 1 ) exe2

U=2e2 ---+--- =-a 2a 3a 4a' • • a I

8.18. Face-centered: (111), (100), (110), (311), (111).
Space-centered: (110), (100), (211), (110), (310).

8.19. (a) 38; 45; 63; )8, and 82°; (b) 42; 61; 77; 92, and 107°.

8.20. From the formula sin 1't = ;a Vh*2 + k*2 + 1*2, deter­

mine the values of the sum of the squares of indices h*, k*, 1* and
then find (by inspection) the indices themselves: (111), (311), (511),
(333). Respectively, 2.33, 1.22, 0.78, and 2.33 A.

8.21. The first diffraction ring corresponds to the reflection of the
2Ufirst order from the set of planes (111): a = ---n V h2 +k2 + 12 =

= 4.1 A.
8.22. Space-centered.
8.23. The energf' of interaction of an ion with all other ions of

the chain is

odd

(111 )

odd

(110)

odd
odd

• (1 00)Lattice type

Space-centered
Face-centered

8.17.

where a = 2ln 2 = 1.385, a is the ionic separation.

8.24. (a) IU I = IVa L (1 _J...), where IV is the number of
ro n

ionic pairs in the crystal, ro is the equilibrium distance between
neighbouring ions of opposite sign; (b) 8.85 and 11.4.

8.25. (a) p = (~VIV)IK = 0.3 GPa; (b) expand the function
U (V), the binding energy of the crystal, into series in the vicinity
of the equilibrium value U 0:

U = Uo + (fJUlfJV)o ~V + (fJ2U/fJV2)3 (~V)2/2 + ....
Taking into account that at equilibrium (fJU!fJV)o = 0 and 11K =
= Vo (fJ2UlfJV2)0. we get the expression for the energy increment
U - Uo, whence for the volume density of energy we have

u - U o = (~VIV)2/2K = 1.4 J Icma.

8.26. (a) Taking into account that p = -fJUliJV, we obtain
1 _ 82U exe2 (n-1) 9a 4

If - V 8V2 = 18rt ' n = 1 + 8o:e2 K = 9.1,

where 70 is the equilibrium separation of neighbouring ions, a is
the lattice constant; (b) 0.77 ·10a kJ Imo!.

I

I

1

8.8. The diffraction maxima are located at the intersection points
of two sets of hyperbolas: a (cos a - cos a o) = k 1'A,
b ,(cos,~ - cos ~o) = k 2A, where a o, ~o are the angles between the
dIrectIOn of th~ incident and the lattice directions along the periods
a and b respectively; a, ~ are the angles between the diffracted beam
and the same lattice directions.
. 8.9. a (cos a - 1) = k1A; b cos ~ = k 2'A; c cos I' = ka'A. Taking
mto account that cos2 a + cos2 ~ + cos 2 I' = 1, we obtain:

A= _ 2 (k1 Ia)
(k1la)" + (k2Ib)2 + (ks/e)" •

8.10. Taking into account Laue's equations a (cos a - cos a o) =

= k1'A; a (cos ~ - cos ~o) = k 2A; a (cos I' - cos 1'0) = ka'A and the
relations cos 2 a + cos 2 ~ + cos 2 I' = 1, cos 2 a o cos 2 ~o + cos2 Yo =
= 1, we get

'A = _ 2 k l cos exO+k2 cos 80 +ks cos 'Yo
a k~+k~+kl

8.11. Find the sum of squares of left-hand and right-hand sides of
the Laue equations:

2a2 [1 - (cos a ocos a + cos ~o cos ~ + cos Yo cos 1')]

= (k~ + k: + k~) 1.,2.

It can be easily seen that the sum of cosine products equals non =
. cos.2{1o, where ~o ~nd n are the unit vectors oriented along the

dIrectIOns of the mCldent and diffracted beams forming the angle
2{1o equal to the doubled Bragg's angle. Then the former expression
takes the following form:

2a sin 1't/V k;+ k:+ k~ = A.

Since alV7k;".......,-+---:"k"'"":-+----:k"""; = din, where n is the greatest common
divisor of the numbers k 1 , k 2, k a (k 1 = nh, k o = nk k = n1' n k 1
are the Miller indices), we obtain 2d sin {Io "nA. ' ~ '"

8.12. 5.8 A.
8.13. 1.19 A; 58°.
8.14. (a) 37 and 40 mm respectively.

(b) 'A = a sin {} _ { 0.563/n ~ for (031);
nYh2+k2 +1 2 - 0.626/nA for (221), n=1, 2,.

8.15.1.,= .. asin(exI2) =17 A
y k~+k~-2klk2 cos (ex/2) • ,

k. and k 2 are the reflection orders.
. 8.1~. First find ~he periods of identity / along the [110] and [111]

dIrectIOns. Accor~mg t~ Laue / cos, {Ion = n'A, where 1'tn is the angle
between the rotatIOn aXIS and the dIrection to nth layer line' / =
•• ' 110

= 2.9 A, /111 = 7.1 A. Their ratio corresponds to a face-centered
lattice (see the solution of Problem 8.6); a = V Z/Im = 4.1 A.
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27a 4
8.27. n=c1+ =11.9; U=0.63·10 3 kJ/mol.

2 V3 ae 2 K

8.28. From the condition of the maximum value of p = -fJU/fJV
we obtain

(
~ ) n - 1 = n --i- 3 9a 4

To 4 ' n==1+ '(,ae2K =9.1,

where r o is the equilibrium separation of neighbouring ions, a is
the lattice constant. As a result, rm/ro = 1.147. The corresponding
pressure is

ae
2

[ (TO \n-l'JI Pma" I = 6Tt". .1 - r;;:) = 4.2 CPa.

8.29. (a) U=~N ae
2

(1-...E-), p=0.112ro=0.31.5A;
TO TO

(b) K = 9pa4/4ae2 (a - 4p). Here r o is the equilibrium separation
of neighbouring ions, a is the lattice constant.

( nw nw)8.30. E = 3N -2 -+ nwlkT ;
. e -1

r ( nw )2 e"wlkT { 3Nk,
Cc-3Nk - =

\ kT, (e r,WlkT_1)2 3Nk(;/,(j)lkT)2 e-r,w;kT.

8.31. (a) 'Write the equation of motion of the nth atom

mUn = x (Un+1 - un) -r X (U n-l - Un) = X (Un+! - 2un + Un-I)'

The solution of that equation is to be found in the form of a standing
wave: Un = A sin kx sin wt, where k is the wave number equal to
2n1A, x = na is the coordinate of the nth atom (n = 0, 1, 2, ...
... , N - 1). Such a solution satisfies immediately the boundary
condition U o = O. The boundary condition for the other end of the
chain U N-l = 0 is satisfIed provided sin ka (N -1) = O. Thus we
obtain the spectrum of eigenvalues of the wave number:

k :iti . 1 2 v 2
i == a (N -1) , ~ = , , ... , H --

(when i = 0, then N - 1 sin kx = 0, i.e. the solution allows no
motion at all). Thus, the displacement of the nth atom can be repre­
sented as a superposition of standing waves of the form

Uni = Ai sin kina·sin Wit.

(b) Substituting the expression for Uni into the equation of motion,
we find

Wi = 2 V xlm sin (k ia/2).

It is seen from this equation that the number of different oscillations
is equal to the number of possible values of the wave number /"i'
i.e. N - 2, or, in other words, to the number of oscillatory degrees of
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freedom of the given chain. Wma" = 2 V xlm; Amin = 2a.
Wi .. /x sin (k;a/2) - vJ:it

(c) Vi = k; = 2 V m ki ; vJ = a V x/m =c const; Vsh = 2 •

(d) dZw = 2N dw.
n V w 2 _w2

max

8.32. (a) dZw == :v dw; (b) 8 = Jl~~-V ; (c) taking into account
Wm

that E = J(e w) dZw , where (e w) is the mean energy tof the

quantum harmonic oscillator with frequency w, we obtain
8/T

E - R8 (1 L T2 '1- .7: dx \
- 4-' fi2 .\ eX -1 J'

o

To determine C = fJE/fJT, the integral should be differentiated with
respect to T (see Appendix 14). Finally we get

8/T
C - R (2!- \~ _ 81T ),..., { R,

- 8 ~ eX-1 e8/T-1 ~ (n2/3)RT/8.

The value of the irf'tegral in the case of 81T -+ 00 can be taken in the
same Appendix.

8.33. (a) dZ w = (Shw 2 ) waw; (b) 8 = (n;k) V 4nv2NIS;
8/T 8/T

(
1 T3 \ x2dx ) ( T2 \ x2 dx 81T)

(c) E=4R8 6+83 J eX-1 ; C=4R 3fi2 J eX-1-e8/T_1 ~
o 0

{
2R,

::::: 28.9RT2;82~ See the solution of the foregoing problem.

8.34. (a) dZ w = (3V/2n 2v3) w2 dw; (b) 8 = (fi/k) V6n2v3N/V;
BIT 8/T

(
1 T4 \ x3 dx ) ( T3 \' x3dx 81T)

(c) E=9R8 s+W J eX-1 ; C=9R 4"83 . eX-1-e8/T_1 ~
o 0

{
3R,

~ (12/5) n2RT3/83. See the solution of Problem 8.32.

S ( 1 1) n ... ,1 8nN
8.35. (a) dZ W =-2 -2-+-2 wdw; 8=-k V S( -2+ -2)n Vz vt Vz vt

_ V (1 2') 2. n 3V 18n2N
(b) dZ w - 2n 2 0+Vf W dw, 8=T V (v

z
3+2v

t
3) .

8.36. 470 K (see the formula for 8 from the solution of the fore­
going problem).

8.37. (a) 1.8; (b) 4.23 kJ Imo!.
8.38. 20.7 and 23.8 J/(mol·K); 5% less.
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8.39. It can be easily checked that in this temperature range the
heat capacity C ex: T3, and therefore one can use the low temperature
formula for heat capacity. 8 ::::::: 210 K; Eo = 1.9 kJ Imo!.

8.40. (a) 8 = 2.2.102 K; (b) C = 12.5 J/(mol·K); (c) Wmax =
= 4.1.1013 S-l.

8.41. nwmax = 5.2 .10-14 erg; Pmax = nkmax ::::::: nnlro :::::::10-19 g. cm/s.
8.42. (b) From the condition dnldw = 0 we get the equation

eX (2 - x) = 2, where x = nwlkT. Its root is found either from its
graph or by inspection: Xo::::::: 1.6. Thus, nW pr = 0.8k8; (c) T =
= 0.6258; (d) n ex: T3 and n ex: T respectively.

8.43. Due to the photon-phonon interaction the energy of the
photon changes by the value of the phonon energy: nw' = nw ± nws'
On the other hand, from the triangle of momenta it follows that

(nw slv)2 = (nw'lc')2 + (nwlc')2 - 2 (nw'lc') (nwlc') cos {}.

Eliminating w' from these two equations, we obtain

(:2 - -h- )w: = 2 ( :, ) 2 ( 1 + :s )(1 - cos fr).

Taking into account that v ~ c' and W s ~ w, we can omit the cor­
responding inflllitesimais in the latter expression and thus get the
sought formula.

8.44. (a) At thermal equilibrium the ratio of the number of atoms
N 2 on the upper level to N 1 on the lower one is equal (in accordance
with the Boltzmann distribution)

N 21N1 = e-!'!.ElkT; N 2 = NI(1 + e!'!.E/hT),

where N = N 1 + N 2 is the total number of atoms. The internal
energy of the system is E = N 2 liE, whence

iJE ( f1E '2 e!'!.E/kT

Ci=iiT=Nk "kT) (1+e!'!.E/hT)2-

(b) Designate kTI liE = x. From the condition aCilax = 0, we
obtain the equation e1/ x (1 - 2x) = 1 + 2x. Its root is found either
from its graph or by inspection: X o ::::::: 0.42.

(c) C/ max = ,0.44 ::::::: 2.103 •
CIat 2.34.10-4

9.1. The number of states within the interval of momenta
(p, p + dp) is

dZ _ 4np 2 dp _ V 2d
P - f1px f1Py f1pz - 2n2/i3 p p.

Since each phase element of volume lip% lipy lipz can contain two
electrons with antiparallel spins, the number of electrons in the
given interval of momenta is n (P) dp = 2dZpo Transforming to
kinetic energies, we obtain

V V'2m 3 V-
n(T)dT= n 2/iS TdT.

9 2 T - /i2 (3 2 2/3 -- 5 5 V•• max - 2m n n) -. e .

9.3. (a) (3/5)Tmax; (b) 31.2 kJ Icm3
•

9.4. 0.65.
9.5. 3.24.104 K.
9.6. liE = 2n2n2ImV(3n2n)1/3 = 1.8.10-22 eV.
9.7. By 0.1%.
9.8. n (v) dv = n (mlnli)3v2 dv; (a) (3/4)vm ; (b) 3/2vm •

9.9. 1.6.106 and 1.2.106 m/s.
9.11. n (A.) dA. = 8nA. -4 dA..

912 () C --~R kT. ~-~. kT -76.10-3 Here we. . a eI - 2 Efo' CIat - 6 Efo - • •

took into account that the given temperature exceeds the Debye
temperature, so that CIat = 3R (Dulong and Petit's law).

(b) From the nature of the temperature dependence of lattice heat
capacity, it follows that the indicated heat capacities become equal
at low temperatures. Making use of Eq. (8.6), we obtain T =
= (5k83124n2E fO)1/2 = 1.7 K.

9.13. The number of free electrons with velocities (v, v + dv)
falling per 1 s per 1 cm2 of metallic surface at the angles (fr, {} + d{})
to the surface's normal is

2n sin it dit
t'lv = n (v) dv 4n v cos fr.

Multiplying this expression by the momentum transferred to the
wall of metal on reflection of each electron (2mv cos (}) and integrat­
ing, we get

r 1'12 5/3P = J 2mv cos fr dv = 15n2m (3n 2n) ::::::: 5 GPa

The integration is performed with respect to fr in the interval from 0
to nl2 and with respect to v from 0 to Vmax '

n (u) du n (E) dE Th f .9.14. (a) n(v)dv~= 4 2d dv= 4 2d dv. e ollowmg der-nu u nu u
i vat ion is obvious.

(b) n (v x) dvx = 2 (m/2nn)3 dvx \ dv y dv z = 2n (mI2nn)3 (v;" - v~) X

X dvx. The integration is conve'nient to perform in polar coordi­

nates dv y dv z = Pdp dip, where p = -Vv~ + v; (with p going from 0

1/ 2 2)to Pm = , Vm-Vx .
9.15. Orient the x axis along the normal of the contact surface

and write the conditions which the electrons passing from one metal
into the other must satisfy:

1.92 13-0339 193
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9.22. Since mx = -eE, where E = -4nP = 4nnex, then

(2)

(1)

00

n e = \ n (E) dE = 2 ( ;'Jlk~ ) 3/2 e(ErEgl/hT,
E

g
"

n e = no [1 - f (0)] ~ e-Ej/kT.

Multiplying Eqs. (1) and (2), we obtain

n~ = 2no (mkTI2nn2)3/2 e-Eg/hT ,

whence follows the formula given in the problem.
(h) From the comparison of Eqs. (1) and (2), we get

E = ~ E -~ 1 [..3.- ( mkT \3/2J
~, 2 g 2 n no 2'Jlh2) .

Wo = V 4nne21m = 1.6.1016 S-I; e = nw ~ 11 eV.

9.23. Since mx = eEo cos wt, then x = -(eEolmw 2 ) cos wt. Tak­
ing into account that the electric polarization P = nex, we obtain:

s= 1+4n~= 11- 4'Jlne
2
/m = 1 _ ((i)O \)2

E (i)2 (i)'

where Wo is the electronic plasma oscillation frequency.
A metal is transparent to light if its refractive index n = Vi"

is real (oth 9rwise the reflection of light is observed). Henr':),

fo<~2rr~V ml4nne2 = 0.21.
9.24. When v electrons (v is considerably less than the total

number of free electrons) are promoted to non-occupied levels, their
kinetic energy increases by v2 t::.E, where t:.E is the interval betw'een

the Fermi level lies in the middle of the forbidden band. Hence;

n e = nil. = 2 (mkTI2nn2)3/2 e-AEo/2hT,

where t::.E o is the width of the forbidden band.
9.19. (a) Counting the energy values from the level of donor atoms,

we find the concentration of conduction electrons:

It is seen from here that at T -+ 0 E J = Eg 12, i.e. the Fermi level
lies in the middle between the level of donor atoms and the bottom
of the conduction band.

9.20. 2.6.10-14 s, 3.1.10-6 cm, 46 cm2/(V· s).

9.21. n = V1+ VIT = 1.02, where V = T max -+- A, A is the work
function.

where Egis the level corresponding to the bottom of the conduction
band. On the other hand,

(1)

00

ne= ~ n(E)dE=2( ;:~ r/2
/ErEgl/hT,

E g

where Egis the level corresponding to the bottom of the conduction
band. On the other hand, the hole concentration is

o
I' ( mkT )3/2 -E j/kT

nh = J /hgh dE = 2 2nh2 e ,
-00

Here we took into account that according to Eq. (1) v~ dv' = V x dv
and that E' - E j = E + A and kT <t: A. Write Eq. (2) in spherical
coordinates (v x = v cos {lo, dv = v2 sin {lo dft dv dcp) and integrate
with respect to cP from 0 to 2n and with respect to {lo from 0 to n12.

9.17. (a) 2kT; (b) j= ;:2~23 T2 e-A/kT; (c) 4.1 eV.

9.18. Let us count the energy values off the top of the valence
band. Ignoring unity in the denominator of the Fermi-Dirac function,
we obtain the following free electron concentration

where the primes mark the electronic velocity components inside
the metal; V is the potential barrier at the metal's boundary (E j+A).
The number of electrons leaving 1 cm2 of the metallic surface per 1 s
with velocities (v, v + dv) is

( m)3 v~dv'
dv = v~n (v') dv' = 2 2~" -~-i;-;--=-c-;;:-;;

,,/0 1+ /E' -Efl/kT

= 2 ( 2:h ) 3 e-(A+El/kTvx dv.

where cP is the potential energy of free electrons. The number of
electrons falling per 1 s per 1 cm2 of contact surface is

dV I = vx1n (VI) dVI; dV2 = vX2 n (v2) dv 2•

At dynamic equilibrium dV I = dv 2 , and since according to Eq. (1)
VXI dV I = V X2 dv 2, then n (VI) = n (v2). Consequently, E I - E jl =
=E2 -Ej2· Since E I +CPI=E2 + CP2' we get En + CPI=
= E j2 + CP2'

9.16. Orient the x axis along the normal of metallic surface and
write the conditions which the electrons leaving the metal must
satisfy:

h (E-E )/11.1' V2m 3 ...f--were fh=1-fe=e j and ghdE=ge dE = n2h3 V --EdE.

Since n e = nil., E j -' E g = - E j and E j = E g12, that is
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the neighbouring levels (see the solution of Problem 9.6). On transi­
tion of the next electron, the kinetic energy increases by 2v !'-..E, and
the magnetic energy decreases by 21lB, where Il is the magnetic
moment of the electron. From the equation 2v !'-..E = 21lB, we find v,
then the total magnetic moment of unpaired electrons 1 = 2vll
and panmagnetic susceptibility x:

X= J..-.. = mft2 (3n 2n)1 /3 = 6.10-7
B n 2n2 •

9 2~ 1 dp !1Eo nne 0 047 K-l. a. a=p'(fT= -- 2kT2 = - AkT2::::::::;- • ,

where p --- e6.Eo/2hT; !'-..Eo is the width of the forbidden band.
2kT T,

9.26. E = 1 2 In 11 = 0.34 eV.
T 2-T 1

9.27. 1.2 and 0.06 eV.
9.28. !'-..ala = 1 - en (b e + bh) p = 0.15; n = 2 (mkTI2nh)S/2 e-6.E/kT.

9.29... = t/ln [(P-Pl) P2] = 0.010 s.
(p- P2) PI

9.30. 0.10 eV.
9.31. (a) 1.0.1015 cm-3 ; 3.7.103 cm 2/(V·s); (h) from the conduc­

tivity formula a = ne2..lm, where .. = (11.)1 (v), we obtain

(A) ~~!..!i V8mkTIn = 2.3.10-5 cm.
ep

9.32. R = lpVldBU = 1.4.10-17 CGSE unit; 5.1015 cm-3 ; 5x
X 102 cm2/(V ·s).

9.33. In the presence of current, both electrons and holes are
deflected by a magnetic field in the same direction. At dynamic equi­
librium their flux densities in the transverse direction are equal:

(1 )

where u are the transverse velocities of directional motion of charge

carriers. As u = bEl =..!!... (!L + eEJJ, where b is the mobility,
e

!L is the Lorentz force, and E l- is the transverse electric field strength,
Eq. (1) can be rewritten as

nebe ( !...- veB - eE.L ) = nhbh (.!!.... vhB +eE.L) ,, e . c

where u = bE, E is the longitudinal electric field strength. Finding
the ratio El-IEB, we obtain

E l- E l- 1 neb~-nhb~
R = - = --= - -;---;--,----,-.:.;:,,-

jB crEB ee (nebe+nhbh)2

9.34. be - bh = eEl-IEB = 2.0.103 cm2/(V·s).
9.35. (a) 1 : 4.4; (h) 0.32.
10.t. 1.5.1014 g/cm3 ; 8.7.1037 N/cm3 ; 7.1018•

10.2. 1.2.10-12 cm.

t96

10.3. 4.5.10-13 em.
10.4. 1 a.m. u. == 1.00032 of old unit; decreased by a factor of

1.00032.
10.5. The atomic percentage is 1.11 %; the mass percentage is

1.2%.
10.6. 1.007825, 2.014102, and 15.994915 a.m.u.
10.7. (a) 8Be, ElJ = 56.5 MeV; (b) 5.33, 8.60, 8.55, and 7.87 MeV.
10.8. (a) 6.76 and 7.34 MeV; (h) 14.4 MeV.
10.9. 6.73 MeV.
10.10. 10.56 MeV.
10.11. 7.16 MeV.
10.12. 22.44 MeV.
10.13. !'-..Eb = 6.36 :MeV; !'-..Uc = 6.34 ~reV. The coincidence is

due to the approximate equality of nuclear forces between nucleons.
10.15. 4.1.10-15 m (!'-..E b = 4.84 MeV).
10.16. (a) 341.8 and 904.5 MeV (table values: 342.05 and 915.36);

(h) 8.65 and 7.81 MeV (table values: 8.70 and 7.91); (c) 44.955 and
69.932 a.m.u. (table values: 44.956 and 69.925).

10.17. From the condition dJ1/[NldZ = 0, we obtain Zm =

- 1.97+0~149 A2/" • Calculating Zm from this formula, we ob­

tain 44.9 (47), 54d (50), and 59.5 (55) respeclively, where the
values of Z of the given nuclei are indicated in parentheses. Conse­
quently, the former nucleus ..possesses the positron activity, and the
remaining nuclei, the electron activity.

10.18. 2; 2; 1; 2 and 4.
10.19. 7/2.
10.20. Four components.
10.21. N is equal to the number of different values of the quan­

tum number F, i.e. 2I + 1 or 2J 1 respectively for 1 < J and
1> J. If at different values of J of either term (a) N 1 = N 2 , then
N = 21 + 1; (h) N 1 ==1= N 2 , then N i = 2J; + 1.

10.22. Here the ratio of component intensities is equal to the
ratio of statistical weights of sublevels of the split ted term:

10/6 = (2F 1 + 1)/(2F2 + 1) = (1 + 1)11; 1 = 312.

10.23. The energy of magnetic interaction is E = IlIBo cos (I, J),
where

cos(1 J)= F(F+1)-I(I+1)-J(J+1) .
, 2V1 (1+1)J(J+1)

Since the values of 1 and J are the same for all sublevels, we find
that E ex [F (F + 1) - 1 (1 + 1) - J (J + 1)], Thus, the interval
between neighbouring sublevels 6EF , F+1 ex F + 1.

10.24. It is easy to notice that the number of the components of
the given term is determined by the expression 2J + 1. It can be
thus concluded that 1> 3/2. From the rule of intervals, we have
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11.4. 9.10-7•

11.5. 0.80.10-8 s-\ 4.0 and 2.8 years.
11.6. 4.1.103 years.
11.7. 4 Ci.
11.8. 2.1015 nuclei.
11.9. 0.06 Ci/g.
11.10. 0.05 mg.
11.11. V = (Ala) e-f..t = 6 1.
11.12. Plot the logarithmic count rate vs. time. Extrapolating

the rectilinear section corresponding to the longer-life component to
t = 0, we find the difference curve (in this case, the straight line).
The latter corresponds to the other component. From the slopes of
the straight lines, we obtain T 1 = 10 hours, T 2 = 1.0 hour;
N10 : N 20 = 2 : 1.

11.13. (a) The accumulation rate of radionuclide A 2 is defined by
the equation

Ii 2 = "'INl - "'2N 2' and Ii 2: + "'2N 2 = "'INI0 e-f..1
t
•

With the initial condition N 2 (0) = 0, its solution' takes the form

N 2 (t)=N iO I.. "'\ ,(e-f.. l t_e-f..2t).
,,' 2- 1

(b) t m = In ("'d"'2) • (c) The ratio N liN 2 remains constant provided
1.. 1 -"'2 ,

both N 1 and N 2 depend on time alike. This is possible only when
e-f..2 t q::: e-f..1 t • The latter inequality is satisfied if "'I is appreciably
less than "'2 and the time interval t exceeds considerably the mean
lifetime of the more stable nuclide.

11.14. 4.5.109 years.

11.15. A2max = 1.. 2 (e-~'1tm - e-f..2t m ) 0.7, where t m
A 10 A.~ - 1.. 1

nn (l..dI..2)
= 1.. 1 -1..2 •

11.16. (a) The stable nuclide accumulates according to the

equation N3 = "'2N 2' Substituting into this equation the expres­
sion for N 2 (t) from the solution of Problem 11.13 and integrating
the obtained relation with respect to t, we obtain

N I.. I.. (1 e -f..1t 1 e -f..2 t )3 _ 1 2 - - -07
N

10
- 1..

2
-1..

1
1..

1
).,2 -.,

(b) ~=e-f..lt+ A. 1..\ (e-f..1t_e-h2t) =0.55, Le. the activity
Ao 2- 1

decreases 1.8 times.

(
e-f..1t e-f..2t e-f..3t)

11.17. N 3 (t)=N lO"'t"'2 ~A. ~A. +~1.. ~A. +~A. ~A. ,where
12 13 21 23 31 32

~"'ilt = "'i - "'k'
11.18. About 0.3 kg.

t
:j,
iii:

81/2 I Pl/2 I P3/25=1-}, 1
J=I+ 2

fLn -1.91 1. 91 -1.91 0.64 -1.91
1+2 j

fLp j +2.29 (1-~)' 2.79 -0.26 3.79
1+1 J

4 : 5 : 6 = (F + 1) : (F + 2) : (F + 3), where F = I - J. Hence,
I = 9/2. The given line splits into six components.

10.25. 1 + 3 + 5 + 7 = 16.
10.26. 2 and 5/2.
10.27. w = gseB/2mc, gs is the gyromagnetic ratio. 1.76.1010

,

2.68.107 , and 1.83.107 s-\ respectively.
10.28. gs = 2nnvo//1NB = 0.34; ft = gJ/1N = 0.85/1N·
10.29. /1 = 2nnvIlB, whence ftLi = 3.26/1N' /1F = 2.62/1N·
10.30. T max = (n2/2m) (3n2n)2/3 ;:::::: 25 MeV, where m is the mass

of the nucleon; n is the concentration of protons (or neutrons) in the
nucleus.

10.31. 1st/21p~/2; 1st/21p~/21Pi/2; 1st/21p~/21Pt/21d;/2'
10.32. 5/2 (+); 1/2 (+); 3/2 (+); 7/2 (-); 3/2 (-).
10.33. From the vector model similar to that shown in Fig. 67,

we have: /1 = /1s cos (s, j) + /1l cos (I, j). Substituting in the latter
equation the following expressions /1s = gsS/1N; /1l = gll/1N;

• j2+l2_S2 • j2_s2_l2 V
cos (8,]) = 2sj ; cos (I, ]) = 2lj , where s = s (s + 1);

1= =V l(l+1); j=Vj(j+1), we obtain

gs+gl ,gs-gl s(s+1)-l(l+1j~
/1~=g)/1N; gr~-2--"'---2-' j(j+1)

ow it remains to substitute S = 1/2 and j = l + 1/2 into the last
xpression.

10.34. In nuclear magnetons:

10.35. For 15/2 /1p~= 0.86/1N; for 17/2 /1p = 5.79/1N' hence j = 7/2.
10.36. (a) 2.79 and -1.91/1N; (b) -1.91 and 0.126/1N (experimen­

tal values: 2.98, -2.13, -1.89, and 0.39).
10.37. In accordance with the nuclear shell model it is natural to

assume that the unpaired proton of the given nucleus is located on
the 2S1/ 2 level. In this case the magnetic moment of the nucleus is
equal to 2.79/1N (see the solution of Problem 10.34). If one assumes
that this proton is located on the next level 1d3/ 2 , the magnetic
moment becomes equal to 0.124/1 N which drastically differs from the
magnitude given in the text of the problem.

11.1. 1 - e- M •

11.3. (a) 0.78 and 0.084; (b) 6.8.10-5 ; 0.31.
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f-tn -1.91 1. 91 -1.91 0.64 -1.91
i+2 j

f-tp j +2.29 (1-~) " 2.79 -0.26 3.79
i+1 J

10.35. For 15/2 !J.p~= 0.86!J. N; for 17/2 !J.P = 5. 79!J. N' hence j = 7/2.
10.36. (a) 2.79 and -1.91!J.N; (b) -1.91 and 0.126!J.N (experimen­

tal values: 2.98, -2.13, -1.89, and 0.39).
10.37. In accordance with the nuclear shell model it is natural to

assume that the unpaired proton of the given nucleus is located on
the 281/ 2 level. In this case the magnetic moment of the nucleus is
equal to 2. 79!J. N (see the solution of Problem 10.34). If one assumes
that this proton is located on the next level 1d3/ 2 , the magnetic
moment becomes equal to 0.124!J. N which drastically differs from the
magnitude given in the text of the problem.

11.1. 1 - e-'M.
11.3. (a) 0.78 and 0.084; (b) 6.8.10-5 ; 0.31.
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11.4. 9.10-7•

11.5. 0.80.10-8 s-1, 4.0 and 2.8 years.
11.6. 4.1.103 years.
11.7. 4 Ci.
11.8. 2.1015 nuclei.
11.9. 0.06 Ci/g.
11.10. 0.05 mg.
11.11. V = (A/a) e- ht = 6 1.
11.12. Plot the logarithmic count rate vs. time. Extrapolating

the rectilinear section corresponding to the longer-life component to
t = 0, we find the difference curve (in this case, the straight line).
The latter corresponds to the other component. From the slopes of
the straight lines, we obtain T 1 = 10 hours, T 2 = 1.0 hour;
N10 : N 20 = 2 : 1.

11.13. (a) The accumulation rate of radionuclide A 2 is defined by
the equation

N 2 = A1N 1 - A2N 2, and N2: + A2N 2 = A1N 10 e- A1t •

With the initial condition N 2 (0) = 0, its solution" takes the form

N 2 (t)=N lO A. "'\ ,(e-f..1t_e-h2t).
,t' 2- 1

(b) t m = In(A.dA.2) • (c) The ratio N 1/N 2 remains constant provided
1,1 - 1,2 ,

both N 1 and N 2 depend on time alike. This is possible only when
e-f..2 t ~ e-h1t. The latter inequality is satisfied if Al is appreciably
less than A

2
and the time interval t exceeds considerably the mean

lifetime of the more stable nuclide.
11.14. 4.5.109 years.

11.15. A2max = 1,2 (e-I'1tm _ e-f..2tm) 0.7, where tm
A10 A.,. - 1,1

nn (1,1/1,2)

= 1,1-1,2 •

11.16. (a) The stable nuclide accumulates according to the

equation N3 = A2N 2' Substituting into this equation the expres­
sion for N 2 (t) from the solution of Problem 11.13 and integrating
the obtained relation with respect to t, we obtain

N A. A. (1 e-f..1t 1_e-f..2t )
_3__ 1 2 - =0.7.
N 10 - 1,2 - 1,1 1,1 A2

(b) ~=e-f..1t+ 1,2 (e-h1t_e-h2t) =0.55, i.e. the activity
Ao A2 -AI

decreases 1.8 times.

(
e-f..1t e-h2t e-f..3t)

11.17. N 3 (t) = N lOA/'A2 ~A. ~A. + ~A. ~A. + ~A. !1A. ,where
12 13 21 23 31 32

L1AiI~ = Ai - f..k·

11.18. About 0.3 kg.

SI/2 I Pl/2 I PS/2

4 : 5 : 6 = (F + 1) : (F + 2) : (F + 3), where F = I - J. Hence,
I = 9/2. The given line splits into six components.

10.25. 1 + 3 + 5 + 7 = 16.
10.26. 2 and 5/2.
10.27. w=gseB/2mc, gs is the gyromagnetic ratio. 1.76.1010

,

2.68.107 , and 1.83.107 s-1, respectively.
10.28. gs = 2JT}ivo/!J.NB = 0.34; !J. = g.I!J.N = 0. 85 !J.N·
10.29. !J. = 2nnvIlB, whence !J.Li = 3.26!J. N' !J.F = 2.62!J. N'
10.30. T max = (n2/2m) (3n2n)2/3 ~ 25 MeV, where m is the mass

of the nucleon; n is the concentration of protons (or neutrons) in the
nucleus.

10.31. 1st/21Pb; 1st/21p~/21pL2; 1st/21p~/21Pt/21d~/2'
10.32. 5/2 (+); 1/2 (+); 3/2 (+); 7/2 (-); 3/2 (-).
10.33. From the vector model similar to that shown in Fig. 67,

we have: !J.=!J.scos(s, j)+!J.lCOS(J, j). Substituting in the latter
equation the following expressions !J.s = gsS!J.N; !J.l = gll!J.N;

. j2+l2_S2 . j2_s2_l2 V
cos (s,J) = 2sj ; cos (1, ]) c= 2lj , where s = 8 (8 + 1);

1= =V l(l+1); j=Vj(j+1), we obtain

gs+gl ,gs-gl s (s+1)-l (l+1)
!J.=gjj!J.N; gj=-2- 1--2-' j(j+1)

ow it remains to substitute 8 = 1/2 and j = l + 1/2 into the last
xpression.

10.34. In nuclear magnetons:



11.19. (a) The activity of either nuclide equals 10 "",Ci; (b) 0.05
mCi.

11.20. (a) 4.1.1013 ; (b) 2.0.1013•

11.21. (a) 40 days; (b) M = M Te (e-7-.t + 'At - 1) ql'A = 1.0 "",g.

11.22. N dt) = ';.,: (1- e-7-.1t),

N 2 (t)=...!L(1+ ';.,2 e-7-.1t+~_C-7-.2t),
';.,2 ';.,1-';.,2 ';.,2-';.,1

r ';.,2 (1_e-7-.1t) ';.,1 (1_e-7-.2t) ]
N 3 (t)=qL t + ';.,1(';.,1-';.,2) + ';.,2(';.,2-';.,1) •

11.23. A=q(2+2';.,2-';.,le-7-.1t+ ';.,1 e-'-2')=0.4Ci.
';.,1-';.,2 ';.,2-';.,1

11.24. (a) 1.6%; (b) 4.1013•

11.25. Q = T (1 + maiM) = 8.5 MeV; M is the mass of the
daughter nucleus; 1.9%; 3.8.105 m/s.

11.26. (a) Q = NoT (1 + maiM) (1 - e-M ) = 1.6.104 kJ, where
No is the initial number of nuclei; M is the mass of the daughter
nucleus. (b) 0.8 mCL

11.27. 5.40 and 0.82 MeV.
11.28. The energy values: 0, 0.11, 0.24, and 0.31 MeV.
11.29. The energy values: 0, 0.726, 1.673, and 1.797 MeV.
11.30. 29 MeV; 3.6.10-12 em.
11.31. - dU crldr = F = ma v2/r = pf/ma r3 , where PI is the orbital

moment. Integrating this expression and taking into account that

PI=nVl(l+ 1), we get Ucf=n2l(l+1)/2mar2. The sought ratio
. Ucf fi2Z (1+1) 1 6 10-2 R' h 11 d'IS UC = 4 (Z-2) e2maR = .• , IS t e nuc ear ra IUS.

11.32. (a) Introducing the new variable cP in accordance with the
formula cos2 cP = TIU (r), where U (r) is the energy of the Coulomb
interaction and r the distance between the a-particle and the daugh-
ter nucleus, we obtain after integration: -

D = exp [ n VT (2cpo - sin 2cpo) ] '

where CPo corresponds to the height of the Coulomb barrier The
following derivation is obvious.

(b) 3.4 : 1.
11.33. 'Aa = 1l'r (1 + N ./Na) = 2.107 S-I.
11.34. r" = ti'AaN "INa = 0.9.10-4 eV.
11.35. 0.78 MeV.

_ { M p-MD in ~--decay and K-capture;
11.36. Q - M M 2' . d

p- D- me III posItron ecay.
11.37. (a) 6.0189; (b) 21.99444 a.m.u.
11.38. (a) impossible; (b) possible; (c) possible.
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11.39. 1.71 MeV, TN = Q (Q + 2mec2)/2Mc2 = 78.5 eV, Q is
the decay energy.

~~-----=--
11.40. P~~ V Q(Q+2mecZ)!c=0.94 MeV/c; Q is the decay energy_

11.41. (a) 0.97 MeV and 94 eV; (b) 0.32 and 0.65 MeV.
11.42. {t = :n;-arccos (Pelpv) = 110°, Pelpv = VT (T + 2mc2 )/((J-

-T).
11.43. 1.78 MeV.
11.44. 0.78.
11.45. Level energies: 0, 0.84, 2.65, and 2.98 MeV.
11.46. T;::::; Q2/2Mc2 = 9.5 eV; Q is the energy liberated in this

process; M is the mass of the atom; v = 7.0.103 m/s.
11.47. 0.32 MeV.
11.48. T = Q (2nw - Q)/2Mc2 = 6.6 eV; Q is the energy liber-

ated in this process; M is the mass of the atom; 56 eV.
11.49. 0.41 and 1.25 km/s.
11.50. 26 keV.
11.51. 279 keV.
11.52. 145 keV.
11.53. 566 and 161 keV.
11.54. 1.2.105 electrons per second.
11.55. I1nwlnw,,:- EI2Mc2 = 3.6.10-7

; M is the mass of the
nucleus.

11.56. The probability of such a process will be extremely low
because the decrease in the energy of y-quantum (equal to double
energy of the recoil nucleus) is considerably more than the level
width r.

11.57. Vrel = nwlMc = 0.22 km/s; M is the mass of the nucleus.
11.59. r;::::; 2nwvlc = 1.10-5 eV; v is the velocity at which the

ordinate of the line's contour is equal to half the maximum ordinate;
L ;::::; 0.6.10-10 s.

11.60. v = gllc = 6.5.10-5 cm/s.
11.61. The fractional increase in frequency of y-quantum "falling"

from the height l, I1wlw = gl/c2 ~ rlE; whence, lFe ~ 2.8 km,
lzn ~ 4.6 m.

11.62. (a) On radiation of y-quantum the atomic mass decreases
by 8M = nwolc2 , so that its mean kinetic energy, T = (p 2 )/2M,
increases by 8T = (p 2 ) 8MI2M2 = nwo (v2 )/2c2

• Consequently, the
energy of emitted y-quantum is nw = nw o- 8T = nw o (1-- (v2 )/2c2

).

(b) Assuming M (v2 ) = 3kT, express the frequency of the em~tted

y-quantum via the temperature w (T). Then find the fractlO~al

increase in the frequency of y-quantum due to the temperature m-

crement 8T: (8wlwohemp= - 2:c2 8T. The gravitational fre­

quency increment of the y-quantum "falling" from the height 1 is
equal to (8wlw o)gr = gllc2 • From the latter expressions, we find
8T = 2Mgl/3k = 0.9 °C.

11.63. "",' = -0.15""'N; B = 3.3.105 G.
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Fig. 70
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12.4. 0.17 MeV/cm.
12.5. (a) 23 : 1; (h) 2.4 : 1.
12.6. P > 27 kPa.

11.78. N = nll1 - ('t i + 't 2 ) nl = 6.106 electrons per second.
11.79. The electromechanical reader registers a pulse from a

Geiger-Muller counter in the time interval t, t + dt provided no
pulses are fed to the reader in the preceding time interval t - 't, t.
The probability of that event is p = e-Nl:. Hence, the total number
of particles registered by the electromechanical reader is n = NP =
= Ne-Nl:.

11.80. From the condition dn/dN = 0, in which the expression
for n (N) is taken from the solution of the foregoing problem, we
find N = 1!'t; 't = 1/enmax = 8 ms.

11.81. The probability that the pulse from one counter is ac­
companied by the pulse from the other with time separation +'t is
equal to 2'tn2 • Consequently, !!:.n = 2'tnI n 2 •

11.82. N = V!!:.nI2't1'] = 4.105; 1'] is the registration efficiency.

11.83. We have 0.05 =V(nrb + !!:.nb) t/nrt, where nrb =
= nr + !!:.nb; !!:.nb is the number of
coincidences per second caused by
the background; !!:.nb = 2'tn6. Hence,
t = (nr + 4'tn~)/0.052n; = 20 s.

11.84. 1']11']2/(1']1 + 1']2) = 0.03%.
12.1. {lomax = arcsin (me/m a ) = 0.5'.
12.2. The electi'On acquires the mo-

mentum P in the direction perpen­
dicular to the motion direction of the a-particle (Fig. 70).

00 -n/2
_ \ t dt _ \ qe cos {} df}

P - J J. - J r Z{} •

-00 n/2

Taking into account the law of conservation of angular momentum

r 2ft = const = -vb, where the minus sign is due to the fact that

.;., < 0, we obtain

P = 2qe/ub; Te = maq2e2/meb2Ta = 6 eVe

12.3. Consider the layer of thickness dx perpendicular to the
trajectory of a-particle. The number of electrons with aiming pa­
rameter in the interval (b, b + db) is 6n = n dx 2nb db. The energy
transferred by the a-particle to these electrons, 6E = T e 6n, where
Te is the kine~ic energy acquired by each electron. J\fter substitution
of the expreSSIOn for T e (see the answer to the foregomg problem), we
get

00 ~~
~ 2

Pe>eo = 2 J P (8) de = 1- V 2n .f e- x2
/

2 dx = 0.62.
ED 0

11.67. (a) 32%; (h) 4.6%.
11.68. (a) +6 pulses per minute; (h) 28 minutes.
11.69. 50 + 5 pulses per minute.
11.70. Suppose that the radiation produces N r pulses in the

absence of the background. The corresponding relative standard
. deviation is 1']0 = 1/VN;:. In the presence of the background

1']= V N rb +Nbl(Nrb-Nb) = V61Nrbt

for6X:~ = 2Nb' From the requirement 1'] = 1']0' we obtain N rb

11.71. Write the expression for the square of standard deviation
of the count rate of the source investigated and its differential:

0'2 - nrb + nb . 2 d nrb dt nb d
r- trb tb' ar ar = - t~b rb- tg tb'

From the condition for the least error (dar = 0) and the fixed total
time, Le. dtrb + dt b = 0, we get tb/trb = V nb/nrb ~ 1/2.

11.72. tb= nh2tv~ 7min; t b= nrb+V;t,:b% =14min
11 nro-nb 2 r 11 2 (n rb-nb)2 •

. 11.73. The counter is incapable of registering for the time 'tn

In t~e Course of every second. That signifies that 'tnN non-registered
partIcles pass through the counter during that time. Thus, N =
= n + 'tnN, whence N = 3.3.104 particles per minute.

11.74. 0.010 and 9%.

11.75. N r = 1~~~rb 1~~nb = 5.7.102 particles per minute.

11.76. 't=_1_[1_Vr1 n12(nl+n2-n12)J~ n1 +nZ-n12
n12 nlnZ 2nlnZ'

The latter equation is valid for sufficiently small 't when n + n
does not differ much from n

I2
• 1 2

11.77. (a) In this case the recording facility will register all pulses
from the counter, and n = NI(1 + 'tN).

(h) The number of pulses produced in the counter is n
i

=
= IYI(1 + 'tIN). Out of this number the recording facility will
regIster

11.64. !!:.P ~ P (n) !!:.n = 0.08.
11.65. 2.5.102 and 0.8.102•

11.66. Using the Gaussian distribution, we find that for eo = 5.0
pulses per minute and a = V 100, the probability Peo = 0.035;
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12.7. (a) 2.8.104 ; (b) ~1/3.
12.8. 14 mg/cm2.
12.9. 5.5 MeV.
12.10. 8 !-tm.
12.11. 75 !-tm.
12.12. 24 !-tm.
12.13. Since -dE/dx = q2f (v), where f (v) is a function of par­

ticle's velocity, the range is
o
(' dE m

R = - J q2f (v) = "7j2 F (v),
v

where F (v) is the function of the particle's velocity and properties
of the matter. Hence,

R d (v)= md R p (v); Rd(T)= md Rp(mp T).
mp mp md

The range of the deuteron is equal to 4.6 em.
12.14. 42 !-tm (see the solution of the foregoing problem).
12.15. (a) In the C frame, the Rutherford formula takes the form

d ~ (...2!- \2 dQ ~ (~) 2 2Jt sin ,frdft
a . - [!V

2
) 4 sin! (it'/2) ~ mev2 4 sin4 ({}/2) ,

where !-t is the reduced mass, me is the electron mass. Transform this

formula replacing the angular interval ('fr, {i + d:&) with the corre­
sponding interval of kinetic energies of 6-electron (T, T + dT),

taking into account that .fr = n - 2<p; T = ( 4m;m )2 To cos2 <p,
me - -m

where <p is the angle at which the recoil electron moves in the L
frame, m and T are the mass and the kinetic energy of the primary par­
ticle. The first formula follows from the vector diagram of momenta,
the second from the conservation laws of energy and momentum.
A T - 2/2h _ 2Jtq2e 2 dTs 0 - mv and me « m, t en da - m

e
v

2
1'2

(b) N = n Cda (T) ~- 2Jtn
q2

2e
2

(-T
1

- -T1 ), where the inte-J mev th max
gration is performed with respect to T from T th to T max = 2mev2.

12.16. (a) T min = (m a /4me ) T th = 20 MeV; (b) from the con­
dition dN/dv = 0, we obtain T a = (m a /2me ) T th = 64 MeV and
N max = nnq2e2/Tih = 5.1; (c) q = e.

12.17. 2.0 MeV/em; 19 times.
12.18. 114, 62, and 9.8 MeV.
12.19. ~20 MeV.
12.20. ~10 MeV/em.

12.21. From the formula T = Toe-X/lrad, we obtain -f)T/f)x =
= T /lrad' Comparing this expression with the formula for

(8T/f)x)em, we find lrad = 4r~nZ2j~3(:83/Zl/3) ; 360 m; 9.8 and 0.52 em.
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12.22. 1.4 em. .
12.23. Finding out that the energy losses of electrons are pn­

marily of radiation nature, we obtain, using formula (1?6), .r0 =
= 0.11 GeV. Here lrad is determined from the formula gIven m the
solution of Problem 12.21.

12.24. The probability of y-quanta being emitted in the frequency
interval (ro, ro + dro) is equal to dro = nl da. Whence,

o
w = __l _ r d (fiCD) = 6.10-3•

lrad J Jiw
0.9

12.25. 0.36 MeV. . . .
12.26. Finding out that these electrons sustain pri~anly IOnIZa­

tion losses, we use the formula defining the range m aluminium;
0.28 em.

12.27. 0.8 m.
12.28. 0.3 g/cm2.
12.29. 0.2.
12.30. 1.6 MeV.
12.31. 50; 2.4.10-2 and 5.7.10-3 cm.

e' [ Jiw (n
2 -1) ] e' E' I t I12.32. cos ft = U _1 + 2E ~ v ' IS t le to a energy

of the particle. ,t'

12.33. 0.14 MeV and 0.26 GeV; for muons.
12.34. 0.23 MeV.
12.35. 0.2 MeV.
12.36. 3.2 cm.
12.37. 1.7 mm; 6 times.
12.38. 6.5.10-2 ; 5.1 and 4.4.103 em.
12.39. d/d1/ 2 ~ (In n)/ln 2 ~ 10. .
12.40. See Fig. 71, where f..K is the K band absorptIOn edge.
12.41. (a) Fe; (b) Co.
12.42. About 10 !-tm.
12.43. (a) a = (8n/3) r~; (b) 0.3; (c) this numb~r is equal ~o t~e

number of photons scattered within the angular mterval whIch IS
easily found by means of the formula

cot (fJ/2) = (1 + nroolmec2 ) tan 1jJ,

where {} is the scattering angle of the photon and 1jJ is the an?le. at
which the recoil electron moves. In the case of soft X-ray radIatIOn
hroo ~ m ec

2 and tan 1jJ ~ cot ({}/2). Now we can fi?d the angles
'61 and '62 corresponding to 1jJ = n/4 and nl2 and obtam

n/2

'Yl = M =~ r da (ft) = 0.50.
'Ie (J (J \

~;;,o

12.44. alp = 0.4ZIA cm2/g, for both cases alp ~ 0.20 cm2/~; the
linear scattering coefficients are equal to 1.8.10-4 and 2.9·10 cm.
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12.45. 1.17.10-22 cm 2/atom.
12.46. (a) 70 cm 2/g; (b) 8.7 : 1.

7 '--"""i---r--~~._--~----'r-----,

Fig. 71

12.47. Having calculated the mass attenuation coefficient we
find in the tables of the Appendix the corresponding energy ~f 'V­
quanta (0.2 MeV) and then, from its magnitude, the mass absorption
coefficient. Their difference is equal to alp ~ 0.095 cm2/g.

12.48. J = Ae-;tM/4nr2 = 6.103 quantal(cm2.s).
12.49. 1 : 4.7.

- f12d - f11 d
12.50. J = e -e

(fll-fl2)d J o=0.7Jo•
12.51. 2.75 b/atom.
12.52. 1.2.102 b/atom.
12.53. I = 1/~; 1.2.104 ; 14 and 6 em.
12.54. I = d i / 2/ln 2 = 6.5 em.
12.55. I = 1lna, where n is the concentration of nuclei; ltot =

= 1.9 em; lcomp = 2.5 em; lphoto = 1.5 em; lpair = 1.8 em'
1- 1

- 1- 1 + 1- 1 -L 1- 1 'tot - Comp photo I pair'

12.56. Wphoto = Gphoto (1- e-;td) ~ 0.013 where IJ = na
Gtot 'r tot·

12.57. First calculate the total cross-section: 17 b/atom. According
to the graph, _this value corresponds to two energy values of 'V-quanta:
1. 75 or 10.2~ MeV. Respectively: 0.039 or 0.012 cm2/g.

12.58. (a) aT (1- 2e) and aT 8
3
8 (In 2e 1/2); (b) 0.084 cm-1 ;

(c) 0.063cm2/g.
12.59. wpair = apa,r/2atot = 0.28.
12.60. 3.5 mm.
12.61. wpair/wphoto+comp = 1/('Y] - 1) = 0.37.
12.62. Use the invariant E2 - p2C2, where E and p are the total

energy and momentum of the system. Write the invariant in the
Land C frames for the threshold values of energy and momentum of
'V-quantum: (nWth + MC2)2 - (nffith)2 = (M --;- 2m)2c4, whence

20G

f

I'
I

I
I

nffith = 2mc2 (1 + mIM). Here m is the mass of either particle in
the pair.

12.63. A pair is produced provided the energy of 'V-quantum exceed
2mc2

; m is the particle's mass. Obviously, one can always find a
frame in which the energy of the 'V-quantum is less than 2mc2 and the
pair production is therefore impossible. But if this process is impos­
sible in one reference frame, it is impossible in any other ones.

a 2

12.64. T = 1+a mec2 = 0.6 eV, where a = 2me/m p •

12.65. 2.1 MeV.

12.66. P = 2.08\0ge • :;~o = 0.03 Rls, where V is the volume,

Po and To are the normal pressure and temperature.
12.67. The radiation dose rate is the same in both cases: P =

= dEldV = ,;J = 40 mR/h, where,; is the linear absorption coef­
ficient, J is the flux density. The absorbed dose rate is

1 BE 1:1 {35 mrad/h, air
p' = p' 8V = P ~ 39 mrad/h, water.

12.68. (a) D = (1 - e- At ) Pol'}., = 1.3p; '}., is the decay constant;
(b) 1.2 h.

12.69. 1.8 ~Rls."
12.70. 2.5 m. "
12.71. K v = 192 ~ Wi ('G/p)i E l , Rlh, where Wi is the fraction

of 'V-quanta with energy E 7 ,' MeV; ,;/p, cm2/g; (a) 18; (b) 1.3;
(c) 7 R/h.

12.72. P = 2::Z~ arctan ;R = 2.5 ~R!s.

12.73. P=0.25'GAEln[1+(Rlh)21=0.18 Rls.
1 D

12.74. d = -In -D = 2 em; ~ is the lineal' attenuation
fl mp

coefficient.
12.75. Due to spherical symmetry the number of scattered quanta

leaving any elementary solid angle will be counterbalanced by
quanta getting to the given point as a result of scattering from other
solid angles. We can therefore assume that the beam attenuates due

to true absorption only. Thus P = 'G' 4ATJ~ e-'tAr; I1r = 1.7 em.
nr

Here 'G' and,; are the linear attenuation coefficients in air and lead.

12.76. P (S-1) = 1.14.10-3 1:~o e-fl1 = 0.07 S-l. Here,; and
1: p

,;' are the linear absorption coefficients in lead and air, cm -1; ~ is
the linear attenuation coefficient in lead, p is the density of lead,
g/cm3 ; Po is the dose rate, Rls.

12.77. 2.0 m.
12.78. D = INAaTjtlA = 0.09 rad.
12.79. 7.107 particles.
12.80. 0.3 rad = 3 rem.
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208

whp,re l-t/p = 22/!1T~/:nax.

MeV.

13.31. Ignoring the kinetic energy of slow neutrons we find
first the kinetic energy of produced tritium nuclei:

T t = Qmal(ma. + mt) = 2.75 MeV.

209

~n • Then T a. ~ 4.65 MeV.
mn mB

-p ~ Pa.

-(b) p=1.16pt; Pnmax=1.26Pt; 'Tnmax = 13.1 MeV.

14-0339

Pn = P+ Pamnl(mn + mN),

where the plus and minlls signs refer correspondingly to the maximum
and minimum values of neutrons' momentum. Thus. Tn max =
= 5.0 .\leV, Tn min = 2.7 MeV.

13.30. (a) 5.7; 2.9 and 1.5 MeV; (b) the vector diagram of momen­
ta shows that it happens if

Then we use the vector diagram of momenta.
'" - m n(a) P = 1.35 Pt; Pn max = P + ...l- Pt = 1.55Pt ;

mn I rna

Tn max = 19.8 MeV.

13.20. (a) 4.4 MeV; (b) 18.1 MeV; (c) 6.2 MeV; (d) O.
13.21. (a) 1.02 MeV; (b) 3.05 MeV.

1 3
13.22. (a) T Be = slQI = 0.21 MeV; (b) To = 76"/QI = 1.41 MeV.

13.23. 0.68 MeV.

13.24. Tmin = 171 q~2 ~ 2.8 MeV, where R is the sum of radii

of a Li nucleus and an a-particle. This energy is less than the thresh­
old one (Tth = 4.4 MeV). i.e. is insufficient to activate the reaction.

13.25. The total energies of the direct and reverse processes are

equal in the C frame (see Fig. 37) under the condition T = T' +
+ 1Q I, Q being the reaction energy (here Q < 0). Expressing T, T',
and I Q 1 via T. T d. and T th respectively, we obtain; T d =
= (mBlmBe) (T - T th ) = 5.7 MeV.

13.26. p= V 2l-t' (~ Tm +Q), where l-t and Il' are the reduc­

ed masses of particles before and after the reaction.

13.27, p= 0.566pp; 0.18 or 0.9 MeV.
~

13.28. P == 1.95 Pd. From the vector diagram of momenta, we
,kj/

""'" -- m afind Pamax=P+Pd -L ; Tamax =4.7MeV.
ma I ma.

13.29. p= 0.431pa' Fro~ the vector diagram of momenta, it
follows that

12.81. D = (Il/P)J (T>t = 5 rad,

13.1. T = ( 4~m2 )2 To cos2 'fr = 0.7
ml m 2

(epB)2 ( ma ) _ 02 V'13.2. (a) T a =--2- 2+-
2

- - 6.Me,maC md

[
(ma-md)2 J 0 6 M V(b) To. = T d 1 + 4 2 e =. e·mamd COS

13.3. m = mdl(4 cos2 l' - 1) = mdl2, the nucleus of a hydrogen
atom.

13.4. The function is not single-valued if the mass of striking
particle exceeds the mass of the stationary nucleus (the case (c)).
In the cases (a) and (b) 1'max = Jt, in the case (c) ''}m,n =
= arcsin (mdlma) = 30°.

13 5 I1T - 4mlm2 . 2 (A/2) - 0 11l. . Y- (m
1
+m

2
)2 sm v -. v.

13.6. 0.10 MeV.
13.7. 49°.

138 (a) tan 'fr sin {j: ; 'fr ~ 18°; (b) sin it = sin 'fr ('ll
. . . = ma/mLi +cos {}

cos 'fr + V 1- 'll2 sin2'fr), where 'll = malmLi' The minus sign in front

of the radical has no physical meaning: here sin ff cannot be nega­

tive; ff = 73°.
13.9. T' = TI3 = 0.10 MeV; 1'max = arcsin (mplmd) = 30°.
13.10. Q = +17.3 MeV.
13.11. (a) +19.8 MeV; (b) -3.1 MeV; (c) -13.5 MeV;

(d) +1.8 MeV.
13.12. 17.00845 a.m.u.
13.13. Va = 9.3.106 m/s; VLi = 5.3.106 m/s.
13.14. Ignoring the momentum of I'-quantnill, we get T ~

~ (8/9) (nw - I Q D= 115 keV.
13.15. E = nw - (epB)2lmc2 = 2.23 MeV.

4 1
13.16. (a) Q=3Tp-3Td=4.0 MeV;

18 13 4 V-- 1\·1 V(b) Q=-T --T --cos'fr TpT a = -1.2iVe .17 p 17 a 17

13.17. 5.5 MeV.
13.18. (a) 140.8°; (b) 144.5°.
13.19, Two methods of solution of this problem are given below.
1. Write the laws of conservation of energy and momentum for the

threshold value of kinetic energy of the striking particle: Pm =
= Pm+M; Tth = I Q I + T m+M' Solving these equations, we find
the sought expression. 2. In the C frame the threshold value of the

total kinetic energy of interacting particles is Tth = I Q I. But

Tth = Il
V2 = J!:.. Tth • Now the expression for Tth is easily obtained.
2 m



where m is the mass of the nucleon. Thus the maximum spread of
neutron energies

I1T n = + Pnp~/m = + V2TdT~;:::::; + 27 MeV.

13.40. I (170) =J (160) + In + Sn = 0 + 2 ± 1/2 = 5/2, 3/2.
According to the shell model I = 5/2.

13.41. (a) The spin of the. compound nucleus I = sp + I + hi>
and parity P = P pPLi (_1)1. Hence

(b) A system of two a-particles has the positive parity since the
system is described by an even wave function; consequently, P 2a =

= P& (_1)10; = +1, la = 0,2, 4, .... From the law of conserva­
tion of angular momentum la = I, whence I = 0 and 2. Thus, the
reaction can proceed via branch (1) through two states of the com­
pound nucleus: 2+ and O+, provided l = 1. The emission of a dipole
'V-quantum is accompanied with the change of parity and change of
nuclear spin by unity. But inasmuch as the 8Be nucleus possesses the­
spin and parity equal to 0+ in the ground state the emission of the
dipole 'V-quantum occurs from the compound nucleus in the state l­
when l = O. The emission of a quadrupole 'V-quantum involves no'
change.in parity while changing the nuclear spin by 2. That is why
this process proceeds from the state 2+ of the compound nucleus;,
when l = 1.

~ p m
L frame from the formula cos -& d = --;:!-- d ,where P

p md+mn

= V 2ft' (nUl + Q). The sought probability is equal to

1 r . ~ ~ 1-cos ':frd
W = 4n J 2n SIll t'} dt'} = 2 =:= 0.34.

13.39. Suppose p~ and Pn are the momenta of a nucleon arising
from its motion within a deuteron and together with a deuteron.
Then the nucleon defects through the maximum angle El = 118/2
(from the direction of the primary deuteron beam) under condition
that at the stripping moment P~ ---L Pn' Therefore tan El = P'~/Pn =
= V 2T.;jT d' Now we can find T~, the kinetic energy of the internal
motion of nucleon within a deuteron. The emerging neutrons possess
the kinetic energy

T = (Pn+p~)2 ~ ~+ PnP~
n 2 ~ 2 m'
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I P I States of 8Be*

0 2, 1 -1 2-, 1-
1 3, 2, 1, 0 +1 3+, 2+, 1+ 0+,

H*

13.32. From the vector diagram of momenta for the first reaction
find the maximum and minimum values of momenta of tritium nuclei:
3.07p and 2.21p, where p is the momentum of incoming neutr?n.
Then from the vector diagrams of momenta for the second reactIOn
(at maximum and minimum values of triton's momentum) find the
maximum and minimum values of the momentum of the produced
neutron and corresponding values of kinetic energy: 21.8 and 11.0
MeV.

13.33. (a) From the vector diagram of momenta it follows that

sin t'}B max = 1
9
0 L = 0.70; t'}B m"x = 44.5°.

pp

The angle of emission of the neutron may have any value (from 0
to n).

(b) 46.5° d; 29° (H3). ~ . .
13.34. (a) First find the angle -&0 III the C frame corr~spondIllg

to the angle -&0 = n/2 in the L frame. From the vector dIagram of

momenta it follows that cos -&0 = (4/13) Pn/P = 0.46, where Pn is

the neutron's momentum in the L frame, P is the momentum of
reaction products in the C frame. The sought probability

1 r . ~ ~ 1-cOS~o=0.27.
W = 4n J 2n SIll t'} dt'} = 2

(b) 137°.
13.35. From the conservation laws of energy and momentum for

the threshold value of energy of ,,(-quantum, we have

nUlth + M eZ= V M'zer. +(nUl)ih,

where M' is the sum of rest masses of appearing particles. Hence,

M'2_M2 ( IQ I) Q
nUlth = 2M eZ= 1 + 2Mc2 I I .

13.36. Tn ~ mnQ2/2M2e2, where mn a~d M are t~e masses of the
neutron and disintegrating nucleus; Q IS the reactIOn energy. (a)
0.68 keV; (b) 0.58 keV. .

13.37. Using the invariant E2 - p 2e2
, WrIte

(nUl + Me2 )2 - (hUl)2 = [(m1 + m 2) e2 + T'l2,

where T' is the total kinetic energy of the reaction products in the
C frame. Thus,

T' = - (m1 +mz) eZ+VMZer. +2MeZnUl ;:::::; Q+nUl.

Taking into account that J" = p2/2ft', we obtain the sought expres­
sion.

13.38. Resorting to the vector diagram of momenta, find the

angle ~ d in the C frame corresponding to the angle -& d = n/2 in the
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13.42. E = /iro (1 - /iro/2Mc2 ).

313.43. E=Eb +T T p =21.3 MeV, E b is the binding energy

of a proton in 4He nucleus.
10

13.44. T min = 9 E exc = 2.67 MeV.

6 8
13.45. E exc = T TO-T T =0.48 MeV.

19 20 *13.46. T i =2[To-2fE i =2.5 and 1.8 MeV.

1713.47. Tn = 16 (Eexc - E b ) = 0.42; 0.99 and 1.30 MeV. Here E b

is the binding energy of a neutron in a 170 nucleus.
13.48. 16.67; 16.93; 17.49 and 17.71 MeV.
13.49. 2.13; 4.45 and 5.03 MeV.
13.50. J O,84 : J 1,02. 1: 0.8.
13.51. Uab = uarb/r.
13.52. l' = 1'n1'Cf./('tn + 'tCf.) = 0.7.10-20 s.
13.53. l' = 2eluJ = 4.1010 s.
13.54. 4.102 neutronsl(cm2 ·s).
13.55. 3 ..1012 neutrons/s; 1.5.102 kg.
13.56. (a) R = unoVJ = 2.109 s-1, where u is the effective

reaction cross-section, no is Loschmidt's number.
(b) 0.9 mW.

'13.57. U 2 = U 1w21w1 = -0.10 b, where w is the yield of the
reaction.

13.58. U
d = wlnod = 0.05 b, where no is the number of nuclei

in 1 ems.
13.59. 1.8 b.
13.60. 2: 104 b.

13.61. u = _1_ In ad 1-:a;) = 3.9.103 b where l' is the] expo-
IT a2a2

sure time, a1 and a~ is the fractional content of lOB nuclide at the
beginning and by the end of the exposure, a2 is the fractional con­
tent of HB nuclide prior to exposure.
. 13.62. w = 1 - e-noad = 0.8, where no is the number of nuclei
in 1 cms of the target.

13.63. A = ",N = 1~2 JW1' = 41lCi.

I 13.64. As a result of the prolonged exposure, the number of
radioactive nuclei produced per unit time becomes equal to the
number of disintegrating nuclei; w = Ae'\'tIJ ::::::: 1.5 ·10-s.

13.65. u = Ae'At/Jn (1 - e-M ) = 0.02 b, where n is the number
of nuclei per 1 cm2 of the target's surface.

13.66. w = 1.0·10-°; (d) = wlnoL = 0.046 b where no is the
number of nuclei in 1 cm3 of the target, L is the range of a-particles
with the given energy in aluminium.
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13.67. 0.54 b.
. 13.68. (u) = wlnol = 0.10 b, where no is the number of nuclei
I? 1. cm3 of ~he target, l is the thickness of the target within whose
lImIts the gIVen nuclear reaction is feasible l = l - l land l'

h ..' 1 2' 1 aare t e ranges of a-partIcles WIth an energy of 7 MeV and Tth =
= 4.39 MeV, respectively.

13.69. 7.5 mb. See the solution of the foregoing problem.
13.70. d = - (In 0.9)/nu = 1.7 cm; n is the concentration of

Be nuclei.
13.71. The total yield per one particle:

R T

w (T) = \ nou (x) dx = r nou (T)~.• J dT/dxo 0

Differentiating this expression with respect to T, we find

u(T)= n
1

0
f(T) :~ .

13.72. Make use of the following relations' p~2 = 211 1" p~2___ __ __ . 1 rl l' 2-

= 21laT 2' and T 2 = T l + Q, where III and 112 are the reduced masses

~f t~e systems d +,.,d and and n +- SHe, respectively; PI' 1'1 and

P2' T 2 are the momenta and total kinetic energies of interacting
:particles i? the C fram? in the- direct and reverse processes, respect­
Ively. Usmg the detaIled batancing principle, we obtain

2I +1=~~. rna T_
He 2 a

2
mnmHe T+2Q - 2.0, whence I He = 1/2.

13 73 8 mpmBe T-Tth
• • Ut = • T Uz == 2.0 lib.3 ma.mLI r-

13.75. Taking into account that Pv ::::::: /irolc and p~ = 21l (/iro +Q),
we get

3 (i'iw)2
Uz ="2 (i'iw+Q) mnc2 = 3.6 Ilb :

Tn = 2 (hro + Q) = 0.96 MeV.

14.1. T = 2n2n2L2mla 2 = 0.03 eV.
14.2. 1.6.102 S-l; 0.03 IlS '

14.3. f1TIT = 2. 77.lO-zVTev (t),:I:IL) fls/m; f1TIT = 6.2.10-2;
Tmax =13eV.

14.4. Not acceptable.
14.5. 20 m.
14.6. 0.4 and 1.6 eV.
14.7. f1TIT = 2 cot {} f1{}::::::: 5%. Here sin {} = n/i/dV2mT.
14.8. f10 ~ 0.1°.
14.9. T < n 2/i 2/2md2 = 1.8·1O-s eV.
14.10. (a) 5.4 MeV; (b) 6%.
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14.11. 0; 6.4 and 11.2.10-15 m.
14.12. 5.0.10-15 m.
14.13. Consider the neutrons with orbital moment land almmg

parameter b I' The geometric nuclear cross-section can be represented
for them as a ring with mean radius b I' The area of this rifig

S :n 2 2
Ll I=T(b1+ i -b1- i )=(2l+1)n'J;.2.

The highest possible value of l is determined from the condition
b I max :s;;; R, R being the nuclear radius. Hence, lmax ::::::; RI'J;. and

R/t.

S=.~ LlSI ::::::;n(R+'J;.)2; R Au =2.9b.
1=0

14.14. B = fi 2l (l + 1)/2mR2 = 5.3 MeV, where l = 3, m is the
neutron mass, R is the nuclear radius. See the solution of Problem
11.31.

14.15. Under the condition 'J;. ~ R, we have {} oc 7/R = 4.5°,
R being the nuclear radius.

14.16. In this case the interaction of a slow neutron (l = 0) with
a nucleus of target may induce (28 + 1) (21 + 1) different ways of
formation of the compound nucleus (8 is the neutron's spin). Since
the degeneracy (statistical weight) of a state with the given J is equal
to 2J + 1, the probability of formation of this state is

21+1 2J+1 2
g= (2s+1)(21+1) =2(21+1) 3'

14.17. ann = aarn1r; any = aar y/r where aa is the cross-section
of formation of the compound nucleus (see the Breit-Wigner for­
mula).

_ .. iT; f2
14.18. any-aO V T'4(T-To)2+f2'

14.19. 96 b.

14.20. r no/r I' = ann .. i TTo ::::::; 0.006.
any V

14.21. (a) From the condition dan yldT = 0, we get

T:::fit = To [0.6 + V0.16 - 0.05 (r /TO)2].

Whence it is seen that Tmax::::::; To at r ~ To.
(h) 0'0 < amax by 1.8%.
(c) r/T 0 d:- 1.8.
14.22. amin/aO = 0.87 (f/To)2, where a min corresponds to Tmin =

= 0.2To•
14.23. 0.12 eV.

14.25. (a) ann = 4nl\~g (fno/r)2 = 8.103 ( 1 + -} ) b. In this case

only s neutrons interact with nuclei.
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(h) From the formula 0'0 = 4n'J;.~gfno/f, we find the g factor, whence
J = 4.

14.26. annlageom = 4'J;.2g1R2 = 3.5.103
; R is the nuclear radius.

14.27. f no ::::::; aof/4n'J;.~g::::::; 5.10-4 eV.
14.28. T ::::::; aomT0/2nfigfno ::::::; 4.4.10-15 s; m is the neutron mass.

2:n1i2g f nofy
14.29. any (T) = m VT I To I 4(T+ I To I )2+f2 '

where m is the neutron mass; f no corresponds to the energy T =
= ITo \. In the first case any oc T-1/2, in the second case any oc
oc T-5/2.

T-l/2
14.30. Since any oc 4 (T _ T

O
)2 + f2 any is practically propor-

tional to T-1/2, if T is small as compared to the bigger of two
values To or f, and if f n ~ 1 (in this case f is practically indepen­
dent of T). If To < 0, then T must be small as compared to I To I.

f' a' atat-ael , . . .14.31. -f = -= 0 44 = 0.4, where 0' IS the melastlCaa atat - . ael
scattering cross-section, aa is the cross-section of formation of
the compound nucleus.

14.32. 0.40 mm.
14.33. About two times.
14.34. Attenuat~ by a factor of 2.3.
14.35. J = 1 0e-an (r,-r')/4nr 2 = 5 neutrons per cm2 per second,

where n is the concentration ~f carbon nuclei.
14.36. 5 eV. '
14.37. w = 1 - e-an1 = 1.5 % where n is the concentration of

nuclei, 0' is the cross-section for the energy 10 eV (which is defined
through the tabular data: 0' = aovolv).

14.38. w=~(1_e-atatnl)=86%, where at t=a +0' ,,' n is
a tot a na. n,'

the concentration of LiI molecules.
14.39. The decrease in the number of lOB nuclei with time: -dn =

= J nO' dt. After integration, we get n = norJat , where no is the
initial number of nuclei. The fractional decrease in efficiency of the
detector is Llwlw = Llnln = 1 - e-Jat ::::::; J at = 2.3 %.

14.40. From the formula R = IN (a), where J is the neutron
flux and N the number of nuclei per unit area of the target's surface
we obtain '

()
R/N ) a (u) un (u) du a u

(0' v )=--= . . =----L!!.=a«v»).
J ~ un (u) du (u)

where it is taken into account that av = aovo.
14.41. The yield of the reaction is equal to the ratio of the reaction

rate to the neutron flux:

Rna SNa (u) un (u) du
w=-J-= n(u)
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where N is the number of nuclei per sq ·cm of the target. Thus
(v) = 5·10s m/s.

14.42. Taking into account that av = aovo, we obtain the expres­
sion giving the number of reactions per 1 s: R = Naovon, where N
is the number of boron nuclei within the counter's volume; n­
concentration of neutrons. (a) 2.106 cm-s; (h) R = Naovo<P/(v) =
= 2.1010 S-l.

14.43. Use the symbols * and II to mark the quantities relating
to isotropic and parallel neutron fluxes. Then the rate of the nuclear
reaction activated by neutrons falling on 1 cm2 area of the target's
surface at the angles ('I'}o, 'I'}o + d'l'}o) to its normal, is dR* = dJ*anl!cos 'I'},
where a is the reaction cross-section, n is the concentration of nuclei
in the target, I is the thickness of the target, dJ* is the number of neu­
trons falling on 1 cm2 area of the target in the angular interval ('I'), 'I'} +

. d'l'}o). Since dJ* = a cos 'I'}o·2n sin 'I'}o d'l'}o, where a is the constant de-

termined from the condition of the problem: J II = J * = 2JdJ* ('I'}o) =
r

= 2na, then R* = J dR* ('I'}o) = 2J II anI = 2R II •

14 44 _In (No/N) - 24 d• • 't - - ays.crovon
14.45. (a) Amax = <!laNa = 1.5 !-lCi; NmaxlNo = <PaIA=

= 4.10-10 , where No is the number of atoms in the sample;

(h) t= - i In (1- A~ax)=2T=30 hours.

14.46. I1t = ! In q-~ = 1. 7 days; q -- <Pan; n is the number
IV q-T)

of atoms in 1 g of the foil.
14.47. A = <PN [O.69a 1 (1 - e-A,t) + 0.31a2 (1 - e-A,t)l =

= 0.2 Ci/g, where N is the number of atoms in 1 g of copper, aI' AI'
and a2 , A2 are the activation cross-sections and decay constants of
6SCU and 65CU respectively.

14.48. <P = Ae'J..tlaNo (1 - rAt) = 3.107 cm-2 ·s-1; where No is
the number of nuclei in the foil.

14.49. n = AN/~Noaovo (1 - rA't") = 0.7.105 cm-s.
14.50. The saturation activity of the naked foil is A = AT + AUT'

where AT and AUT are the saturation activities for thermal and above­
thermal neutrons. Since Red = A/AuT' then

A '1 - Ncrovon - 8 C'I
Sat = AUT = RCd -1 - RCd- 1 - I.t 1 g,

where N is the number of nuclei in 1 g of the foil.
14.51. (a) rJ = 4%/(1 +%)2; correspondingly 0.89, 0.284, and

0.0167; (h) rJ= (1;:)2 [1+%sin2~-cosit-V1-%2sin2it]=0.127;

2/3 and 0.87. Here %= 11A, A being the mass number of station­
ary nucleus.
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".,

1+A2+2A cos {l-14.52. (a) T = To; (h) the fraction of neutrons
(1+A)2 - -scatterend into the angular interval (it, it + dit) is drJ =

= 1/2 sin t} d~. These neutrons possess energies lying in the
interval dT that can be found from the formula given in the

1J~l
o aTo To T

Fig. 72

foregoing item (a). Thus, d'l']= (;~/)2 dT (see Fig. 72), where
o

a = (~+~)2.
n

14.53. (T)= Jh'({}) drJ(-fr)= (~t~~2 T o=0.68 MeV, whereT(it),
o

and d'l'] (it) are the expressions cited in the solution of the fore­
going problem.

14.54. 'Y] = (6A - A 2 - 1)/8A = 0.44; A is the mass numberlof
the nucleus.

14.55. (a) sin 2'1') d'l'}o; (h) 0.25; (c) 45°.
14.56. (a) From the vector diagram of momenta (see Fig. 3),

we find for the triangle ABO:

sin (~-{l-) Pm '1 - A
sin {l- -. A+1' where P = A+1 Pm'

P

The remaining part of the proof is obvious.
(h) The fraction of neutrons scattered into the angular interval

(~1' ~2) in the C frame is

rJ = ~ Jsin -fr d~ = +(cos .frt - cos {}2).

- -In the considered case 'I'}o2 = n, and the angle 'I'}o1 is related to the
angle 'I'}o1 as shown in the condition of the problem. Thus, rJ = (A ­
-1)/2A ~ 0.45.

(c) According to the condition (cos it) = +Jcos it sin ~ d-fr.

ReplElcing cos it by the expression from the text of the problem
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.and substituting x = 1+ A2 + 2A cos:fr, we obtain the sought re­
sult after integration.

14.57. (cos 'l'tBeO) = ( ~s Be ) (COS 'l'tBe) + (~~sO ) (COS 'l'tO)=0.06.
~s BeO s BeO

14.58. (a) According to the definition, ~ = <In ~ ) =
= j In ~ d'll (1'), where d'll is the probability that the energy

of the neutron after its single scattering falls within the interval
(1', l' +dT). Replacing d'll with the expression given in the
solution of Problem 14.52 and integrating with respect to l' from
aTo to To, we obtain the sought formula. When A» 1, ~;:::;; 21A.

(b) In graphite 0.158: in heavy water

(~) = £D~sD+£O~sO =0.6.
~s tot

14.59. z = +In ~ ; 2.2.103 ; 1.2.102 and 31.

14.60. The neutron moderated down to velocity v experiences
v dtlAs collisions per time interval dt. If the mean logarithmic

v dt
loss of neutron's energy equals ~, then -d In l' =~~ ;

t = A. s V2m ( 1 __~ ) = 5.10-5 •

£ VT t VTo

- In (To/Tt) _ 2 6 102 2· L - -.,r- -16
14.61.'t-3£~~(_(costt»)-.· cm, -v't- cm.

14.62. Consider a thin spherical layer with radii rand r + dr
with the point source of neutrons at its centre. The number of neu­
trons crossing the given energy level in that layer is equal to 4nr2 drq.
Then

1 •
(r2) = Ii" ) r2q4nr2dr = 6't.

14.63. Since the activity A is proportional to the moderation
density q, In A must be a linear function of r 2• Plotting the graph
{)f this function, we find from the slope of the straight line (-1I4't)
that 't = 3.1.102 cm2 •

14.64. J res = j a(T) ~=0.5ao' where a(T)=aoVTo/T.

14.65. (a) dw = "2. se-"2.sX dx; As = j x dw = 1/"2. s; (b) (x2) =

= 2/"2.; = 13 cm2 •

14.66. 't = Aalv = 1lv2: a = 0.015 s; z = aslaa = 1.3.103 •

14.67. (a) I.tr = [2: s (1 - (cos ~»)J-l = 2.8 cm; (b) 55 cm and
33 m.
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14.68. (a) Consider the elementary ring layer (see Fig. 54) of
volume dV whose points are located at the distance r from the area
dS. The number of neutrons scattered in this layer and reaching the
area dS is

dJ = (cD"2. s dV) (dS cos ~/4nr2) e-"2.sr,

where in the first parentheses is the number of scattering collisions
per second in the volume dV; in the second parentheses is the prob­
ability that a neutron after scattering in the volume dV moves
toward the area dS; the exponential function describes the prob­
ability that a neutron covers the distance r without collisions.
Thus,

J = i+cD"2. se- "2."r sin'l't cos 'I't d'l't dr = ~ .

(b) Reasoning as in the foregoing item (a) and taking into account
that in this case cD = cDo + (8cDI8n)0 r cos ~, we obtain

_~ __1_ (~). J =~-1__1_ (~) .
J + - 4 6~s an 0' - 4' 6~s an 0'

where J + and J_ are the number of neutrons crossing the 1 cm2 area
per second in the positive and negative directions of the x axis.

",.' fl" J J 1 (0<1>') IThe resulting neutron ux IS J ,= + - - = - 3~s an 0 . n

the case of anisotropic scattering in the L frame "2. s is replaced
by "2. tr •

14.69. (a) In the case of steady-state distribution the diffusion
equation takes the form: DcD" - "2. acD = O. Its solution is cD (x) =
= aex/L + be-x/L, where L = VD/"2. a • The constants a and bare
found from the boundary conditions: a = 0 for cD must be finite
when x-+ 00. To determine b, consider the plane parallel to the
plane of the source and located at a small distance x from it.
The neutron flux across this plane (see the solution of the fore-

going problem) is j= -D °o~ =D 1e- x / L • When x-+O, j=n.

Thus, b=nLID. Finally, cD (x) = n;; e-x/L.

(b) In this case cD" ++cD' -12cD=0, where L2=DI"2.a. After

the substitution X= rcD, we obtain the equation X" - 12 X= O.

Its solution is x(r) = aer/L+be-r/L, or cD (r)=7er/L++e-r/L. As

in the previous case, a = O. To determine b, surround the source
with a small sphere of radius r and find the neutron flux across
its surface:
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When r~ 0, the total flux 4nr2j -+ n. Thus, b = n,/4nD and

<1> (r) =_n_ e- r/ L •
4nrD

nR2L V--
(c) <1> (r > R) = 2D (R+L) e-(r-R)/L, where L = D/"2.a •

114.70. Taking into account that in this case <1> (r) "" - e- r/L
r

(see the solution of the foregoing problem), we get L =

r 2 -rl -1 6
- In (W2/rl) - • m.

14.71. Consider the point source of thermal neutrons. Separate
a thin spherical layer of radii rand r + dr with the source in the
centre. The number of neutrons absorbed in such a layer per second
is dn = <1>"2. a4nr2 dr. If the source intensity is 11" then (r2) =
= 'I r2 dn/n, where dn/n is the probability that the emitted neutron,

having covered the distance r, gets captured in the layer r, r + dr.
While integrating, the expression for <1> (r), given in the solution of
Problem 14.69 (b), should be used.

~ nWn )' n~n-l 1
14.72. w =(1_~)~n-l' (11,)= ="'-' =-- where

n 'L Wn L ~n-l n-~'

the summation is carried out over 11, running from 1 to 00. While
finding the sum in the numerator, we used the relation

1 + 2~ + 3~2 .,. = aa~ (~+ ~2 + ... )= ~ ( 1 ~ ~ ) .

14.73. If none of 11, neutrons, falling on the foil from either side per
. second penetrated it, 211, neutrons would fall on the foil. However,
owing to the multiple reflections from nuclei of water molecules the
number of neutrons crossing the foil per second must exceed 211,.
Suppose w is the probability of a neutron being absorbed while cross­
ing the foil. Then each of the 211, neutrons falling on the foil pene­
trates it with the probability 1-w and reflects back with the prob­
ability ~; therefore, the probability of the secondary fall ofa given
neutron on the foil is ~ (1 - w) and of the third fall ~2 (1 - W)2,
etc. The total number of impacts with allowance made for reflections
in the medium is found to be

A 2n
N=2n[1+~(1-w)+p2(1-w)2... ]= 1-~(1-w).

Taking into account that N/n = 6.9 and w = p daaN A/A, we obtain
~ = 0.8.

14.74. From the solution of Problem 14.68, it follows that the
albedo ~ = JjJ+ = [1 + 2D (d In <1>/811,)0]/[1 - 2D (8 In <1>/811,)01,

D = 3;tr ' where the gradient of In <1> corresponds to the points

lying at the interface between two media. Using this expression.
we get
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(a) ~=(1-2D/L)/(1+2D/L)=0.935, D/L=V aa/3as (1- (cos '6'».
(b) ~ = (1 - a)/(1 + a), where a = 2D (11L + lIR).
15.1. (a) 0.8.1011 kJ, 2.106 kg; (b) 1.0.102 MW; (c) 1.5 kg.
15.2. 3.1018 S-I; 1.1 MW.
15.3. Z2/A > 15.7 - 367A -1.42.
15.4. 45.
15.5. 1.1016 years; 4.5.107 a-decays.
15.6. (a) 196 MeV; (b) 195 MeV.
15.7. Eact = T + E b = 6.2 MeV, where T is the kinetic energy

of a neutron; E b is its binding energy in a 239U nucleus.
15.8. 0.65 and 2.0 MeV.
15.9. 4.1 b.
15.10. 90, 84, and 72 %.
15.11. 2.28, 2.07, and 2.09.
15.12. 1.33 and 1.65.
15.13. Suppose that the neutron flux of density J 0 falls on the

plate. The number of fission neutrons emerging per second in a thin
layer of thickness dx and of an area of 1 cm2 located at the distance x
from the surface, is vJe-nC1aX naf dx, where 11, is the concentration of
nuclei, aa and af are the absorption and fission cross-sections. Inte­
grating this expression with respect to x between 0 and d (the plate's
thickness), and equating the result to J 0' we obtain

d= ",' _1_ ln (1 - ~) =0.20 mm.
nUa VUj

15.14. W=QJo ;~ (1-e-'i:ad)=0.03 W/cm2 , where Q=

= 200 MeV, "2. f and "2. a are the macroscopic fission and absorption
cross-sections .

15.15. v = 1+ ~VBUB = 2.1, where N is the number of nuclei,
puUpu

(J is the absorption cross-section.
15.16. 9.5 %.

. 15.17. The ratio of the number of neutrons of a certain generation
to that of a previous generation is N = 103ki - l = 1.3.105, where i
is the number of generations.

15.18. The number of nuclei fissioned by the end of the nth
generation in the process of the chain reaction is 1 + k + k2 + ...

kn -1 M... + kn = k -1 = m' where M is the mass of fissioned
material and m the mass of the nucleus. Taking into account that
11, = th j, where t is the sought time interval and 1: f the time of
existence of the neutron from its production till its absorption by
a fissionable nucleus, we obtain t = 0.3 ms. When k = 1.01, t ~
~ 0.03 ms.

15.19. Each fission-triggering neutron produces a certain number

of secondary neutrons that is equal to 2
2
.6. f 0.5. < 1,

a ew umts
Le., k < 1.
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8, keY, e being the
~

maximum at T m =

15.21. (a) f = 'l'Ja l +(1-f) a2 = 0.80, where 'll is the fraction
f)a l +(1-f) a 2 + zas

of 235U nuclei in the natural uranium, a1' a2' and a3 are the
absorption cross-sections of 235U, 238U, and carbon; (b) 4.8%.

15.22. 0.74.
15.23. k = ep/'ll = 1·0.744·0.835·1.335 = 0.83.
15.24. 1.0.1012 neutrons/(cm2 .s); 4.6.106 cm-3

•

15.25. The accumulation rate of n-active nuclei with n-decay

constant A is N = q10 - AN, where q is the number of fissions per
second, 10 is the yield of n-active nuclei (of interest to us) per fission
(which is the yield of delayed neutrons per fission). Integrating this
equation with respect to time from 0 to '1', we get the number of
n-active nuclei by the end of the exposure. After the time interval t
following the end of the exposure, the number of these nuclei equals

. qw Aeu
N =- (1 - rAe) e-At ; 10 = . = 6.10-4. Here A = AN,

'A q(1-e-"')

q = Ina j, where n is the number of nuclei in the foil.
15.26. '1'=(v~a)-1::::::::0.7 ms, where v=2200 mis, ~a=

= 6.3.10-3 cm-1.
~W'l;'

15.27. The mean delay time Lh= 2.47+~wt ,= 0.083 s; '1't =

= T)ln 2.
15.28. The increase in the number of neutrons during the lifetime

of one generation is equal to n (k - 1). From the equation dn/dt =
= n (k - 1)1'1', we obtain n = noe\h-l) t/" whence T = 10 s.

15.29. (a) 3.4.108 kJ; (b) 0.9.108 kJ; (c) 2.7.108 kJ. For uranium
0.8.108 kJ.

15.30. About 106 years.
15.31. 2.5.109 kJ.
15.32. Recalling that the C frame for interacting nuclei practically

coincides with the L frame and that the kinetic energy of relative
~ ~

motion T « Q (at 108 K T :::::::: 10 keY and Q is about 10 to 20 MeV),
we obtain: (a) En/Q :::::::: ma/(ma + mn) = 0.8; (b) E n/(Ql + Q2) =

= 0.34.
15.33. 'll = (Q dt + QnLi)/0.2Q dt = 6.4.
15.34. 8 :::::::: e2/R = 7.102 keY.
15.35. (a) Instruction. In the general case in the initial formula

for D one should replace m by the reduced mass It of the interactir:,g

particles, and T by the kinetic energy of their relative motion T.
Then see the solution of Problem 11.32. (b) D :::::::: exp (-31.3/Y8keV);

10-14 and 5.10-5 .

15.36. 3.10-12 and 6.10-4 b.
115.37. W=Tn/Qdd=0.3 W/cm3 ; 8 ex:: 10 keY.

15.38. The reaction rate is proportional to the product nva, where
v is the relative motion velocity of interacting deuterons. In its
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turn, nva ex:: e -T/Sxe- 3 1.3/VT, where T and

plasma temperature. This expression has a
= 6.258 2/ 3 = 10 keY.

15.39. (a) '1' = 1/n (av); 6.106 and 1.103 s; (b) R = -} n2(av);.

correspondingly, 0.8.108 and 5 ·10u cm-3 . S-1; 5.10-5 and 0.3 W /cm3•

15.40. (a) R = -} na (av)dd + ndnt (av)dt; correspondingly, 1,5.108

and 1.1.1012 cm3 ·s-1 ; (b) 2.2·10-' and 2.0 W/cm 3 •

15.41. ntlnd = 1- a, where a =, (av)dd Qdd/(av)dt Qdt. At both
temperatures a« 1, and therefore nt:::::::: nd' WIn = n

2
(aU)dt Qat ,.....

, ax 2(2-~)"""

1 .
:::::::: Tn2 (aV)dt Qdt; correspondlllgly, 4.5.10-3 and 43 W/cm3 • The·

contribution of dd reaction is negligible.
15.42. The problem is reduced to the solution of the equation

8e30/el/S = 3.065.109/103/ 2, where 8, keY; 10, W/cm3 • Solving by
inspection, we find 8 :::::::: 3 keY.

15.43. r = 6aT4/n2 (av) dd Qdd, where a in the numerator is the
Stefan-Boltzmann constant. From the condition dr/d8 = 0 where
8 = kT, we get 8m = 2.5 keY; rrnln = 3.106 km.

15.44. 40 < 8 < i5 keY.
15.45. (a) In the steady-state case, we have the system of two-
t·. 2) 1 2equa IOns. q = nd (av dd +ndnt {av)db ""4 nd (av)dd = ndnt (av)dt. Here

1 5
nt = ""4 nd (av)ddl(av)dt = 4.1012 cm-3 ; q = 4" na (aV)dd = 1 X

X 1012 cm-3 ·s-1 •

(b) 10= ~ na(aV)dd(Qdd+-}Qdt)=24W/cm3 ; nd=1.0.1016 cm-3•
..

15.46. From the equation mex= -eE = -4nne2x, we obtain

roo = Y4nne2/me•
15.47. (a) See the solution of Problem 9.23.
(b) The equation of the wave is E = Eoe-i (wt-hx\ where k =

= 2n/A. When ro < roo, the refractive index n = -V-e = ix and

k = 2nn/Ao = i 2~: ' where Ao is the wavelength of the wave in

vacuum. In this case E = Eor21lxJt.ox cos wt, Le. the standing wave
sets up whose amplitude falls off exponentially.

(c) n e = nc2me/e2'A~ = 5.1012 cm -3.

15.48. N= ~ na(av)ddV=5·10u S-1, where nd=ne==nmec2Ie2'A~.

15.49. Poisson's equation takes the following form, when writ-

ten in spherical coordinates +::2 (rep) = - 4ne (n t - ne). Since

ne=ne+ erp
/
s :::::::: n(1+eep/8); nt=ne- erp

/
e :::::::: n(1-eep/8), the initial



15.60. (a) Proceeding from the basic equation \1p = [jBl/c, we
have -iJplor = jBep/c, where Bep = 21r/cr, IT is the current flowing
inside the cylinder of radius r. Taking into account that j =
= dIrl2nr dr, we get: _r2 dp = IT drlnc2. Integrating this equation
(the left side, by parts) and noting that p (ro) = 0, we find (p) =
= I~/2nc2r~.

(b) As p = 2n8, then 8 = I~2/4c2N = 2 keY.
15.61. (a) The problem is reduced to the integration of the

equation -op/or = jB/c, where p = 2ne, B = 2nrj/c. Besides, it
should be noted that 8 = 12/4c2N. The mean value of n2 is (n2) =

4
= 3" (N/nr~)2.

(b) 1.3.106 A. In calculations one should use the formula Wrad =

= 4.8.10-31 (n2 ) V8keV W/cm3 , where the value of (n2 ) is taken
from the solution of the foregoing point (a). The corresponding tem­
perature is equal to 5 keY.

15.62. Noting that B = 4nIlcl, the concentration of nuclei at
the maximum compression n = 2no (ro/r)2, and B2/8n = 2n8, we
obtain 8 ~ n (rIlclro)2/2no ~ 10 keY.

15.63. t ex r~4na(e)/c2 ex 10-3 s, where e = I~/4c2N = 0.39 keY.
15.64. 0.8 ms.
15.65. At the narrowest point of the filament, where its radius

decreases by M, thl magnetic field grows by liB z = -2B z lir/r,
since the B z field is "frozen" and its magnetic flux does not change.
The intrinsic magnetic field Br induced by the current I also in­
creases by the value of /'1B r = -B r lir/r at that location. The gas­
kinetic pressure. however, does not vary because the plasma is free
to flow out of this region in both directions. To counterbalance the
instability, it is necessary that Ii (B~/8n + p) > Ii (Bj/8n) , whence
B r < V2B z; B z > Y2f/cr = 14 kG.

15.67. Denote the combined stretching force per unit length of the
turn by f. Then 2nRf liR = Ii (LJ2/2c2) + p IiV = 2n2r2 liR, p =
= I2/2nc2r2 (from the equilibrium condition involving the cross-

sectional radius r). Thus, j = (In8~ - ; ) 121c2R. In the consi­

dered case one can disregard the changes in j since R varies insig-

nificantly. Therefore, R = const and t ~ V2a/R = V2nr2aplj =
= O. 7 ~s, where p is the..plasma density.

15.68. In the solution of the foregoing problem, the expression is
found for the stretching force j per unit length of the turn. This
force must be counterbalanced by the Ampere force acting on the
current I and developed by the field B z; when reduced to a unit
length of the turn, it becomes equal to j = IB zlc. Thus, B z =

= (In 8~ _ 1 ) I1cR = 0.11 kG.

15.69. From the condition 2JtR ~ 2JtrBrp/Br' where B r = 2f/cr,
we get I ~ cr2B"j2R = 2 kA.

equation can be written as

l....!:.. (rep) = a 2ep; a 2 = 8nne2/e.
r 8r2

Introducing the new function j = rep, we obta:n the equation f" =

h 1 ·, j -ar i em,....., - e-ar . Thus, ep""'"=a2 j, W ose so utlOn IS ex e , .. 't' r

__ .i- e- r/d , d = 1Ia = Ve/8nne2
•

r
15.50. 1.7.10-3 em; 2.107

•

15.51. a = net,/4T2 = 1.6.10-20 cm2
•

15 52 'I'l' . =V8nne383
/

2 ~ (6.10-3)"; 15.8.
•• mm -- 3/2

15.53. (a) a = ne
2

1
In _2_ = 1.10-18 cm2, 'I'l'mln = e3 V8n n/e ;

8 'frmin / 2 106 -1
(b) lei = 1Inia ~ 10 m; 't'ei = leJvpr = 0.5I1s; Vei = 1 't'ei =' s.

15.54. W= 5·1O-31 nen i V8e W/cm-~. takin
15.55. (a) Integrating the equatlOn dEi = Wei dt and g

3 t 8 - e [1- exp (_antle 3/ 2 )];
into account that E i = "2 niei- we ge i - e e

_ 709.10-13 where n cm-3; t, s; ee, keY. Thus, t ~ 1.6 ms:
a (b) 'The problem is r~duced to the integration of the equatIOn

dE = -Wei dt. It should be noted that E e = ~ n e8 e and d8 i =
_ ~ as 8 + 8

i
= const = 28, where e is t~e mean pl~sma

temp::aeture equal to eeo/2 in our case. Introducmg the varIable

y = y eele, we obtain

83/ 2 r y4 dy = 83
/

2 [1- In y+ 1 _ Y _.i- y3JY = 0.8 ms,
t = ---r;:;- J y2 -1 a.n, 2 y -1 3 Yo

Yo

where a = 7.09.10-13; e, keY; n, cm-3
•

15.56. The Lorentz force acting on 1 cm2 of the cylindrical layer

+ dr is 6p = dfldS = ..!. frBT dr. Noting that B T = 2frlcr, where
r,red' d
I is the electric current flowing inside the cylinder of ra 1U~ r, ::.
hat . = dl 12nr dr, we obtain 6p = I r dlrlnc2r2. Integratmg IS

t IT. nTd noting that the variable r can be replaced by ro, weexpresslOn a
find p = 12/2nc2r~ = B~/8n. 3

15.57. 3.1.1015 cm-3; 10 MPa; 2.7 W/cm.

4 1 T2
15.58. 3" n7· .

'15 59 (a) Fro
1
m the condition that the magnetic pressures devel­

oped'on 'the inside and outside surfaces of the plasma layer are equal,
we have B 2 = B 1 - B 2 and II - 21 2 ,

(b) 11 = 4eroV nne = 5.4.10· A.
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15.

16.1. p=YT(T+2m); 1.7; 1.1 and 1.0 GeV/c.
16.2. Resorting to the invariance of the expression E2 _ p2,

write (T + 2m)2 - p2 = [2 (T + m)]2, where the left-hand side of
the equation refers to the L frame and the right-hand side to the C-frame. Taking into account that p2 = T (T + 2m), we obtain T =
= 2m cV1 + TI2m - 1); P= y mT12; ~c = 11T/(T + 2m).

16.3. From the expression E2 - p2 = inv, we have (T' + 2m)2 ­
- p2 = [2 (T + m)]2; T' = 2T (T + 2m)/m = 2.0.108 GeV.

16.4. (8) T= 11 (m1 + mz)Z + 2mzT - (m1 + mz); (b) p =

• /" m2T (T+2m ) - _ f - 2
= V (ml+m2)2+2~2T; E 1. Z= Y pZ+mt, 2·

16.5. T1.2 = T(T + 2m 2,1)/2 (m1 + m2 + T).
16.6. From the formula for Px and the equality py = py (see-Fig. 41) follows Eq. (16.3) for tan t).

16.7. (a) From the expression for tan t), it follows:

It remains to take into account that plE1 = plEz = ~1, z= ~c =
=YT/(T+2m).

(b) From the formula cot {}1 cot {}z = a, where a = 1+T12m, we

obtain 8 = {}1 + {}z = {}1 + arccot ~{t • From the condition
co 1

{J8/{J{}1 = 0, we find cot {}1 = Vex, and therefore cot {}z = Vex as well.
The angle 8 is thus minimal for the symmetric divergence of the
particles provided their masses are equal: {}1 = {}z = {}mln/2. Thus,

cos (8m1n/2) = 11 1+ T /2m; 8mIn = 53°.
(c) T = 1.37 GeV; T1 = 0.87 GeV; T z = 0.50 GeV.
16.8. From the conservation laws of energy and momentum, we

have: T = T1 + Tz; p; = p~ + pz - 2PPl cos t)l' where T and p
are the kinetic energy and momentum of the striking particle. Taking

into account that p = 11T I(T + 2m1), express cos t)1 in terms of
T l' From the condition d cos t)lldTl = 0, we get the value of T1

corresponding to the maximum value of the angle t)l' Substituting
this value into the expression for cos t)l' we find the sought relation­
ship.

T
_ 2meT (T + 2ml1)

16.9. e- (ml1+ me)2+ 2meT = 2.8 MeV.
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16.10. (a) From the expression for tan,fr "t f II
v't="fi2 sin {} ,1 0 ows that tan {}=

cos :fr-~cE/P = 111- ~; tan (it/2), for piif= ~c. It remains to

take into account that ~c=VT/(T+2m).

(b) Since 0 (t) sin t) dt) = ~ (-&) sin ~ d~ - ~
= 0 (t) d cos {t " ' then 0 (t) =

) --;::; . Usmg the formula of the f " "
d c~ {t oregolllg pOlllt (a),

express cos t) in terms of cos {lo find th d"" -
." ,e envatlve d cos t)/d cos t)

and substitute I! i~to the expression for ;; (~). '
(c) Calculate 0 (t) corresponding to th

3.2 mb/sr. It is obvious now that th e ang~es ~l and t)z; 5.5 and
anisotropic. e scatterlllg m the C frame is

16.~1. (a) From the condition 0 (T) dT = ; (.&) dO .
the kmetic energy of the scatt d -"' where T IS
I' ere proton, dQ IS the solid I

e ement m the C frame, we obtain 0 (T _ - - _ ang e
hand, from the Lorentz transformation) (16 °3)(t}~ dQr IdT. On the other

" ,It ollows that

d~ = -a~ = dE = ~cP _ To
dQ dQ ~2:rtd GOs.fr 2:rt V 1-~~ - 4:rt .

Here we took into account that ~ = 11 T I(T +2) ~ -./_
_ coo m and p = y mT /2

(b) .!:!:..... _ dw dQ 1 0
dT ---=--const H. dR dT To - • ere we took into account that

III the case of isotropic scattering in the C f
number of protons scattered . . rame ~e relative

- IlltO the solId angle dn .' 'd
= dQ/4n. ;:" IS, W=

16.12. COS 8 - 1 [ T (1 -
-"'2;t T+2me +n)2- 1 _ n2]; 8=1200.

16.13. o(E)- au . au oR __ I" -
v -7iE-~ '-- = 2no ({}) U cos {t I an

• v oQ oEl' oE
l"

where ;:"
IS the solid angle element in the C f F

E +A - - rame. rom the formula
E - v pcpl' cos {t oE-

v- ,1- ,we obtain v ~cpl'
" 1-~2 - - P H

c ocos{} V1-~~--2' ere we
took into account th A

at Pc = pl(E + m ) d - - -IV- e e an p=E =E -
= mel 1-~~. Thus, 0 (E ) = 4 -.(~)/ i. v ,,-

16.14. 0 32 G V ( v no. p.

16.15. Using ~he ~~~a~f:n~~I~Vo;2o~ P;obleI? 12.6~).
p, wnte thIS expression
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in the Land C frames for the threshold value of energy of a particle
with mass m: (T m th + m + M)2 - p:n th = (~ mi)2, where p:n th =
= Tm th (T m th + 2m). From this, we find the sought expression.

16.16. (1) 0.20 GeV; (2) 0.14 GeV; (3) 0.78 GeV; (4) 0.91 GeV;
(5) 1.38 GeV; (6) 1.80 GeV; (7) 6mp = 5.63 GeV; (8) 7.84 GeV.

16.17. (a) 1.36 MeV; (b) 197 MeV.
16.18. (a) From the condition that in the C frame the total

energies of both processes have the same value, we can write (using
the invariant E 2

- p2): (ma + mA + Ta )2 - T a (Ta + 2ma ) =
= (mb + m B + T b)2 - T b (T b + 2mb)'

Hence, T b = 1I!A (T a - Ta th)'
1I!B

(b) Tn = nro- m n ( 1 + :;::p )= 50 MeV.

16.19. From the expression for sin 'frmax , where M =
=V2m(T+2m), we find 'frmax ,=10.5°.

16.20. Using the invariant E2 - p2, we obtain M =

=y(mp+mn)2+2mpT; 1.24, 1.51, and 1.69 GeV.
16.21. 19.5 MeV; 193 MeV/c.
16.22. 52.4 MeV; 53 MeV/c.
16.23. EA = mA - (Q + mp + m;t) = 2.8 MeV.

E m~-m~
16.24. tan 'frIL = V v where E v = 2 (m +T )

Tn (T;t +2m11.) ;t 11.

'frIL ~ 10°.
16.25. (a) From the conservation laws of energy and momentum,

we find: sin (8/2) = m;t/2VEI E 2, where E I and E 2 are the energies
of "(-quanta. It is seen from this expression that 8 reaches the mini­
mum value when E I = E 2 = (m;t + T;t)/2 = mit· Hence, 8mln =
= 60°.

(b) At 8 = n, the energy of one "(-quantum is the highest and of

the other the lowest. In this case sin (n/2) = mn/2 -V E1(E - E 1),
where E is the total energy of the pion. Thus, E =

-= ~ [m;t +Tn + -V Tn (T;t + 2m11. )] = 252 and 18.1 MeV.

16.26. (a) T = (mK - 2m11. ) mK/2m 11. == 0.42 GeV; (b) cos 8 =

2T(T+2mK) -1' 8=103°.
- (T+mK)2-4m~ ,

16.27. From the conservation laws of energy and momentum, we

get: m2 = m~+ m~ - 2 rv(m! + p~) (m~+p~) - pr.Pn cos 'fr]. Whence
, m=0.94 GeV (a neutron); Q=O.11 GeV.

16.28. Since 8 =1= n, the decay must have occurred when the
particle was moving. From the conservation laws of energy and

momentum, we obtain: m2= m~+ m~+ 2[Y(m~+ p~) (m~+ p~)­
'-PpPn cos 8]. Whence m = 1115 MeV (a A-hyperon).
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16;29. Instruction. In the C frame, M = E= -(m~+ p2 +
, 2 ~+ y m2 +p2 •

16.30. ~e proceed from the relations PiX = (Pix + ~Ei)rv1- ~2

and P1y = Piy' Noting that prx + Pry = p2 , we obtain the equation
2

f 11 ' Ply + (PlX- GC l)2 ~ ~
o an e Ipse: ---;;;- a2 = 1, where b = P; a = plV1- ~2;

(Xi : Ei~/V 1 ~2 = Ed/b. The focal length is f = y'a2 _ b2=
= p~/V 1-~2. The line segment (X2 = PM-(Xi = PM- f

b
(M - E2) =

_ f ~ .
- b E 2 • It IS easy to see that (Xl;;;;;;: 11 and (X2 ;;;;;;: f, with the sign
"equals" being valid only for the particles with zero rest mass.

16.3~. (a) Pn=V3mn; ,!!=V3./2; p=mnI2. The parameters of
the el~Ipse.:., a = 2b = Pn/V 3; (Xi = (X2 = f = Pn/2; (b) pn = mnV5/2;

~ -:V 5/3; P = (m~ - m~)/2mn = 0.19p". The parameters of the
ellIpse: b=0.19pn; a=O 29p . f-O 21p ',.., f' (c) thO. n, -. ;t, ""'v = , IS case
can be treated as a decay of a particle whose rest mass equals
the"",total energy 9,.£ interacting particles in the C frame: M =
= E = V (2m p)2 +2m pT = V6 m p; Pp = -V3 m p' The parameters
of the ellipse: b = pp/V 6" a = P 12' f = P /2V 3-' ,..,

, p. , P' ,""'1 = (X2 = a;
(d) a: in the previous case, we have: M = E= -V 11 m

p
; Pd=

= V5mE,' The parameters of the ellipse:! b = Pd/V 11; a = 4pd/11;
f=PdV5/11; (Xp=a; (e) b=0.224p p; a=0.275pp;~ !=0.1585p p;
(x" = 0.1685pp-

16.32. (a) About 20°; (b) assuming sin 'l'}max = 1, we obtain
Tnth ;;;;;;: (mn - mft)2/2mIL = 5.5 MeV.

16.33. (a) From the formulas pcos {t = P cos ~-~E and p""'si :Ii: =
p SIll1'l' n U'

= P sin 'fr (see Fig. 41), we have tan {t = sin 1'l' vf="1i2
. cos 1'l'-~ , where we

~ook mto account that E/p = 1, for the neutrino's rest mass
IS zero. The rest of the proof is obvious.

(b) As (J ('fr) sin 'fr d{) = ;(~) sin {} d{}, then (J ('fr) = a(~) d cos:fr

N.ow w.e have o~ly to find the derivative by means of the tO~:~I~
gIven m the pomt (a) of this problem.

(c) w = (1 + ~)/2 = 0.93.
16.34. (a) The narrow maximum belongs to reaction branch (1)

the broad one to reaction branch (2). '
(b) Dis~egarding the momentum of a n--meson, write the laws of

conservatIOn of total energy and momentum for branch (1): m
n

+
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231

~ (2m E,,_m2 )2_4m2 m2
E2. p'2 _ P 11. P 11.

", - 4m p (m p +2E,,)

reactions 1, 3, 5, and 6.

n+

I
n- I nO

(1) pp-+n+n-, (1' ) nn -+ n-n+ · a l 2 2

(2) pp-+nono, (2') ;n-+nono • a2 4

(3) pn -+ n-no, (3') ;p -+ n+nO · as 1 1 2

Tz -1 +1 0 +3/2 -1/2 +1/2 +1/2 -3/2 -1/2

T 1 1 1; 0
:,....

3/2 3/2; 1/2 3/2; 1/2 3/2; 1/2 3/2 3/2; 1/2

....2_ mp
p - m p +2E"

16.42. Forbidden are
16.43. (2) and (6).
16.44. (a) Branch (2) is forbidden in terms of energy; (b) Branch

(1) is forbidden for I tJ.S I = 2.

All of these reactions have three different cross-sections 0'1' 0'2' and
0'3' The cross-sections 0'1 of processes 1 and l' are equal due to the
charge symmetry. Just as equal are the cross-sections 0'2 of processes
2 and 2' and cross-sections 0'3 of processes 3 and 3'.

Let us construct the Table with the numbers a/ for the produced
pions of either sign in the reactions with different cross-sections 0'/.

The total number of pions of either sign is equal to the sum ~a/O'i'

Since the emerging particles are non-polarized, the number of pions

16.46. (a) The system can possess T = 1 or O. 3P: (_1)1+1+T =
= -1, T = 1; 3D: (_1)2+1+1' = -1, T = O.

(b) The system can possess T = 2 or 1 (T = 0 is out since T z =
= +1). 1P: (_1)1+0+T = +1, T = 1, 1D: (_1)2+0+T = +1, T = 2.

(c) Here T = 0, 1, and 2. In 1p states T = 1; in 1D states T = 2
and O.

16.47. (a) Write out all possible reactions of this type:

in the C frame. In accordance with the detailed balancing principle

E~d = Epp , so that M = Epp = VE~p - p2 = V2mp (Tp + 2mp ).

16.41. For the v-quantum, 2s" + 1 = 2 in accordance with two

possible polarizations, so that unp = 2u"p (p ,,/p~)2 = 0.6 mb. Here

P" is found by means of the E2 - p2 invariant and the momentum

p~ in the reverse process is found!from the condition of equality of

total energies in both processes in the C frame (E"p = E:rrp):

+ mp = En + E,,; Pn = p". Whence mn = 1/m~ + E~ + E" ­
- mp = 0.14 GeV.

(c) From the spectral characteristics of v-quanta emerging in the
decay of nO-meson (the broad maximum), it follows that nO-mesons
disintegrate in flight (otherwise, monochromatic v-quanta would be
emitted). From the conservation laws of energy and momentum, it
follows that m,,~VE 1E 2 = 135 MeV.

16.35. If the process goes via the bound state p (in two stages),
then in the reference frame fixed to the p-particle the rest mass of the
p-particle equals the sum of the total energies of the particles into
which it decays:

Eo= E.,++ En-= Ep=Mp; WJP=Pn++Pn_=O.
Using the invariance of the expression E2 - p2 on transition from

the C to L frame, we obtain for the pions: E2 - p2 = il~, where E =
= E 11.+ + E 11.-; P = I P11.+ + p"l·

If the reaction proceeded only via the bound state, we would
obtain the same value of E2 - p2 in any case considered. But if the
reaction goes partially via the bound state, the value of E2 _ p2
varies from case to case and exhibits the maximum which proves
the existence of the resonance, or the bound state.

16.36. Using the E2 - p2 invariant, find the total energy of

interacting particles in the C frame: E=V(mK+m )2+2m p T K.
The total energy of the resonance (the Y*-particle) in the C

frame is Ey==E-En=E-(in+mn) and M y = IE~-p~=
=1.38 GeV, where p~=P~=fn(i\+2mn).The decay energy is
equal to 125 MeV.

16.37. (a) 1"0 = 1" V1- ~2 = 1"mlJ,/(mlJ.+ T) = 2.2 /lS.

(b) 1"0 = l V1- ~2/~C = lm n/ pc = 2.5.10-8 s.
16.38. w = 1 - e-t/~ = 0.43, where t is the flight time, 1" is

the mean lifetime of the moving meson.
16.39. From the condition /lp - all N + (1 - a) /In, where a is

the fraction of time during which the proton possesses the properties

of "the ideal proton", we find a ~ -} . Here we took into account that

/lnl/l N = mp/mn•

, 16.40. 2sn + 1 =!3 app (p;/p;)2 = 1.05; s" = O. The proton's
~ and

;momentum Pp in the C frame is found by means of the E2 _ p2

, invariant on transition from the L to C frame; p2 = mp Tp /2. The

momentum p~ of the pion in the reverse process can be found from
Eq. (16.5), considering this process as a decay of the system with

rest mass M equal to the total energy E~d of the interacting particles
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Whence WI + 3w2 + W" = 4wI + 3w3 -+-- w", or WI + wa = w2•

(e) Write the hypothetical reaction branches for a wO-quasiparticle
decaying into three pions, indicating the probability of each branch,
and compile the corresponding table:

From the condition of absence of polarization for the direct and
reverse processes, we obtain a I + a 3 + a" = 2 (a 2 + as), a1 +
+ a" + as = 2 (a2 + ( 3), whence a3 = as; 0"1 + a" = 2a2 + a3•

(d) Assuming the .-particles to be non-polarized in terms of iso­
topic spin, write all possible decay reactions of this type and compile
the corresponding table for these processes:
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From the condition of absence of polarization in the produced pions,
we obtain WI = WI + 3w2 , whence w 2 = o.

16.48. (a) and (b) f}"T z = 0 and f}"S = 0; thus, the interaction is
strong and f}"T = 0 for it; (c) the isotopic spin T of the system
(:nht +) is equal to 2 and 1. From the generalized Pauli principle, it
follows that (_1)I+s+T = (_1)I+T = +1. According to the law of
conservation of the angular momentum l must be equal to zero.
Whence (-1)T = +1, T = 2. Thus, f}"T = 3/2, f}"T z = 1/2; (d) the
projection of the isotopic spin of the system 2noT z = O. Of all
possible values of isotopic spin (2, 1. and 0), only 0 and 2 are realized,
since according to the generalized Pauli principle (_1)I+O+T = +1.
From the law of conservation of angular momentum, it follows that
I = O. Thus, T must be even, i.e. 0 or 2. Consequently, f}"T is equal
to 1/2 or 3/2.

16.49. From the laws of conservation of parity P and angular­
momentum, we have

PnP d (-1) In = p;. (-1)ln, whence Pn = (-1)ln;

8n + Sd + In = 2sn + In' whence 1 = Sn + Sn' + In-

If the neutrons were produced in the S state (In = 0), they would
possess, according to the Pauli principle, the opposite spins; in this
case, however, the""total moment would be equal to 0, which is
impossible. When In = 1 (p-state) , the momentum conservation law
is satisfied: 1 = 1/2 - 1/2 +.t. The other values of In are not suit­
able. Thus, P n = (-1)l n = -1.

16.50. (a) It follows from the generalized Pauli principle that
(_1)I+o+T = +1. Besides, taking into account the law of conserva­
tion of isotopic spin in strong interactions, we find T = 1 and l
which is equal to 1, 3, 5, ... From the law of conservation of angular­
momentum, we obtain for the spin of p-particle I p = I = 1,3,5, ...
From the experiment, we have I p = 1.

(b) p+ 4- n+ + nO; pO 4- n+ + n-; p- 4- n- + nO. The decay
pO 4- 2no is forbidden because in this case I must be even (the wave
function is symmetric for the particles are indistinguishable); yet l
cannot be even owing to the law of conservation of angular momen­
tum (as it was shown in the solution of the foregoing item (a), the
spin of the p-particle is odd, or, to be more precise, I p = 1).

16.51. (a) qIqIq2; qIq2q2; qlqIq3; q2q2q3; qIq2q3; q2q3q3' (b) qIQ2'

qIq2, qIq3, qIq3, Q2Q3'
(c) The magnetic moments of quarks QI and Q2' of which a neutron

n (QIQ2q2) and proton p (qIQIQ2) are composed, are equal to ~tI =
= ; ~O and ~2 = -+ ~O, where ~o is a certain constant. Allow­

ing for the probability of possible states, we can find the mag­
netic moments of a neutron and proton (in units of ~o):

~n = ; ( - ; - ~ - ; )+ ; (; - -} + -} ) = - ;;
1

3

1

~+

I
:2:- I :2:0

II
n+ I n-

I
nO

1 1 - 1 1 -
- - 2 - - 2
1 1 - - - 2
1 1 - 1 1 -
- - 2 1 1 -

n+ n- nO

(1) 't+ -+ n+nono, 't- -+ n-nOnO WI 1 1 4
(2) 't- -+ n-n+n-, "t'+ ~ J1+:rt-n+ W 2 3 3
(3) 'to -+ nOnono, w3 3
(4) 'to -+ nOn-n+, w4 1 1
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(1) n+p-+:2:+K+, n-n -+ :2:-Ko · °I
(2) nOp-+:2:°K+, nOn -+ ~oKo · °2
(3) nOp -+ ~+Ko, nOn -+ :2:-K+ · °3
(4) n-p -+ ~-K+, n+n -+ ~+KO °4
(5) n-p -+ ~oK0, n+n -+ :2:°K+ · °5

(1) n+n -+ AK+, n-p -+ AKo 01 1
(2) nOp-+AK+, nOn-+AKo °2 2

From the absence of polarization in the reverse processes, we obtain
using this table a1 = 2a2'

. (c) In this case, having written all reactions of this type, we com­
pile the table for the direct and reverse processes:

of either sign must be the same, and therefore

2aI + 1a3 = 2aI + 1a3 = 4a2 + 2a3, or 2aI = 4a2 + a3•

(b) In this case, as one can easily see, the analysis of the direct
reactions does not provide the sought relation. Therefore, having
written all reactions of this type, we compile the table for the reverse
processes:



II =~X (~+~+~)+-.!..(~-~--.!..)=1
rp 3 3 3 3 3 3 3 3 .

Thus, I-tnll-tp = - 213 = 0.667 (cf. the experimental value - 0.685).

17.1. T= ; (:: l2Er/3 = 18 eVe

17.2. Integrate the relativistic equation of motion:

.~ '( mv ) _ eE' v - c1']t EI Th T
dt --r V 1-(V/C)2 - , - V 1+1']2t2 ' 1] = e me. us =

= mc2 cV 1 + 1]21'2-1) = 2.5 MeV; 2.5 m.
4T sin2 ao ( Y ) 0 I17.3. (a) E = --cot ao = .31 kV cm; (b) cot a o=

ex x

=2ylx-cota, a o=103°; E=0.22kV/cm; (e) t2= 2~1'] (1+
.. ;- X2+y2 ) 2T+ V 1 - 1']2 ,whence 1] = y + eE ; hence t = 0.27 or 0.10 I-ts.

17.4. (a) tana= ~~a ,a~6°; 6(; +b) tana=2.5 cm;

(b) tan a = e::
2

( 2; r/2
; a ~ 3°; 6 = ( ~ + b) tan a = 1.2 cm;

eEo ( wa ) ° eEo .)(e) tana=-- 1-cos- , a=7; 0'=--2 (on-slllW't +
mvw v mw

+ b tan a. = 2.8 cm, where v is the initial velocity; W = 2nv;
or = alv.

17.5. elm=2(v2-v1)2l2IV=5.1017 CGSE units/g.

17.6. T p =1.2 MeV; T e=me2(V1+(epBlme2)2-1) = 1.1 MeV.

17.7. sina= ,e:a ,a=7°; 6=.!...(1-1])+~~,where1]=
C r 2mT w v 1']

-:----:---;-=
=V1-(awlv)2; w=eBlme; in the given case (awlv)2« 1, there-

fore 6 = C ~~T ( ; + b ) = 3 cm.

2nv 8 I cP I17.8. (a) ~z=(;)cosa= cm; (b) r=2p sin z = 1.5 cm.

Rere v is the velocity; w = eBlme; p = (vlw) sin a; cp = wl!v cos a.

17.9. (a) ~ = Z2~~2~~1)2 =5.3.1017 CGSE units/g; (b) 32 G.

17.10. T = mc2(V 1+ (eBll2nme2cos a)2-1) = 0.24 MeV.

17.11. (a) T = me2(V 1 + (l2 +n2R2) ( 2~~C2 )2 -1) = 0.32 MeV.

2nn F T (T+2mc2) {335 G for n = 1,
(b) B=-e-Z-V 1+(nnRll)2 = 642 G for n=3. tana=nnRIl,

n = 1, 3, 5, ... ; 25° and 55°.
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2 6x 1 x 0 8'"" I17.1 . (a) M = 2 A= . ;) mm a.m.ll.;

6x T+mc2 3 I
'(b) 6T = T(T+2mc2 ),x=0. mm keV.

6a sin cp _ I17.13. M =~ - 0.62 deg a.m.u.

17.14. (a) A particle moving along a non-circular trajectory

;'- r~2 = -eE (r)lm. Taking into account that r2~ = const =

= r2~o and ~o = v cos alro ~ vlro = wo, for a« 1, we obtain

<p = (rolr)2 wo. Then substitute this expression into the initial
equation of motion.

Introduce the parameter {j « 1, describing the deviation of r from
ro, according to the formula r = ro (1 + (j). After the appropriate
transformations with due regard for {j « 1, we obtain E = Eo (1 -6)

and '6 + 2w2{j = 0, Wo = vlro = VeEolmro where Eo is the field
strength at r = roo The solution of this equation is {j = {jm X
X sin (cp V2), cp = wot, where we took into account that /) (0) = O.
From the; requirement {j ('¥) = 0, we find '¥ = nlV 2.

(b) Consider the two ions leaving the point A (see Fig. 48) along
the normal of the radius vector with velocities v and v (1 + 1]), where
1] «1. If the first "ion moves along the circle of radius ro and its

motion is t?US described as r;.2~ = rov, then for the second ion the

equation r2cp = rov (1 + 1]) is valid. Substituting the latter expres­
sion into the initial equation of motion and taking into account that

r = ro (1 + 6), where {j« 1, we obtain (j + 2w~{j = 2w~1]; /) =

= 1] (1 - cos V 2cp); cp = wot. When cp = n1V2/) = 21], or ~rlro =
= 2~vlv.

17.15. (a) The motion of the particle in the horizontal plane is
described by the equation:

•• v2 ev
r--= --B(r), e>O.

r mc

Here we took into account that B z = -B (r) and also the fact that
in the case of motion along the trajectory which only insignificantly. .
differs from the equilibrium one, r« v and therefore rqJ ~ v.

Introduce the parameter {j ~ 1 describing the deviation of r from.. ..
ro, according to the formula r = ro (1 + 6). Then r = ro/) and
B (r) = Bo (rolr)n ~ B o (1 - n{j), where B o is the induction of the
magnetic field when r = roo Substituting these expressions into the
initial equation of motion and taking into account that /) « 1, we

obtain: 6· + w~ (1 - n) (j = 0; Wo = vlro = eBolmc. The solution

of this equation is /) = /)m Sill (cp V1 - n), cp = wot, where the
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Fig. 73

(Fig. 73). The particle's motion can be visualized as a rotation
angular velocity w along the circle whose centre is displaced

with constant velocity alw; (b) 8alw2
; (c) (x) = a/w.

y~/ \

~
D x

Yt==:¥=:
o x

Y~/C
o V x

a '

~t~l..cC
o x

LXo X

Fig. 74

17.24. From the equations of motion derived in the solution of
the foregoing problem, it follows that the equation y (wt) = °pos­
sesses the roots of two types, one of which depends on the initial
conditions and the order does not. We are interested in the latter
type of roots: wtn = 2nn, n is an integer. For n = 1, we have Xl =

a a
=-2 wt l = 2n -2 •(i) (i)

. .
17.23. x=~rwt_(1_(i)XO)sinwt+ (i)Yo (1-coswt)]; y=

(i) L a x. .
= ;2 [(i)~0 sin wt+ ( 1- (i);o) (1-Coswt)] , where ac~eE!m;

Ul = eB/mc.

(a) X= ;2 (wt-fsin wt); Y= 2:2(1-coswt).

(b) x = ~2 (wt- 2 sin wt); y = 2 -;. (1- cos wt).
(i) (i)

(c) x= ;2 (1 +<Ut-sinwt-coswt); Y= ;2 (1+sinwt-coswt).

(d) x =..!:..-2 (1 +wt- cos wt)~ y = ~ sin wt. The corresponding
(i) (i)

curves (trochoids) are shown in Fig. 74.

'e5+(1-n)w~6=w~'Il; 6= 1 'lln (1-cos<:PV1-n), <:p=wot.

initial condition 6 (0) = °is taken into account. From the require­

ment 6 ('I') = 0, we find 'I' = nIl!1 - n.
(b) The motion of the particle in the vertical plane is described by

. •• ev
the equatIOn: Z= --- B n e > 0. Here we also'took into account thatme •.
r q:>::::::: v. When the deviations z from the symmtry plane are small,

B '" ( aBT ) S· aBT BB aB BT'" -a- z. mce rot B=O, __ = __Z ::::::: - and B =n_o z
z 0 az ar ar T ro '

Consequently, the equation of motion takes the form ~'+ nwgz =
= 0, Wo= VITo = eBolmc. Its solution is z = zm sin (<:p Vii), <:p = wot.
It can be seen that at n = 1/2 both deviations, 6 and z, turn to

zero when <:p = n V2,
. (c) The reasoning is similar to that given in the solution of the

point (b) of the foregoing problem. Assuming ~vlv = 'Il, we obtain

When n = 112, <:p =:, n V2 and 6 = 4 'Il, or ~rlTo = 4~vlv.

17.16. 42 keY.

17.17. (a) v=!:L. eE ; ~-!:L. e
2
E where E= V

r 2 B m - r 2 Jj2' r1 In (R 2 /R 1 )

(b) _ eE. e 26 e2 E
V -73' m= 62+l2 'Jj2'

17.18. B lim =~ .. / 2mV = 005 kG
r§-r~ V e . .

17.19. VUm =~ (I In .!:!..)2 = 4V
me4 r1 .

17.:0. The equations of motion of the particle: ~.= - w;, Ii = a,

z= wx, where a = eElm, <:p = eBlmc. Their solutions are x =.E- sin wt·(i) ,

Y= ~ t2
; Z= ~ (1-coswt).

17.21. tan V ~ ~ =T' where A= 2:~ ;when z« l, Y=

=A : (T)2.
; 17.22: (a) The equations of motion of the particle are: ~'= wy; i/
=a-wx, where w=eBlmc, a=eElm. Theil' solutions arex=~ (wt-(i)2

- sin wt); Iy = ;2 (1- cos wt). This is lthe equation of a cycloid
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•• iJ
r = v " (r'v) = v2r" + vv'r'l =.!!.- . ..!..-. V" •

uZ m 2 0

that r~ = rol(-sl) and r~ = -rO/s 2 (see Fig. 52).

field is absent outside the lens.
17.28. Use the equations given in the introduction to this chapter

(in our case E r = E z = 0).
First of all, express B z and B r in terms of the induction on the

axis. B z differs only slightly from B o' and we can therefore assume
that B z = B o. To determine B r , we proceed as in the solution of
Problem 17.26, when we derived the component E r • This way we

obtain: B = - 2
7

• iJBz ~ - 2
r B o• Now we integ.rate the second

r iJz ~

equation of motion from 0 to z, taking into account that the particle-

leaves the source located on the axis (r~cpo = 0):

z

r2~ = - m: .\ ,r- ( ; B~+ r'Bo)dz = - ~c ~ d ( r
2

:
0

) =
o

23~

2

r;-r~ = - (2~CV )2 ro ) B~ (z) dz.
1

00

(b) When S1=-OO, s2=f2~and 72
2 =+ ~ V 01

/
2 V;dz= 1X

00

X(VOl/2V~L:+ ~ JV03/2V;dz) , whereV;(+ 00)=0, since the
-00

Since ~. = vcp', we obtain cp' = -aBo. Now substitute the latter

expression for ~ into the first equation of motion. Taking into ac­

count that ·r· = v2r", we obtain after simple transformations the·
second equation given in the text of the problem.

17.29. Integrate the equation for r (z) with respect to z between
points 1 and 2 (see Fig. 52), noting that within these limits r ~.

~ ro = const:

Since (according to the condition) there is no field outside the
lens, the integral will keep its value if the limits of integration
are replaced by - 00 and + 00. Besides, taking into account
that r~ = ro/( - 81) and r; = - rOls2' and putting 8 equal to - 00

(with S2 = f), we obtain the sought expression; (a) f =

= 8 V; :~:a; (b) f = 1~~~~V = 0.5 m. Integrating the equation

for cp' (see the foregoing problem), we get: ~cp = nI/V 2elmVlc2 =
= 0.37 rad or 21°.

Fig. 75
E r = _..!..-.. oE z ~..!..-.V".

2 iJz 2 0

Pass from differentiating with re­
spect to time in equations of motion to differentiating with respect to z:

17.25. X= 2:2 (sinwt-wtcoswt); Y= 2:
2

wtsin wt, where a=
eE

= mO. The trajectory has the shape of an unwinding spiral.

2 oE
nr6zE r + nr2 ozz 6z = 0;

17.26. (a) Use the equations m~· = .eEmv2/2 = -eV where
the minus sign in the latter equation is du;'to the fact that °ir < O.
Express E r as a derivative of the potential on the axis with rOespect
to z. To do this, separate a small
imaginary cylinder in the vicinity
of z axis (Fig. 75) with the height
6z and radius r. From Gauss's

theorem, ~ En dS = 0, it follows:
oJ

Now it yemains to take into account that v2 = -2eVolm and vv' =
= -eVo/m.
. (b). The pa~ticle~ with different values of elm will move along the
Ide~tlcal traJec~ones under the same initial conditions since the
trajectory e~uatIOn does not contain the quantity elm. In the second
case the traJector~ als~ increases n-fold, retaining its form, which
foll~ws.from the lmeanty of the equation with respect to r and its
denvatIves.

17.27. (a) Transform the equation given in the foregoing problem
so that it can be easily integrated. To do this, divide all the terms by

Y V o and transfer the last term to the right-hand side: :z (r' Y yo) =

- r V -lj2V" Itt th" .- -"4 0 O' negra e IS equatIOn with respect to z between

the points Zl (1) and Z2 (2), taking into account that within these
limits r ~ ro = const: .

2

(r' YVoh-(r'YVO)1= -~~. JV01/2 V; dz.
1

Inasmuch as the field is practically absent outside the lens the
value of the integral will not change if the integration limit~ are
replaced by -00 and +00. Finally, it should!be taken into account
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17.30. (al T=2n(T+mc2 )/ceB; 7.3.10-10 and 6.6.10-8 s; r=

= y T (T + 2mc2)/eB = 3.5 and 46 em; (h) T = mc2 X

X (V 1 + (erB/mc2)2-1); 2.9 MeV and 5.9 keY.

17.31. (a) E=cD/2nrc=0.32V/em; T=ne<D/c=25MeV; (h) l=

=-S.(V1+a2T2-1)=0.9.f03 km, where a=eE/mc (see the solu­
C(

tion of Problem 17.2) T = eEL = 28 MeV.

17.32. (a) T = mc2(V 1+ (erB m /mc2)2-1) = 0.15 GeV.
T/4

(b) L= r vdt="':"arcsin y 1 ,A=mc2/erBm , where v isJ W 1+A2
o

, found from the formula p =..!- rB. In the case considered here
c

1

A«1, so that arcsin (1+A2fT:::::; ; and L=c/4v=1,5.103 km;

2.4.105 revolutions.
dp e dID h17.33. (a) On the one hand, dt = - eE = 2ncr CIt; on t e

other hand, dp/dt can be found, having differentiated the

relation p =..!- rB with respect to time at r = const. Comparing
c . .

the expression obtained, we find that B = (B)/2. In particular,
this condition will hold with B = (B)/2.

(h) Differentiating the expression pc= erB with respect to time,

where pc = VE2 - m2c4 , we obtain

c dE (dr oB oB dr)
v'(F=e Bar+rfjt+riir'dt .

dE e<D eur (B) . f I f h ISince - = tv = -- v = 2 • It 01 ows rom t e atter ex-dt 2ncr c'

. dr r (B) -2B) r oB h . th
preSSIOn that ar= 2B (1-n) , n = -/i' ar' were n IS e

fall-off index of the field. It can be seen that when 0 < n < 1, the

derivative dr/dt> 0 (the orbital radius grows), provided (8) > 2B,
and vice versa.

17.34. Differentiating the expression E = <1>/2ncr with respect
to r (E is the modulus of the vector of the electric field strength) and

taking into account that f)(P/f)r = 2nrB (r), we obtain f)E/f)r = 0
and f)2E/f)r 2 > O.

17.35. (a) In the frame rotating about the field's axis with the
angular velocity of the electron, the electron experiences the centri­
fugal force of inertia in addition to the Lorentz force. The resultant
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force f (r) = m.l·~ - -'-'- uS (r). and when r = ro, f (ro) = O. The
2 c

motion is stable if the force f is the restoring one. i.e. when r> ro,
t < 0 and vice versa. It is easy to see that this is the case when B (r)
diminishes slower than 1Ir, i.e. n < 1.

(b) Since the field falls off toward the periphery, it has the barrel
shape, i.e. there is a radial component B r outside the plane of sym­
metry. The latter component produces the vertical component of the

Lorentz force tz =!:.. vBr. In the vicinity of the plane of symmetry
c

B r = (f)Br/f)z)o z. Since rot B = 0, f)Br/f)z = f)B zlf)r. Thereefore

t =!:.. v aB z. If n > 0 f)Blf)r < 0 and the force t z is always,
z c or

directed toward the plane of symmetry.

17.36. (a) wr =woY1-n; (b) wz=woYn, where wo=eBlmc
(see the solution of Problem 17.15).

4r •
17.37. E=mc2 V 1.5r3B/ce=0.29GeV.
17.38. (a) T = (epB)2/2mc2 ; 6, 12 and 12l\IeV; (b) v = y TI2m/np;

20, 14 and 10 MHz.

17.39. V=2n2mv2pf1p/e=0.2MV.

17.40. (a) t = n Amp2v/qV = 10 I-lS, where q is the particle's charge;
N N

1 1 -- "'" -(b) L = 2V ~ V n ='2V' V 2qV'lm L.J V11, where V n is the velocity
1 1

of the particle after the nth passing of the accelerating gap, N is
the total number of passings. In the given case jV is large

(N=Tmax/qV), and therefore, LYn~ .\Vndn. Tbus, L:::::;
:::::; 4n3mv2 p3/3qV == 0.2 km.

17.41. T = mc2 f1T!T: o; 5.1 keY, 9.4 and 37 MeV.
17.42. n = 2nt f1ElceB = 9.

v v T
1743 (a)~ = 2 , 35 and 12%; (b) the angular veloc-
•• V o T +me .

ity of the particle is related to its total energy E as E = ceB/w.
dE ceB dw h dE £ EW }'Thus -=--.-, '-. On theot erhand'-dt =-T =-2 .'rom, dt m- dt . n

dw £
these formulas, we obtain: ---;u= -- 2nceB w3 • After integration,

we get w (t) = wolV 1 -t- At; W o= eB/mc; A = ewo/nmc 2•

c ;' ( mcwo )3 1
17.44. (a) rt=~V 11- eE

rn
siI1 2 (ut;

(b) from 42.0 to 42.~Jcm, L=(uo(r)/2w=1.;).103 ]ml.

17.45. w(tl= c , A=mc2/erB(t).
. To l/l+A:! (t)



ampere A gauss G newton N
angstrom A
barn b

gram g oersted Oe
hertz Hz pascal

calorie cal joule J
Pa

coulomb C kelvin
second s

K steradian
dyne dyn maxwell

sr
l\[x volt V

electronvolt eV metre m watt W
erg erg mole mol weber Wb

Decimal prefixes for tlfe names of units:

APPENDICES

1. Units of measurements and their symbols

SymbolUnitSymbolUnitSymbolUnit

17.46. (a) From 0.35 to 1.89 MHz, 0.82s; (b) 6E=2ner2B/c=
=0.19keV; (c) 1.5.105 km; 5.2. 106 revolutions.

17.47. (a) Vt= nC ' V C ,A=mc2 /erB(t),0.20and1.44MHz,
1+A2 (t)

3.2s; (b) 8E=erI1B/c=2.33keV; (c) 9·105 km; 4.3.106 revolutions.

17.49. (a) The length of the nth drift tube is In = ;1 X

X V1-(mc2/E
n

)2, where En is the total energy of the proton in
the nth drift tube and En = mc2 + To + nl1E. In this case To +
+ nl1E <1:;:.. mc2 , and therefore In = 4.9 V 4 +n em. The number of

drift tubes is N = 35; l1 = 11 em, l35 = 31 em; (b) L = ~ In ~
N

'~4.9 ~ V 4+n dn= 7.5 m.
1

17.50. From 258 to 790MHz; from 2.49.109 to 2.50-10
9

Hz,
17.51. (a) Ex = (T2 - T 1)/eL = 0.15 MV/em; (b) v =

=cV1+[mc2/E(x)]2, where E(x)=mc2 +T1 +eEx ; by a factor
of 9.5, by 0.65%.

17.52. 5.5.103 GeV (see the solution of Problem 16.3).

E exa (1018) h hecto ('102) n nano (10-9 )

P peta (1015 ) da deea (101 ) p pico (10-12)

T tera (1012 ) d deci (10-1 ) f femto (10-15)

G giga (109 ) c centi (10-2) a atto (10-18)

M mega (106 ) m milli (10-3 )

k kilo (103 ) II micro (10-6 )

2. K- and L-absorption of X-ray radiation

Absorption edge. 11.
Z Element

X I LI I LU I LUI

23 V 2.268 - 23.9 24.1
26 Fe 1.741 - 17 .10 17 .4
27 Co 1.604 - 15.46 15.8
28 Ni 1.486 - 14.11 14.4
29 Cu 1.380 - 12.97 13.2&
30 Zn 1.284 - 11.85 12.1
42 Mo 0.619 4.305 4.715 4.91
47 Ag 0.4860 3.236 3.510 3.695
50 Sn 0.4239 2.773 2.980 3.153
74 W 0.1785 1.022 1.073 1.215
78 Pt 0.1585 0.888 0.932 1.072
79 Au 0.1535 0.861 0.905 1.038
82 Ph 0.1405 0.781 0.814 0.950
92 U 0.1075 0.568 0.591 0.722
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3. Some properties of metals

Notation, il is the work function; cfc - cubic face-centered; csc - cubic space-cen­
tered; hex - hexagonal; hcp -- hexagonal close-packed; tsc - tetragonal space-centerelil..

Crystal structure Temperatw.re

Meta I A, eV
Density, lattice constant,

g/crn 3 A DebyP melting,
type e, K °C

(] I c

Aluminium 3,74 ') - dc 4,04 374 658.7~, ,
Barium 2.2\1 3.75 CoC 5.02 116 704
Beryllium ::3.92 1.85 hcp 2.28 3,58 1100 1278
Bismuth 4.62 9.8 hex 4.54 11.84 80 271
Cesium 1.89 1.87 csc 6.05 60 28,5
Cobalt 4.25 8.9 hcp 2,51 4,07 397 1480
Copper 4.47 8.9 dc 3.61 329 1083
Gold 4,58 19.3 dc 4,07 164 1063
Iron 4.36 7.8 CoC 2.86 467 1535
Lead 4.15 11.3 de 4.94 89 327,5
Lithium 2.39 0.53 efC 3.50 404 186
Magnesium 3.69 1.74 hep 3.20 5.20 350 G50
Molybdenum 4.27 10.2 esc 3.14 357 2620
Nickel 4.84 8.9 de 3.52 425 1452
Platinum 5.29 21.5 efe 3.92 212 1775
Potaosium 2.15 0.S6 csc 5.25 132 62.3
Silver 4.28 10.5 dc 4.0S 210 H60
Sodium 2.27 0.97 esc 4.24 226 \J7.5
Tin 4.51 7.4 tse 5.82 3.18 111 231.9
Titanium 3.92 4.5 hcp 2.95 4.69 300 1720
Tungsten 4.50 19.1 Col' 3.16 315 3370
Vanadium 3.78 5.87 coe 3.03 413 1715
Zinc 3.74 7.0 hcp 2.66 4.94 213 1119.4
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Po

BL

Ra

Fr

Rn

At

Pa

Th

lie

Anharmonicity I
coefficient x, D. is.sociatioR

10-:1 ener'''y D, eV

Vibrat ion
fr~quPll(,Y,

" cm- l

Pb

Tl
218 222 226 230 234 A

,
I

Internuclear I
Basic term distane.e d,

10-8 cm

'-:06 210 214

z
~J 1.2":Z.

91
"'S~

fY ~~

~y 24d
9 OO~

8 17
7

~~y

~
6

~Y
,

~
~.

I

" ,-..'"
!/

~
'\i~1 r; Notalian:

J 20m. Y -. years

VIV d - [fays
-

121
m - minutes

illy [JJzm 27m s - seconds
-

1 4.2m I

8

8

go

8

8

8

8

8

8

8

Molecule

5. Constants of diatomic molecules

6. Radioactive Uranium Family

H 2 l~ 0.741 4395.2 28.5 4.48
N2 12: 1.094 23.5\1. (5 6.15 7.37
O2 3~ 1. 207 1580.4 7.65 5.08
F2 III 1,2S2 1l3\i.S 8.51 ~ 1.6
P2 l~ 1.894 7811,1. 3.S9 S.03
S2 3~ 1.889 725.7 3.93 -- 4.4
Cl 2 l~ 1. \iSS 564.9 7.09 2,48
Br2 l~ 2.283 323.2 3.31 1. 97
12 l~ 2.666 214.6 2.84 1.54
HF l~ 0.917 413S.:1 21.8 5.8
HCI l~ 1 'r- 2989.7.-/0 17.4 4.43
HBr 12: 1.413 2649.7 17.1 3.75
HI 12: 1.604 2309.5 17.2 3.06
CO l~ 1.128 21711.2 6.22 ~ 9.7
NO 2Il 1.1511 190G 7.55 5.29
OH ~II 0.971 3735 22.2 4.35

19.8
4,5
2,35
2.54
2.1
6.02

11.7
Hl.O
1.00
2.18
4,04

Density,
g/cm3Substance

Plutonillm
Selenium
Silicon
Strontium
Sulphur
T PIlu ri 11111

Thoriulll
Cranium
Water
NaCI
(:';CI

Density,
,,/cm~

1 .2\):3· 10-3

3.113
2.45
8.65
5.46
I.GO
1.10
7.28

1:Ui
(I.St!
1.8:3

Substance

Note. The densities u! other met<Jb arc "i\ ('n in the foregoin" tahle,
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Air
Beryllium oxide BeO
Boron
Cadmium
Germani um
Graphite
Heavv \Iater D 20
Indiu'm
Mercury
Paraffin CH 2
Phosphorus

4. Density of substances
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7. Properties of nuclides Continued

8

2

o
8

5

Nuc- Surplus of Natural Type Energy of a
atomic mass and l3-parti-

Z Kuclide lear M-A, abun- of Half-life cle,; Tf3 max.spin a.m.u. dance, % decay
MeV

16 32S 0 -0.027926 95.02
338 3/2 -0.028540 0.75
348 0 -0.032136 4.21
358 3/2 -0.030966 - B- 87 days 0.167

17 35Cl 3/2 -0.031146 75.4
36Cl 2 -0.031688 - B-, K 3.1·10· 0.714
37Cl 3/2 -0.034104 24.6

18 36Ar 0 -0.032452 0.34
37Ar 3/2 -0.033228 - K 32 days
39Ar - -0.035679 - B- 265 years 0.565
40Ar 0 -0.037616 99.60

19 39K 3/2 -0.036286 93.08
4~K 2 -0.037583 - ~- 1.52 h 3.55 and 1.99

24 51Cr 7/2 -0.055214 - K 28 days
25 55Mn 5/2 -0.061946 100
27 5SCO 2 -0.064246 - K, ~+ 72 days 0.47

59CO 7/2 -0.066811 100
60CO 4 -0.066194 - ~- 5.2 years 0.31

29 63CU 3/2 '-0.070406 69.1
65CU 3/2 -0.072214 30.9

30 65Z n 5/2 -0.070766 - K, B+ 245 days 0.325
35 s2Br 6 -0.083198' - B- 36 h 0.456
38 sSSr 0 -0.09436 82.56

S9S r 5/2 -0.09257 - ~- 51 days 1.46
908r 0 -0.09223 - B- 28 years 0.535

39 90Y 2 -0.09282 - ~- 64 h 2.24
47 107Ag 1/2 -0.09303 51.35
53 1271 5/2 -0.09565 100

2.12 and 1.6712s1 1 -0.09418 - ~-, K 25 min
79 197Au 3/2 -0.03345 100

19SAu 2 -0.03176 - ~- 2.7 days 0.96
81 204Tl - -0.02611 - B- 4.1 years 0.77
82 206Pb 0 -0.02554 23.6

207Pb 1/2 -0.02410 22.6
20sPb 0 -0.02336 52.3

83 209Bi 9/2 -0.01958 100
210Bi 4 -0.01589 - ex. 2.6.106 years 4.97

84 2l0po - -0.01713 - ex. 138 days 5.3
86 222Rn - 0.01753 - ex. 3.8 years 5.49
88 226Ra 0 0.02536 - ex. 1620 years 4.777 and

4.589
90 232Th 0 0.03821 100 ex. 1.4.1010 years 4.00 and 3.9

233Th - 0.04143 - B- 22 min 1.23
92 234U 0 0.04090 0.006 ex. 2.5·10· years 4.76 and 4.7

23·U 7/2 0.04393 0.71 a 7.1·10s years 4.20-4.58
236U 0 0.04573 - ex. 2.4.107 years 4.45 and 4.5
23SU 0 0.05076 99.28 ex. 4.5.109 years 4.13 and 4.1
239U - 0.05432 - ~- 23.5 min 1.21

94 23:JPU - 0.04952 - ex. 89.6 years 5.50 and 5.4
239PU 1/2 0.05216 - ex. 2.4.104 years 5.15-5.10

Nuc- Surplus of Natural Type Energy of a-
Z Nuclide lear atomic mass abun- of Half-life and l3-parti-

spin M-A,
dance, % I decay cles Til max,

a.m.ll. MeV

I

n 1/2 0.008665 - ~- 11.7 min 0.78
1 H 1/2 0.007825 99.985

2H 1 0.014102 0.015
3H 1/2 0.016049 - ~- 12.3 years 0.018

2 3He 1/2 0.016030 3.10-4
4He 0 0.002604 ~ 100

3 6Li 1 0.015126 7.52
7Li 3/2 0.016005 92.48

4 7Be 3/2 0.016931 - K 53 days
SBe 0 0.005308 - 2a 10-16 s 0.039
9Be 3/2 0.012186 100
lOBe 0 0.013535 - ~- 2.5.106 years 0.555

5 lOB 3 0.012939 20
HB 3/2 0.009305 80

6 HC 3/2 0.011431 - ~+ 20.4 min 0.97
12C 0 0 98.89
13C 1/2 0.003354 1.11
14C 0 0.003242 - B- 5570 years 0.155

7 13N - 0.005739 - ~+ 10 min 1.2
14N 1 0.003074 99.63
15N 1/2 0.000108 0.37

8 15 0 - 0.003072 - ~+ 2.1 min 1.68160 0 -0.005085 99.76
17 0 5/2 -0.000867 0.037
180 0 -0.000840 0.204

9 lSF - 0.000950 - ~+ 1.87 h 0.649
19F 1/2 -0.001595 100
2°F - -0.000015 - B- 12 s 5.42

10 2°Ne 0 -0.007560 90.92
21Ne - -0.006151 0.26
22Ne 0 -0.008616 8.82

11 22Na 3 -0.005565 - ~+ 2.6 years 0.540
23Na 3/2 -0.010227 100
2'lNa 4 -0.009033 - ~- 15 h 1.39

2 23Mg - -0.005865 - ~+ 11 s 2.95
24Mg 0 -0.014956 78.60
25Mg 5/2 -0.014160 10.11
26Mg 0 -0.017409 11.29
27Mg 1/2 -0.015655 - ~- 9.5 min 1.75 and 1.59
26Al - -0.013100 - ~+ 6.7 :3 3.20
27 Al 5/2 -0.018465 100
2sAl 3 -0.018D92 - ~- 2.3 min 2.86

14 2sSi 0 -0.023073 92.27
29Si 1/2 -0.023509 4.68
30Si 0 -0.026239 3.05
31Si - -0.024651 - ~- 2.65 h 1.47

15 30P - -0.021680 - ~+ 2.5 min 3.24
31p 1/2 -0.026237 100
32p - -0.026092 - ~- 14.3 days 1. 71
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8. Neutron cross-sections to. Free P3th VI'. Energy Dependence for a-particles in Air

18

9

/7

Iff

16

!D

IT

, J~

ILL,

I

[nerg!/, MeV (Curve J[)
9 10 11 /2

,y

I :

8?

6 '

2

A

Ua and Uact are the cross-sections for thermal neutrons (2200 m!s); (Usc) are the
cross-sl'ctions llveraged over sUfficiently wide energy interval.

Cross-section, b

Ele- ='iuc- Xatural HaHlife of

I Iment lide abundance, nuclide absorption activation scattering
0/ produced,0 "a "act (O"sc)

H ~H 0.015 12.3 years 5·IO-J 5.7·jQ-~ 7
Li - - - 71 - 1.4

~Li 7.52 - 945 (na) 2.8· to-~ -
7Li 92.48 0.85 s - 3.3.10-2 -

Be 9Be tOO 2.7.106 years 10-~ 9.10-4 7
B - - - 7.55 - 4

lOB 20 - 381.3 (na) 0.5 -
llB 80 0.03 s - 5· to-2 -

C - - - 3.8.10-3 - 4.8
12C 98.89 - - 3.3.10-3 -
13C 1.11 5570 years 0.5.10-3 9. to-4 -

0 - - - 2.10-4 - 4.2
F 19F 100 11 s < 10-~ 9· to-3 3.9
Na 23Na 100 15 h 0.53 0 ..53 4
Al 27Al 100 2.3 min 0.23 0.21 1.4
V - - - 4.93 - 5

,oy 0.24 - 250 - -
Oly 99.76 3.76 min - 4 ..5 -

Cu - - - 3.77 - 7.2
63CU 69.1 12.8 h 4 ..5 4.5 -
6,CU 30.9 5.15 min 2.2 1.8 -

Ag - - - 63 - 6
Cd - - - 2540 - 7

u3Cd 12.26 - 20000 - -
In - - - 196 - 2.2

ll'In 99.77 54.2 min - 15.5 -
1 1271 tOO 25 min 6.22 5.6.10-3 3.6

U 127Au 100 2.7 days 98.8 96 9.3
U - - - 7.68 - 8.3

238U 99.28 23.5 min 2.75 2.74 11.2

:/ 8

2 J if 5

Energy, MeV (Curve I )

9. Constants of fissionable nuclides
(due to thermal neutrons, 2200 mls)

Cross-section, b Mean number of neutrons

Natural
per fission

Nuclide abundance,

I I
% absorption fission instanta-

(;fa uf neous v delayed !l

.
233U - 588±4 532±4 2.52 0.0066
23 5U 0.71 694±3 582±!! 2.47 0.0158
239PU - 1025±8 738±4 2.91 0.0061

,
I",

1/

o

J~_-r I

, I

7

:~:-++
6 7
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12. Interaction Cross-Sections for 'V-Quanta in Lead
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IX=1

IX=2

IX=3

IX=5

IX=10

10

0.225,

'1.18,
2.56,

:/.91,

6.'13,
1

I' e- ,-2 dx ;:::; 0.843

o

~~=I• _ e -1
o

.)'In·I .)'" ,-

02 o.J 0.'1 ! 2 J 4 5
Temperature fl, keY

;-
1 Jt/2, n=O

17
10-

I~ V ~

19 V 10-

2D ~ //

I Q~
2 '/

J Y
~ V V

I
6

/ 1/

/ 1/
II
if
'/

00

\
' r n!,n>O,aninteger

x'lte-X dx= ~

'0 l Vn/2, n= 1/2

13. The Graph of (av) vs. Plasma Temperature
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14. The Values of Some Definite Integrals

1

2.31" n=1/2

:n;3/6. n=1

2.405. n= 2

n l /15, n =3

24.9, n=4

Differentiation f . to an III egral with respect to parameter:
x2(a) X2a,"aa: .\ f (or, 0:) dx= \. -!L dx+ j ("'2) 0:'2 _ f (x) i1x1
Xl(a) • do: da 1 (jo:.

;\'1
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I, -""

-( -1 I I ./ I, *-r '/ i , ,
V

'\'-+--~+tl '"
i

, ; ! (
''\. -1-* 6?ot

I-+'~
'l.

/,±t± • -,--+" A T I ' I L

t "- -=!=+T'./
~,+-:l- i I ! , '~-R=,

~T '-t-++1Ij
---+---\'-r-t I (3'''''1-- - r---!--t-'

I 17°0,0 r-..:..- -r~-+-

"'-I-
i\

J I
I "/ ......
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"""y , I ,

~

§ 10
"'"t;:;
_____..9

'"~- 8
7

6

5

4

J

2

1

Ii

19

/S

/7

16

15

14
13

12

Aluminium Lead Water Air
Energy

MeV

I I I I!lIp 'tIp ,u,/p 'tIp !t/p 'tIP IJ-/P "/p

0.1 0.169 0.0371 5.46 2.16 0.171 0.0253 0.155 0.0233
0.2 0.122 0.0275 0.942 0.586 0.137 0.0299 0.123 0.0269
0.4 0.0927 0.0287 0.220 0.136 0.106 0.0328 0.0953 0.0295
0.6 0.0779 0.0286 0.119 0.0684 0.0896 0.0329 0.0804 0.0295
0.8 0.0683 0.0278 0.0866 0.0477 0.0786 0.0321 0.0706 0.0288
1.0 0.0614 0.0269 0.0703 0.0384 0.0706 0.0310 0.0635 0.0276
1.5 0.0500 0.0246 0.0550 0.0280 0.0590 0.0283 0.0515 0.0254
2.0 0.0431 0.0227 0.0463 0.0248 0.0493 0.0260 0.0445 0.0236
3.0 0.0360 0.0201 0.0410 0.0238 0.0390 0.0227 0.0360 0.0211
4.0 0.0310 0.0188 0.0421 0.0253 0.0339 0.0204 0.0307 0.0193
6.0 0.0264 0.0174 0.0436 0.0287 0.0275 0.0178 0.0250 0.0173
8.0 0.0241 0.0169 0.0459 0.0310 0.0240 0.0163 0.0220 0.0163

10.0 0.0229 0.0167 0.0189 0.0328 0.0219 0.0154 0.0202 0.0156

11. Attenuation and absorption coefficients for 'V-quanta

IJ-/p and 'tIp are the coefficients of mass attenuation (for a narrow beam) and absorp·
tion, cm2/g.
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0.1 0.0797 0.9 0.6319 1.7 0.9109
0.2 0.1518 1.0 0.6827 1.8 0.9281
0.3 0.2358 1.1 0.7287 1.9 O. ~J426
0.4 0.3108 1.2 0.7699 2.0 0.9545
0.5 0.3829 1.3 0.8064 2.25 0.9756
0.6 0.4515 1.4 0.8385 2.50 0.9876
0.7 0.5161 1.5 0.8664 2.75 0.9940
0.8 0 ..5763 1.6 0.8904 3.00 0.9973

Activity, A Curie (Ci) Recquerel (Bq) Ci = 3.700.1010 Bq
1 Bq=l dis/s

Exposure dose, Roentgen (R) Coulomb per ki- 1 R = 258 f-lC/kg
Dex logram (C/kg)

Absorbed dose, Rad (rad) Gray (Gy) 1 rad _ { 100 erg/g
D 1 Gy= 1 J/kg - 10-2 Gy

Equivalent rem (rem) Sivert (Sv) 1 rem-{l rad/Q.F.
dose, Deq 1 Sv= 1 Gy/Q.F. - 10-2 Sv

Maximum permissible doses corresponding to 100 mrem a week.

1 Q~~_1_ CGSE uui
9·1011

1 A/1I1 = 11:1. 10-3 G
1 Wb= 10" l\lx
IH=10"cm

253

A _ ~ -c { 3.86.10-11 cm (e)
- me --- 2.1(I·I0-u cm (p)

e2

r = --=282.10-13 em
e mee:!. .

8rr
oT=3 r~=6.65·10-25 cm2

rt=e 2 /ft.c= 1/137
eli

fI B=-,-)--=O.927·1U-'o erg/Oe
...Arlee

en 5)-P.y= -,--= .1~).1(I-21 A'1ll2
2/1lpc

"1.660.10-2' g
1 a.m.u.= {

931.14 -'leV

c=2.998·10" m/s
1'=6.67.10-8 cm:J!(g·s2)
N A = 6.02 .1023 mol-1

no=2.69·1019 cm-3

R=8.314 J/(K·mol)
Vo= 22.42.10-3 rn 3

k= 1.38· 10-16 t'rg/K
Ii = 1.()54·10-27 erg· s

{
U;.lO-lH C

e= 4.80.1O-1U CGSE unit

{
1.7ti . lOll C!kg

e/l7I=
e/1I1=5.273· JOI7 CGSE unit

F = 96487 C/mol
0=5.67.10-8 W·m- 2 ·K-4

b=AprT=2.~JO·10-3m·K
mel

Roc = 4 e q = 1.0973731·10" cm-1
rrclI

R;;:'=2rrcK",=2.07·1016 S-l

h t
r 1 = --., ,=0.52 }j.1O-8 cm

lllee-

1 eV = 1.(; . 10- 19 J

1 C = 3· 109 C<; SE u ui t
1 A = 3.109 CGSE unit
1 V = 1/300 CGSE unit
1 F=9·1011 cm

Atomic mas, unit a.rn.u. (1/12 of 12C
atom mass) ,

Nuclear mag'neton

Electronic radius

Thomson scattering cross-section

Fine structure constant

Bohr magnetoTl

<Compton wavelength

Elementary charge

..'First Bohr radius

If

:Specific charge of electron

Faraday constant
:Stefan-Boltzmann's constant
Wien's displacement constant

Rydberg constant

:El:~J~n's binding energy in a hydrogen E = 1J~;le2" == 13.59 eV

17. Fundamental Physical Constants

'16. (;onversion factors for some measurement units

Velocity of light
-Gravitational constants
Avogadro constant
Loschmidt's number
Universal gas constant

-Gas volume at S.T.P.
Boltzmann constant
Planck constan t

1 A= 10-8 cm

-1 b= 10-21 cm2

'1 veal' = :3· 11 .107 S

1 N= 105 dvn
'1 J = 107 erg

1
1
3

10

IQ·F.

J (a)

Conversion factors

0.78 f-lR/s
20 particles/(cm2. s)
750 neutroTls!(cm 2. s)
20 1ll'utrons/(cm2. s)

Dose rate for 36-hour
workin~ week

J (a)

81

Radiation
enprgy

< 3 :YleV
< 10 -'leV
0.025 eV
1-10 .\leV

a

Name and symbol

J (a)

The conversion of doses:

D eq (rem) = Q.F.· D (rad)

Off-system
Quantity

* Here Q.F. denotes the quality factor.

The values o[ the error integral J(Cl)='V~re-
x2

/ 2 dx

o

15. Radioactivit)' and dose units

Radiation

252

X-ray and ,\,-'adialion
fI-pa rticll's and electrons

N t ( thermal
, eurons l fast



Particle
Magnetic Gyro'!'lIg-

a.ffi.U. Mass, e MeV moment netIc
ratio

Electron 5.486.10-4 0.9108.10-27 0.511 1.00116 /-LB 2.0022
Proton 1.007276 1 .6724. 10-21 938.23 2.7928 1-lN 5.5855
Neutron 1.008665 1.6748.10-2 ; 939.53 -1.913/-LN -3.8263
Deuteron 2.013553 3.3385.10-2 ; 1875.5 0. 8574 /-LN 0.8574
a-particle 4.001506 6.6444.10-21 3726.2 0
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ALSO FROM MIR PUBLISHERS

PROBLEMS IN PHYSICS

A. PINSKY, CAND. SC. (PHYS.-MATH.)

The material of this book is arranged in accordance with the two­
volume course Fundamentals of Physics by B. Yavorsky and A. Pin-"
sky (Mir Publishers, 1975). It contains more than 750 problems cov­
ering all the topics discussed in the textbook.

In addition to the traditional material, the book contains problem~'

on theory of relativity (including relativistic collision, accelerators;
creation of particles, etc.), quantum mechanics (uncertainty prin­
ciple, de Broglie waves, potential barrier, degenerate state of matter,
statistics wave and quantum optics, atomic and nuclear physics.
The problems in astro-physics illustrate the applications of laws of
physics to cosmic objects. Most of the problems especially the dif­
ficult ones, carry detailed solutions or hints.

The book is meant for students of physics and mathematics at
teachers-training institutes and for physics teachers at secondary
schools and polytechnics.
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