


’ {
MENDELEEV’S PERIODIC fAB,LE OF THE ELEMENTS

2 3 . Groups of ‘% Elements
e 1 | 1o | m | v [ v fi] vt ovin [ VIII
i ‘ 1 2 He
1 i ) Hydrogen Helium
‘ 1.00797 4.00260
Li 3 Be 4 5 B 6 C 7 N} ! 8 O 9 F 10 Ne
2 2 Lithium | Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
6.94 9.01218 10.81 12.01 14,0067 15.9994 18.9984 20.179
Na 11 Mg 12 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar
3 3 Sodium |Magnesium| Aluminium Silicon |Phosphorus Sulphur Chlorine Argon
22.98977 24.305 26.9815 28.086 30.97376 32.06 35.453 30,948
K 19 Ca 20 (Sc 21 Ti 22 VvV 23 Cr 24 |Mn 25 |Fe 26 |[Co 27 |[Ni 28
4 Potassium Calcium | Scandium Titanium Vanadium Chromium | Manganese Iron Cobalt Nickel
4 39.098 40.08 44,9559 47.90 50.9414 51.996 54.9380 55.847 58.9332 58.70 )
29 Cuf 30 Zn| 31 Ga| 32 Ge| 33 As 34 Se 35 Br 36 Kr
5 Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
63.546 65.38 69.72 72.59 74.9216 78.96 79.904 83.80
Rb 37 |Sr 38 |Y 39 Zr 40 Nb 41 Mo 42 |[Tc 43 |Rm 44 |Rh 45 |Pd 46
6 Rubidium Strontium Yttrium Zirconium Niobium Molybdenum | Technetium | Ruthenium | Rhodium | Palladium
5 85.4673 87.62 88.9059 91.22 92.9064 95.94 98.9062 101.07 102.9055 106.4
47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 1 54 Xe
7 | Silver Cadmium Indium Tin Antimony Tellurium Todine Xenon
107.868 112.40 114.82 118.69 121.75 127.66 126.9045 131.30
Cs 55 Ba 56 La* 57 * Hf 72 |{Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78
8 Cesium Barium [Lanthanum T Hafnium | Tantalum Tungsten Rhenium Osmium Iridium Platinum
6 132.9054 137.34 138.9055 2| 1.0 180.9479 183.85 186.207 190.2 192.22 195.09
79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn
9 Gold Mercury Thallium Lead Bismuth - * Polonium Astatine . Radon
196.9665 200.59 204.37 207.2 208.9804 [209) [210} [222]
Fr 87 Ra 88 Ac 89 |1 [Ku 104 105
7 10 | Francium Radium |Actinium 2, Kurchatovium
[223] 226.0254 {227] S |f261]
: * LANTHANI DES
* qu 58/Pr 59 INd 60 [Pm 61 [Sm 62[Eu 63 |Gd 64 Tb 65 [Dy 66 Ho 67 |[Er 68 'Tm 69 [Yb 70 |[Lu 71
Cerium |Praseodymium [Neodymium|Promethium|Samarium Europium {Gadolinium Terbium |Dysprosium| Holmium | Erbium | Thulium |Ytterbium | Lutetium
14012 140.9077 144.24 [145]) 150.4 151.96 157.25 158.9254  {162.50 164.9304 167.26 168.9342  1173.04 174.97
- : ** ACTINI DES
Th90iPa o1 U 92 |Np 93 [Pu 91 |Am 95 |Cm g6 Bk 97 |Cf 98 |Es 99 |Fm 100]Md 101 [(No)t0z| Lr 103
B - Thorium | Protactinium | Uranium Neptunijum {Plutonium|A mericium | Curium Berkelium [Californium|Einsteinium{ Fermium Mendelevium(Nobelium) Lawrenciuﬂ
232.0381{231.0359 238.02 2370482  |[244] [243] (247] - li247) [251] [254] (257 {258] [255] [256]
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PREFACE TO THE ENGLISH EDITION

This book is intended primarily for students taking general courses
in atomic and nuclear physics. It contains, however, a sufficiently
large number of problems lying beyond the general course to make
it also useful in the study of some special courses.

The volume contains over 1000 problems. The solutions of the
most complicated of them are provided with detailed explanation.
A brief summary of the basic terms and definitions at the beginning
of each chapter also makes the solving easier. The fundamental
physical constants and reference tables and graphs are given in the
Appendix. Both the Periodic Table of the elements and the table of
elementary particles are also provided.

The Gaussian sysfem of units is employed throughout the book.
All initial data and numerical answers are given with due regard
for the accuracy of appropriate values and the rules of operation
with approximate numbers.

In conclusion, the author takes pleasure in expressing his deep
appreciation to his colleagues from the Moscow Engineering Physics
Institute and all those who submitted their comments on certain
problems and thereby contributed to the improvement of the book.

1. Irodov.




NOTATION

Vectors are designated in boldfaced Roman type, e.g., v, H; the
same letters printed in lightfaced Italic type (v, H) denote the modu-
lus of a vector.

Mean quantities are denoted by French quotes ( ), e.g., (A}, (2).

The terms L and C frame designate the laboratory frame of reference
and the frame of the centre of inertia respectively. All quantities in
the C frame are marked with the ~ (tilde) sign over a letter, e.g.,

~

P, E.

Energy: T kinetic, U potential, and E total.
Bp is the product of the magnetic field and the radius of curvature
of a particle’s trajectory.

Wave numbers: spectroscopic v = 1/2,
adopted in theory k = 2m/A,
where A is the wavelength.

All operators (with the exception of coordinates and functions of

[14 »

coordinates only) are marked with the sign “ ” over a letter, e.g.,

A, p.

The designations of antihyperons indicate the sign of the electric
charge of antihyperons themselves, not of the corresponding hy-
perons,
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QUANTUM NATURE
OF ELECTROMAGNETIC RADIATION

@ The radiant exitance M is related to the volume density u of thermal radi-
ation as
M= -Z— u. 1.1y
® Wien’s formula and Wien’s displacement law
Uy = 03 (0/T); hprT = b, 1.2y
where @ is the radiation frequency, s~'; 7' is the absolute temperature; Apr is

the most probable wavelength in the radiation spectrum; 5 is a constant.
@ Stefan-Boltzmann law (for blackbody radiation):

M = oT". (1.3)
® Planck’s formula for the spectral concentration of radiant exitance:

" frw? ! (1.4)

Yo =T " THo/RT _y °

® Relation between the total energy E and the momentum p of a relativistic
particle with rest mass m: f
E? = p%® L m3ch 1.5)
@ The Compton change in wavelength of a scattered photon:
AL = 4mA sin? (8/2); A = k/me, (1.6).
where A is the Compton wavelength of a particle with rest mass m.

THERMAL RADIATION

1.1. Demonstrate that Wien’s formula permits one to calculate
the energy distribution curve u, (o) for thermal radiation at the
temperature T,, if the distribution u, (0) at the temperature T,
is known.

1.2. Using Wien’s formula demonstrate that: (a) the most prob-
able radiation frequency op; oc T'; (b) the radiant exitance M oc T*
(the Stefan-Boltzmann law).

1.3. Using Wien’s formula demonstrate that in the thermal radia-
tion energy distribution over wavelengths: (a) the most probable
wavelength A, oc 1/T (Wien’s displacement law); (b) the maximum
spectral density of radiation energy (u;)max o< T°.

1.4. The initial temperature of thermal radiation is equal to
2000 K. By how many degrees does this temperature change when
the most probable wavelength of its spectrum increases by 0.25 pm?
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1.5. Find the most probable wavelength in the spectrum of thermal
radiation with the radiant exitance 5.7 W/cm?.

1.6. The solar radiation spectrum resembles that of a black body
with Ay = 0.48 pm. Find the thermal radiation power of the Sun.
Evaluate the time interval during which the mass of the Sun dimin-
ishes by 1% (due to thermal radiation). The mass of the Sun is
equal to 2.0-10% kg and its radius is 7.0-108 m.

1.7. There are two cavities 7 and & with small holes of equal radii
r = 0.50 ecm and perfectly reflecting outer surfaces. The cavities
are oriented so that the holes face each other and the distance be-
tween them is R=10.0 cm. A constant temperature T, = 1700 K
is maintained in cavity 7. Calculate the steady-state temperature
inside cavity 2.

1.8. Considering that the thermal radiation pressure p = ul3,
where u is the volume density of radiation energy, find: (a) the pres-
sure of thermal radiation from the Sun’s interior, where the tem-
perature is about 1.6-10° K; (b) the temperature of totally ionized
hydrogen plasma of density 0.10 g/cm?®, at which the thermal radia-
tion pressure is equal to the gas pressure of plasma’s particles.
(At high temperatures substances obey the equation of state for the
ideal gas.)

1.9. A copper sphere of radius » = 1.00 cm with perfectly black
surface is placed in an evacuated vessel whose walls are cooled down
to the temperature close to 0 K. The initial temperature of the sphere
is Ty = 300 K. How soon will its temperature decrease n — 1.50
times? The heat capacity of copper is ¢ = 0.38 J/g-K.

1.10. Wien proposed the following formula to describe the energy
distribution in the thermal radiation spectrum: Uy, = Awde-o/T,
where a = 7.64-107'2 s.K/rad. Using this formula, find for 7 =
= 2000 K: (a) the most probable radiation frequencys; (b) the
mean radiation frequency.

1.11. Using the formula of the foregoing problem, find in the
thermal radiation energy distribution over wavelengths at the
temperature 7 = 2000 K: (a) the most probable wavelength: (b) the
mean wavelength.

1.12. A piece of copper located in a closed cavity is in equilibrium
with its radiation. The system’s temperature is 7' = 300 K. Resort-
ing to Dulong and Petit’s law, find the ratio of the volume density
of vibration energy of copper to that of radiation energy. )

1.13. The thermal radiation filling up a certain cavity can be
treated as a set of oscillators, that is, natural oscillations with differ-
ent frequencies. Find the mean energy of the oscillator with frequency
® and the volume density of energy within the interval (0, © - do),
assuming the energy ¢ of each oscillator to take on: (a) any value
{continuous spectrum); (b) only discrete values n#w, where » is an
integer.

The energies of the oscillators are supposed to be distributed ac-
cording to Boltzmann’s formula N (&) oc e=e/kT
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1.14. Derive the approximate expressions of Planck’s formula for
the extreme cases fio < kT and fio > kT.

1.15. Transform Planck’s formula to obtain the distribution over:
{a) linear frequencies; (b) wavelengths.

1.16. In what wavelength interval does Wien’s formula taken
in the form u, = (Aw?/n%3) e "o/ describe the energy distribution
to an accuracy better than 1.0% at the temperature 7 = 2000 K?

1.17. Using Planck’s formula, calculate: (a) by what factor the
spectral density of radiation with wavelength A = 0.60 pm increases
when the temperature 7 grows from 2000 to 2300 K; (b) the radiation
power emitted from a unit area of the black body surface in the
interval of wavelengths whose values differ less than 0.50% from the
most probable value at 77 = 2000 K.

1.18. Using Planck’s formula, find the numerical values of:
{a) the Stefan-Boltzmann constant; (b) the constant b in Wien’s
displacement law.

1.19. From Planck’s formula determine: (a) the mean frequency
value o in the thermal radiation spectrum at 7 = 2000 K; (b) the
temperature of thermal radiation whose mean wavelength is equal
to 2.67 pm.

CORPUSCULAR THEORY

1.20. Making use of Planck’s formula, obtain: (a) the expression
giving the number of photons per 1 e¢m?® within spectral intervals
(0, o -+ dw) and (A, A -+ dA); (b) the total number of photons per
1 cm?® at the temperature 7 = 300 K.

1.21. Using Planck’s formula, calculate: (a) the most probable
energy of photons; (b) the mean energy of pliotons at 77 = 1000 K.

1.22. Demonstrate that the number of thermal radiation photons
falling on a unit area of cavity’s wall per unit time is equal to nc/4,
where ¢ is the velocity of light and nr is the number of photons in
aunit volume. See that the product of this value and the mean energy
of the photon is equal to the radiant exitance.

1.23. Find the photon flux density at the distance 1.0 m from a
point light source 1.0 W in power, if light: (a) is monochromatic
with a wavelength of 0.50 um; (b) contains two spectral lines with
wavelengths of 0.70 and 0.40 pm whose intensities relate as 1:2.

1.24. The wavelengths of photons are equal to 0.50 pm, 2.5X
x10-% em, and 0.020 A. Calculate their momenta in units of eV/c,
where ¢ is the velocity of light.

1.25. On the basis of the corpuscular theory demonstrate that the
momentum transferred by the plane luminous flux @ is independent
of its spectral composition.

1.26. A laser emits a light pulse of duration v = 0.13 ms and
energy I = 10 J in the shape of a narrow beam. Find the pressure,
averaged over the pulse duration, that such a beam would develop
when it is focused into a stop of diameter d = 10 um on a surface

i1



with reflectance p = 0.50. The beam fall i
with e m s at right angles to the
1.27. A short light pulse with energy £ = 7.5 J falls in the form
%fha nari‘ow beam on a mirror plate whose reflectance is p = 0.60.
! et}?élgp(ia(zi.mcldence is 8 = 30°. Find the momentum transferred
1.28. From the concepts of the cor
_ puscular theory find the f :
of light pressure tha_t a plane luminous flux of intg’nsity J W/(::I;flg
exeﬁtséw?lc)a)n it ll.lumuﬁates: (a) a flat mirror surface at the incidence
angle 0; a mirror hemisphere; (c) a flat perf face
e o (D 3 (c) perfectly matted surface
In all cases the area of illuminated surf i
reflectance to unity. riace 15 equal to 5 and
1.29. A point light source of power N = 60 W is located above the
centre of a round perfectly mirror plate whose radius is r = 10 ¢m
The distance between the plate and the source is equal to I = 10 cm.
Employmg the concepts of the corpuscular theory, find the force
th; lhght exerts on the plate. Consider the cases r < I and
r .
th:'?gé Onltlledbattgis of the corpuscular theory demonstrate that
thermal radiation pressure = u/3, wh i
der1151ty of radiation energy. ? ere u s the volume
.31. An atom moving with velocit i
. : v v (v < ¢) emits a photon
gt (‘;htehanglle ¥ to its motion direction. Using the conservatiorll) lg\x?;]
n e relati i ift i :
finc photon? Ive magnitude of the Doppler shift in the frequency of
. 1.’32. A phpton is emitted from the surface of a star whose mass
s M apd radl}ls H Assuming the photon to possess a mass. with its
mtrmsgc gravitational properties, find the relative decrease in the
photpns energy at a great distance from the star. Calculate the
gravitational wavelength shift (AA/A) of the radiation emitted from
‘zlll)()e surface of: (a) the Sun (M = 2.0-10% kg, R = 7.0-108 m);
a neutron star whose mass equals that of the S;m and 'h ,
density is 1.0:1014 times that of the Sun. hose mean
1.33. Explain the existence of the short-wave limit in the X-ray
continuous spectrum. Calculate the magnitude of the constant C
in the rel_atlon Amin = C/V, if & is expressed in A and V in kV.
1.:_34. Find the wav‘el’ength of the short-wave limit of the X-ray
continuous spectrum, if it is known that it shifts by 0.50 A when the
volt:f\ge applied to an X-ray tube increases 2.0 times.
. 1.35. A. narrow X-ray beam falls on a NaCl single crystal. The
feast grazing anglg at'whlch the mirror reflection from the natural
iiig of1 the cgys:al is still observed is equal to 4.1°. The corresponding
berplanar distance is 2.81 A. H igh i i
X ow high is the voltage applied to the
1.36. Calculate the velocity of i
city of electrons flying up to the target
cathode of an X—ra_y tube, if the wavelength of the short-wave Iir%lit
of the X-ray continuous spectrum is Ami, — 0.157 A.
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1.37. With a thin metal foil used as a target cathode of an X-ray
tube the spectral distribution of bremsstrahlung has the form J, =
= 10-5PZ/A2, W/A, where P is the tube current power, W; Z is the
atomic number of the element used as the target; A is the radiation
wavelength, A.

(a) Draw the approximate graphs of the functions J,, (A) and J , (®).

(b) Calculate the tube efficiency, if the applied voltage is V=
= 80 kV and the target cathode is made of golden foil.

1.38. Find the most probable wavelength of bremsstrahlung with
spectral distribution of the form J, oc (®max — ®), where onax is
the limit frequency of the spectrum. The voltage applied to the tube
is equal to 31 kV.

1.39. Using the tables of the Appendix, calculate: (a) the photo-
electric threshold wavelengths for Cs and Pt; (b) the highest veloc-
ities of electrons liberated from the surface of zine, silver, and nickel
by light of the wavelength 0.270 pm.

1.40. Up to what maximum potential will a copper ball, remote
from all other bodies, be charged when illuminated by light of the
wavelength 0.20 um?

1.41. At a certain maximum value of retarding potential difference
the photoelectric current from lithium surface illuminated by light
of wavelength A, cyts off. The increase in the wavelength of light by
a factor of » = 1.5 results in the increase of the cut-off potential
difference by a factor of v = 2.0. Calculate A,.

1.42. Find the maximum kinetic energy of photoelectrons liberated
from the surface of lithium by electromagnetic radiation whose elec-
tric component varies with time as £ = a (1 - cos wt) cos @,
where a is a constant, ® = 6.0-10" s71, @, = 3.60-10% s~%

1.43. There is a vacuum photocell one of whose electrodes is
made of cesium and the other of copper. The electrodes are shorted
outside the cell. The cesium electrode
is illuminated by monochromatic light.
Find: (a) the wavelength of light at
which the current appears in the cell’s
circuit;(b) the highest velocity of photo-
electrons approaching the copper elec-
trode, if the wavelength of light is
equal to 0.220 um. g

1.44. A photoelectric current emer- (A0 | 1 A1 LL1LLL
ging in the circuit of a photocell when
its zinc electrode is illuminated by Fig. 1
light of wavelength 2620 A is can-
celled, if the external retarding potential difference 1.5 V is applied.

Find the magnitude and polarity of the contact potential difference
of the given photocell.

1.45. A nickel sphere serving as an inner electrode of a spherical

vacuum photocell is illuminated by monochromatic light of various
wavelengths. Figure 1 illustrates how the photoelectric current

13
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depends on the applied voltage V. Using these graphs, find the cor-
responding wavelengths. .

1.46. A photon with A = 0.170 A knocks out of a stationary atom
an electron whose binding energy is £ = 69.3 keV. Find the momen-
tum transferred to the atom in this process, if the electron is ejected
at right angles to the direction of the incident photon.

1.47. Making use of the conservation laws, demonstrate that a
free electron cannot absorb a photon.

1.48. A photon of energy /iw is scattered at the angle ¥ by a sta-
tionary free electron. Find: (a) the increment of wavelength of the
scattered photon; (b) the angle ¢ at which the recoil electron moves.

1.49. A photon with energy 0.46 MeV is scattered at the angle

dNeaT

¥ = 120° by a stationary free electron. Find: (a) the energy of the
scattered photon; (b) the energy transferred to the electron.

1.50. A photon with momentum 60 keV/¢, having experienced the
Compton scattering at the angle 120° by a stationary free electron,
knocks out of a Mo atom an electron whose binding energy is equal
to 20.0 keV. Find the kinetic energy
of the photoelectron.

1.51. On irradiation of a substance
by hard monochromatic X-rays the
highest kinetic energy of Compton
electrons was found to be Tmax =
=0.44MeV. Determine the wavelength b, .
of the incident radiation. / 2

1.52. Figure 2 shows the energy Fig. 2
spectrum of electrons ejected from

~a sample made of a light element, when it is exposed to hard
monochromatic X-ray radiation (7' is the kinetic energy of the
electrons). Explain the character of the spectrum. Find the wave-
length of the incident radiation and 7, and T,, if 7, — T, =
= 180 keV.

1.53. A photon with energy 374 keV is scattered by a stationary
free electron. Find the angle between the directions in which the
recoil electron and scattered photon move. The Compton shift in
wavelength of the scattered photon is equal to 0.0120 A.

1.54. A photon is scattered by a stationary free electron. Find
the momentum of the incident photon if the energy of the scattered
photon is equal to the kinetic energy of the recoil electron with the
divergence angle of 90°.

1.55. At what angle is a gamma quantum with energy 0.80 MeV
scattered after collision with a stationary free electron, if the velocity
of the recoil electron is equal to 0.60c?

d.56. A photon with momentum 1.02 MeV/c is scattered by a
stationary free electron. Calculate the Compton shift in wavelength
of the scattered photon, if the recoil electron: (a) moves at the angle
30° to the direction of the incident photon; (b) obtains the momentum
0.51 MeV/e.
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5 i of an incident photon that is scattered at
th; .sgélsgldzt}é(e)"eﬁgriystationz% irleevelectron and transfers to the
ineti = 0. leV.
latit efSa zl-{\m;}tli)ctoer? esv%i’h]’energy o = 1.00 MeV is scatt_ered by a
stat.i%n.ary free electron. Find the kinetic en_grgy of the recm}ll electro];l,
if in the process of scattering the photon’s wavelength changes by
n=2%. o
5 lision with a relativistic electron a photon was
sc;{fegédAite;ncggle of 60° while the electron stoppefi. Fm}(]I: ]({a}) tthe
Compton shift in wavelength of the s§attered pl'lqton,'f(b%lt e kine 1(;
energy that the electron possessed prior to collision, i tle energy o
the striking photon is equal to the rest energy of an e f(;cn;on. ]
1.60. Explain the following features of the Compton e ect emetrhg

ing on irradiation of a substance by monochromatic X—rahys.l(a)d. e
Cobmpton shift equation can be verified when sgfﬁ_clently ard rzfa tl}il-
tion is used; (b) the magnitude of the shift is lndgpendent 0 (:
nature of the substance; (e) the presence of the .non—sh‘lfte(i‘ Cﬁmp}?'lﬁnd
in the scattered radiation; (d) the increase 1n 1pten51ty o} tf ehs i %
component of the scattered light as the atomic m}mber}? ]g e flu -
stance decreases and the scattering angle increases; (¢) the broaden
ing of both components of the scattered light.
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RUTHERFORD-BOHR ATOM

@ The angle © at which a charged particle is scattered by the Coulomb field

.of a stationary atomic nucleus is defined by the formula

) 9192

— =JL12 A
tan 5= =91 21
where ¢, and ¢, are the charges of the interacting particles, T is the kinetic
energy of the incoming particle, b is the aiming parameter. )

In the general case this expression is valid in the C frame as well, provided
that the substitution @ — © and 7 — 7 is made, where @ and 7T are the scatter-
ing angle and the total kinetic energy :

-of interacting particles in the C frame: 7 —
~  BoRey P mynty 4
T= —t H H:-———-.
2 2u my - my 3 ‘
(2.2) Paschen
series

Here p is the reduced mass, vre} i
the relative velocity of the particles,
and p is their momentum in the C Balmer
frame. series

Lyman

geries

1
Fig. 4

@ Vector diagram of momenta for elastic scattering on non-relativistic par-
ticle of mass m by an initially stationary particle of mass M is shown in Fig. 3.
In this figure p,, and p;, denote the momenta of the incoming particle before and
after scattering, p’, is the momentum of the recoil particle, O is the centre of

a circle whose radius equals the momentum p of particles in the € frame; the
point O divides the line segment AC into two parts in the ratio 40 : 0C =

= m : M, and O is the scattering angle of the incoming particle in the C frame.
® Rutherford formula. The relative number of particles scattered into an

16

elementary solid angle dQ at an angle ¥ to their initial propagation direction

equals
aN ([ m9: \2__ dQ
N - ( 4T ) sint (ﬂ\/Z) ’ 2.3)
where n is the number of nuclei per unit area of the foil surface, T is the kinetic

energy of the incoming particles, dQ = sin ¥ 20 dg.
® Generalized Balmer formula (Fig. 4)

1 1y, wet
0=RZ} (or—or)i Re=p, @4

where o is the transition frequency (in s-!) between energy levels with quantum
numbers n; and ny, Z is the atomic number of atom (ion), R* is the Rydberg
constant, and p is the reduced mass.
® Resonance line is a line resulting from the transition of atoms from the
first excited state to the ground one.

SCATTERING OF PARTICLES.
RUTHERFORD FORMULA

2.1. Employing the Thomson model, calculate: (a) the radius of
a hydrogen atom whose ionization energy is equal to 13.6 eV; (b) the
oscillation frequency of the electron if the radius of a hydrogen atom
is r. At what value of r is the wavelength of emitted light equal to
0.6 pm?

2.2. To what mdnimum distance will an alpha-particle with
kinetic energy T = 40 keV approach, in the case of the head-on
collision: (a) a stationary Pb amucleus; (b) a stationary Li’ nucleus?

2.3. Using the laws of conservation of energy and angular momen-
tum, derive formula (2.1).

2.4. An alpha-particle with momentum 53 MeV/ec (c is the velocity
of light) is scattered at the angle 60° by the Coulomb field of a sta-
tionary uranium nucleus. Find the aiming parameter.

2.5. An alpha-particle with kinetic energy T strikes a stationary
Pb nucleus with the aiming parameter 0.90.-10-'* cm. Find: (a) the
modulus of the momentum vector increment of the scattered alpha-
particle if 77 = 2.3 MeV; (b) at what value of T the modulus of the
momentum vector increment of the scattered alpha-particle will
be the greatest for the given aiming parameter. What is the magni-
tude of the scattering angle in this case?

2.6. To what minimum distance will a proton with kinetic energy
T = 0.87 MeV approach a stationary Hg nucleus, if the scattering
angle is equal to & = n/2? Compare this distance with the corre-
sponding value of aiming parameter.

2.7. A non-relativistic particle of mass m and kinetic energy T
is elastically scattered by initially stationary nucleus of mass M.
Find the momentum of each particle and their combined kinetic
energy in the C frame.

2.8. Substantiate the construction of the vector diagram of momen-
ta shown in Fig. 3. Draw the similar diagrams for the cases m = M
and m > M.
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2.9. A non-relativistic particle of mass m;, and kinetic energy T
undergoes a head-on collision with initially stationary particle of
mass m,. Find the kinetic energy of the incoming particle after
the collision.

2.10. Find the maximum value of the angle at which an alpha-
particle is scattered by an initially stationary deuteron.

2.11. A non-relativistic deuteron is elastically scattered by an
initially stationary H* nucleus through the angle ¥. Find this angle

if in the C frame the corresponding angle is equal to ¢ = 43°.

2.12. A deuteron with kinetic energy 15.0 keV and aiming param-
eter 0.60-10-2 ¢m is scattered by the Coulomb field of a stationary
He* nucleus. Find the deuteron’s scattering angle in the L frame.

2.13. A proton with the aiming parameter b = 2.5-10"1! cm
is elastically scattered at right angles by the Coulomb field of a
stationary deuteron. Find the relative velocity of the particles after
scattering.

2.14. As a result of elastic scattering of a proton with kinetic
energy T = 13.0 keV by the Coulomb field of a stationary He*
nucleus the latter recoils at an angle ¢’ = 60° to the motion direction
of the incoming proton. Calculate the aiming parameter.

2.15. An alpha-particle with kinetic energy 7T = 5.0 keV is
elastically scattered by the Coulomb field of a stationary deuteron.
Find the aiming parameter corresponding to the greatest possible
scattering angle of the alpha-particle in the L frame.

2.16. After scattering of an alpha-particle with kinetic energy
T = 29 keV by the Coulomb field of a stationary Li® nucleus the
latter recoils at an angle 4 = 45° to the motion direction of the
incoming particle. To what minimum distance do both particles
approach in the process of interaction?

2.17. A stationary sphere of radius R is irradiated with parallel
flux of particles of radius r. Assuming the collision of a particle with
the sphere to be perfectly elastic, find:

(a) the deflection angle ¥ of a particle as a function of its aiming
parameter 0;

(b) the fraction of particles which after collision with the sphere
are scattered in the angular interval from ¢ to & + d9, and also the
probability of a particle being scattered into the front hemisphere
(O << n/2).

2.18. Using formula (2.1) derive the expressions for the relative
number of alpha-particles scattered in the angular interval (0, % + d9)
and for the corresponding cross-section of a nucleus.

2.19. A narrow beam of protons with kinetic energy 100 keV
falls normally on a golden foil of thickness 1.0 mg/cm?. The protons
scattered through the angle 60° are registered by a counter with
round inlet of the area 1.0 cm? located at the distance 10 cm from
the scattering section of the foil and oriented normally to the motion
direction of incident protons. What fraction of the scattered protons
reaches the counter inlet?
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'2.20.. Calculate the cross-section of Au nucleus causing protons
with kinetic energy 7' = 1.20 MeV to scatter through the angular
interval from 9 = n/3 to .

2.21. Alpha-particles with kinetic energy 7T = 1.70 MeV are
scattered by the Coulomb field of Pb nuclei. Calculate the differential
cross-sections of these nuclei, do/d® and do/dQ, corresponding to
scattering' through an angle ¥ = 7/2.

2.22. The differential cross-section of scattering of alpha-particles
by the Coulomb field of a stationary nucleus is equal to do/dQ =
= 7.0-10~* em?/sr for an angle 9, — 30°. Calculate the cross-section
of scattering of alpha-particles for the angles ¥ > 0,

2.23. Find the probability for an alpha-particle with energy
T = 3.0 MeV to be scattered after passing through a lead foil 1.5 um
in thickness into the angular interval (a) 59-61°; (b) 60-90°.

2.24. A narrow beam of alpha-particles with kinetic energy
1.00 MeV and intensity 3.6-10* particles per second falls normally
on a golden foil of thickness 1.0 pm. Find the number of alpha-
particles scattered by the foil during 10 min into the angular interval
(a) 59-61°% (b) 9> 9, = 60° (¢) O < &, = 10°.

2.25. A narrow beam of protons with kinetic energy I' = 1.0 MeV
falls normally on a brass foil whose mass thickness is p-d =
= 1.5 mg/cm® Find the fraction of the protons scattered through the
angles exceeding ®,+= 30° if the weight ratio
of copper to zinc in the foil is 7:3.

2.26. A narrow beam of alpha-particles of
equal energy falls normally on a lead foil
with mass thickness 2.2 mg/em?. The fraction
of the original flux scattered through angles
exceeding U = 20° is equal to 1 = 1.6.10-3.
Find the differential cross-section do/dQ of
a Pb nucleus corresponding to a scattering
angle 4, = 60°.

_2.27. A plane flux of alpha-particles with
kinetic energy T falls normally on a thin gold-
en foil cut in the shape of a flat ring (Fig. 9).
The flux density of alpha-particles is equal to IV, particles per cm?
per second. The foil contains n nuclei per 1 cm? area. Find N', the
number of alpha-particles reaching the screen near the point S per 1
Second per 1 cm? area. The angles &, and 9, are known, and scattering
through these angles obeys the Rutherford formula.

Fig. 5

HYDROGEN-LIKE ATOMS

_ 2.28. Estimate the time interval during which an electron moving
In a hydrogen atom along an orbit of radius 0.5-10-% ¢m would have
fallen to the nucleus, if it had been losing energy through radiation
In accordance with classical theory: dE/dt = — (2¢2/3c®) w?, where
W is the acceleration of the electron. The vector w is assumed
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to be permanently directed toward the centre of the atom.

2.29. A particle of mass m moves along a circular orbit in the
central-symmetry potential field U = «r?/2. Using the Bohr quan-
tization condition, find the permissible orbital radii and energy levels
of the particle.

2.30. Calculate the ratio of the Coulomb and gravitational forces
acting between an electron and a nucleus in a hydrogen atom.

2.31. Assuming the nucleus to be stationary, calculate for a
hydrogen atom and He* and Li** ions: (a) the radii of the first and
second Bohr orbits and the velocities of an electron moving along
them; (b) the kinetic energy and binding energy of the electron in
the ground state; (e) the first excitation potential and wavelength of
resonance line.

2.32. Demonstrate that the photon frequency o corresponding
to the electronic transition between neighbouring orbits of hydrogen-
like ions satisfies the inequality ®, > o > w,+,, where ©, and
©,+; are the circular frequencies of the electron moving along these
orbits. Make sure that o — w,, if n — oo.

2.33. In the spectrum of some hydrogen-like ions the three lines
are known, which belong to the same series and have the wavelengths
992, 1085, and 1215 A. What other spectral lines can be predict-
ed?

2.34. Calculate and draw on the wavelength scale the spectral
intervals in which the Lyman, Balmer, and Paschen series for
atomic hydrogen are confined. Indicate the visible portion of the
spectrum.

2.35. (a) Calculate the wavelengths of the first three spectral
lines of the Balmer series for atomic hydrogen. (b) What is the
minimum number of slits needed for a diffraction grating to resolve
the first 30 lines of the Balmer series of atomic hydrogen in the second
order?

2.36. The emission spectrum of atomic hydrogen has two lines
of the Balmer series with wavelengths 4102 and 4861 A. To what
series does a spectral line belong, if its wave number is equal to the
difference of the wave numbers of the two lines? What is the magni-
tude of its wavelength?

2.37. Atomic hydrogen is excited to the nth energy level. Deter-
mine: (a) the wavelengths of emission lines if n = 4; to what series
do these lines belong? (b) how many lines does hydrogen emit when
n = 10?

2.38. What lines of the atomic hydrogen absorption spectrum
fall within the wavelength range from 945 to 1300 A?

2.39. Find the quantum number n corresponding to the excited
state of a hydrogen atom, if on transition_ to the ground state the
atom emits: (a) a photon with A = 972.5 A; (b) two photons with
A, = 6563 A and A, = 1216 A.

2.40. What hydrogen-like ion has the difference of wavelengths
of the main lines of Balmer and Lyman series equal to 593 A?
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2.41. Find the binding energy of an electron in the ground state
of hydrogen-like ions in whose spectrum the third line of the Balmer
series is equal to 1085 A.

2.42. The binding energy of an electron in a He atom is equal to
E, = 24.6 eV. Find the energy required to remove both electrons
from the atom.

2.43. Find the velocity of electrons liberated by light with wave-
length A = 180 A from He* ions in the ground state.

2.44. A photon emitted by He* ion passing from the first excited
state down to the ground one ionizes a hydrogen atom in the esround
state. Find the velocity of the photoelectron. °

2.45. At what minimum kinetic energy of a moving hydrogen
atom will its inelastic head-on collision with another, stationary,
hydrogen atom produce a photon emitted by one of the atoms? Both
atoms are supposed to be in the ground state prior to the collision.

2.46. Determine the velocity which a stationary hydrogen atom
obtains due to photon emission resulting from transition of the atom
from the first excited state down to the ground one. How much (in
per cent) does the energy of the emitted photon differ from the tran-
sition energy?

2.47. When observed at the angle 45° to the motion direction, a
beam of excited hydrogen atoms seems, to radiate the resonance line
whose wavelength is shifted by 2.0 A. Find the velocity of the
hydrogen atoms.

2.48. A ‘He“f ion approaching a hydrogen atom emits a photon
corresponding to the main line of the Balmer series. What must be
the minimum approach velocity to enable the photon to excite the
hydrogen atom from the ground state? Instruction: make use of the
precise formula for the Doppler effect.

2.49. Taking into account the motion of the nucleus in a hydrogen
atom, find the expressions for the electron’s binding energy in the
ground state and for the Rydberg constant as a function of nuclear
mass. How much (in per cent) do the binding energy and Rydberg
constant, obtained when neglecting the motion of the nucleus, differ
from the more accurate corresponding values of these quantities?

2.50. Calculate the proton to electron mass ratio if the ratio of
Rydberg constants for heavy and light hydrogen is equal to N =
= 1.000272 and the ratio of their nuclear masses is n — 2.00.

2.51. For atoms of light and heavy hydrogen find the difference:
(a) of the binding energies of their electrons in the ground state;
(b) of the first excitation potentials; (c) of the wavelengths of the
resonance lines.

2.52. For a mesonic hydrogen atom (in which an electron is
replaced by a meson whose charge is the same and mass is 207 that
of electron) calculate: (a) the distance between a meson and a nucleus
in the ground state; (b) the wavelength of the resonance line; (c) the
ground state binding energies of the mesonic hydrogen atoms whose
nuclei are a proton and a deuteron.
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2.53. For a positronium consisting of an electron and a positron
revolving around their common centre of masses find: (a) the distance
between the particles in the ground state; (b) the ionization poten-
tial and first excitation potential; (c) the Rydberg constant and
wavelength of the resonance line.

2.54. According to the Bohr-Sommerfeld postulate the following
quantization rule has to be satisfied in the case of a particle moving
in a potential field:

ZS pedg=2nk-n,

where ¢ and p, are the generalized coordinate and projection of
generalized momentum (z, p, and ¢, L), n is an integer. Using this
rule, find the allowed energy values F for a particle of mass m moving:

(a) in a unidimensional rectangular potential well of width I
with infinitely high walls;

(b) in a unidimensional potential field U = %2?/2, where x is a
positive constant;

(c) along the circle of permanent radius r;

(d) along a round orbit in a central field, where the potential
energy of the particle is equal to U = —a/r (« is a positive constant).

3
WAVE PROPERTIES OF PARTICLES

@ de Broglie relations for energy and momentum of a particle:

E = ho; p = hk, 3.1)
where o is the frequency of the de Broglie wave, and k = 2n/A.
@ Uncertainty principle
Az-Ap, > h. (3.2)
@ Schrodinger equation in the time-dependent and time-independent form
2
in ﬂ———— ‘ﬁ V¥ UW,
at 2m
(3.3)

e o 2L ,
V‘LT*}T(E"U)\PZO,

where ¥ is the total #ave function, ¢ is its coordinate part, V2 is the Laplace
operator, £ and U are the total and potential energies ol the particle.

® Energy eigenvalues and eigenfunctions of a particle of mass m in the unidi-
mensional potential field U’ (z) == %z%/2 (a harmonic oscillator with frequency

o= Vnm):
Enzhw(n—}—%);

where n=0, 1. 2, ...;

o n
Yo (&)= an (— 1P &2 75;—” %, (3.4

E=onux: o=V molk; a, is the normalizing factor.

@ Coefficient of transparency D of the potential barrier U (z):

Xa
' D= exp[——i— \ V 2m (U—E)dx:l, (3.5)

xq

where z; and z, are the coordinates of the points between which U > E.

DE BROGLIE WAVES.
UNCERTAINTY PRINCIPLE

3.1. Calculate the de Broglie wavelengths of an electron and
proton moving with kinetic energy 1.00 keV. At what values of
kinetic energy will their wavelengths be equal to 1.00 A?

3.2. The 200 eV increase in electron’s energy changes its de
Broglie wavelength by a factor of two. Find the initial wavelength
of the electron.

3.3. Calculate the wavelength of hydrogen molecules moving with
the most probable velocity in gas at the temperature 0°C.
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3.4. Determine the kinetiec energy of a proton whose wavelength
is the same as that of an alpha-particle with Bp = 25 kG-cm.

3.5. What amount of energy should be added to an electron with
momentum 15.0 keV/c to make its wavelength equal to 0. 50 A

3.6. A proton with wavelength A = 0.017 A is elastically scattered
through the angle 90° by an initially stationary particle whose mass
is n = 4.0 times larger than the proton’s. Find the wavelength of the
scattered proton.

3.7. A neutron with kinetic energy 7' = 0.25 eV collides elastical-
ly with a stationary He?* nucleus. Find the wavelengths of both par-
ticles in the C frame before and after the collision.

3.8. Two atoms, H! and He*, move in the same direction, with
the same de Broglie wavelength A == 0.60 A. Find the wavelengths of
both atoms in the C frame.

3.9. A relativistic particle with rest mass m possesses the kinetic
energy 7. Find: (a) the de Broglie wavelength of the particle; (b) the
values of 7 at which the error in wavelength obtained from the non-
relativistic formula does not exceed 1.0% for an electron and a pro-
ton.

3.10. At what value of kinetic energy is the de Broglie wavelength
of an electron equal to its Compton wavelength?

3.11. Find the wavelength of relativistic electrons reaching the
anticathode of an X-ray tube, if the short wavelength limit of the
continuous X-ray spectrum is equal to 0.100 A.

3.12. Using Maxwell’s distribution of velocities find the distri-
bution of molecules of gas over de Broglie wavelengths and the most
probable wavelength of hydrogen molecules at 7 = 300 K.

3.13. The velocity distribution function of atoms in a beam has
the form f (u) ~ ule~**, where u is the ratio of the atom’s velocity
in the beam to the most probable velocity vy, in the source
Vpr = VQkT/m). Find the distribution function in terms of de
Broglie wavelengths. Calculate the most probable wavelength in the
beam of He atoms provided the source temperature is 300 K.

3.14. Determine the kinetic energy of electrons falling on a
diaphragm with two narrow slits, if on a screen located at a distance
! = 75 cm from the diaphragm the separations between neighbouring
maxima Az and between the slits d are equal to 7.5 and 25 pm re-
spectively.

3.15. A narrow stream of monochromatic electrons falls at a

grazing angle O = 30° on the natural facet of an aluminium single .

crystal. The distance between nelghbourmg crystal planes parallel
to that facet is equal to d = 2.0 A. The maximum mirror reflection is
observed at a certain accelerating voltage V. Determine V if the next
maximum mirror reflection is observed when the accelerating volt-
age is increased v = 2.25 times.

3.16. A stream of electrons with kinetic energy 7' = 180 eV falls
normally on the surface of a Ni single crystal. The reflecting maxi-
mum of fourth order is observed in the direction forming an angle
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o = 55° with the normal of the surface. Calculate the interplanar
distance corresponding to that reflection.

3.17. A stream of electrons with kinetic energy T = 10 keV
passes through a thin polycrystalline foil forming a system of diffrac-
tion fringes on a screen located at a distance ! = 10.0 cm from the
foil. Find the interplanar distance that is responsible for the reflec-
tion of third order forming a diffraction ring of radius r = 1.6 c¢m.

3.18. A stream of electrons accelerated through the potential
difference V falls on a surface of nickel whose inner potential is
V; = 15 V. Calculate: (a) the refractive index of nickel when V =
= 150 V; (b) the values of the ratio V/V; at which the refractive
index differs from unity by not more than 1.0%

3.19. With allowance made for refraction of electron waves,
Bragg's formula takes the form

2d V'n® — cos 92 = kA,

where d is the interplanar distance, » is the refractive index, 9 is the
grazing angle, k is the reflection order, A is the wavelength of the
electrons.

(a) Derive this formula, assuming the reflecting planes to be
parallel to the surfag.e of the single erystal.

(b) Find the inner potential of an Ag single crystal, if a stream of
electrons accelerated through a . potential difference V' = 85V forms
a maximum of second order dué to the mirror reflection from crystal
planes with d = 2.04 A. The grazing angle is ¢ = 30°.

3.20. A particle of mass m moves in a unidimensional square
potential well with infinitely high walls. The width of the well is
equal to /. Find the allowed energy values of the particle taking into-
account that only those states are realized for which the whole
number of de Broglie half-wavelengths are fitted within the well.

3.21. Describe the Bohr quantum conditions in terms of the wave
theory: demonstrate that stationary Bohr orbits are those which
accommodate a whole number of de Broglie waves. Find the wave-
length of an electron in the nth orbit.

3.22. Assuming that the wave function ¥ (z, ¢) describing a
moving particle represents a superposition of de Broglie waves of
equal amplitudes and slightly differing wave numbers ko + Ak:
(a) transform V¥ (z, t) to the form ¥ (z, t) = A4 (z, t) et (@ol~kox);
find the explicit expression for the function A (z, t); (b) derive the
expression describing the displacement velocity of the given group of
waves, i.e. for the maximum of the function 4 (z, t).

3.23. Demonstrate that the group velocity of a wave packet is.
equal to the velocity of a freely moving particle. Consider both
non-relativistic and relativistic cases.

3.24. Demonstrate that a narrow slit of width b used in measure-
ments of z coordinates of particles introduces the uncertainty Ap,
in their momenta, such that Az-p, > A.
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3.25. Make sure that the measurement of the x coordinate of a
particle by means of a microscope (Fig. 6) introduces the uncertainty
Ap, in its momentum, such that Az-Ap, >= /i. Remember that the
microscope resolution d = A/sin ¥, where A is the wavelength of
light used in the measurements.

3.26. A plane stream of particles falls normally on a diaphragm
with two narrow slits and forms a diffraction pattern on a screen
{Fig. 7). Demonstrate that an attempt to determine through which

]

-
®
~
|

Fig. 6 Fig. 7

slit a specified particle passed (for example, by means of an indica-
tor I) results in blurring of the pattern. For simplicity the diffraction
angles are assumed to be small.

3.27. Estimate the minimum error of determining the velocity
-of an electron, proton, and uranium atom, if their coordinates are
known with uncertainty 1 pm.

3.28. Evaluate the indeterminancy of the velocity of an electron
in a hydrogen atom assuming the size of the atom to be about
10-% em. Compare the obtained value with the velocity of an electron
in the first Bohr orbit.

3.29. Estimate for an electron localized in the region of size I:
(a) the lowest possible kinetic energy, if [ = 1.0-107% cm; (b) the
relative velocity uncertainty Av/v, if its kinetic energy 7 = 10 eV
and ! = 1.0 pm.

3.30. A particle is located in a unidimensional potential well of
width [ with infinitely high walls. Evaluate the pressure exerted by
the particle on the walls of the well at the lowest possible value
Enin of its energy.

3.31. A particle with mass m moves in a unidimensional potential
field U (x) = #2?/2 (a harmonic oscillator with frequency o =
= ¥V %/m). Evaluate the lowest possible energy of this particle.

3.32. On the basis of the uncertainty principle evaluate the
electron’s binding energy in the ground state of a hydrogen atom
and the corresponding distance between the electron and the nucleus.

3.33. Evaluate the lowest possible energy of electrons in a He
atom and the corresponding distance between the electrons and the
nucleus.
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3.34. The kinetic energy of a free moving non-relativistic particle
is known with relative uncertainty about 1.6-107%. Evaluate how
much the coordinate uncertainty of such a particle exceeds its de
Broglie wavelength.

3.35. A free electron was initially confined within a region with
linear dimensions [ = 10~% cm. Evaluate the time interval during
which the width of the corresponding train of waves increases by
a factor of n = 10%

3.36. A parallel stream of hydrogen atoms with velocity v =
= 1.2.10° m/s falls normally on a diaphragm with a narrow slit
behind which a screen is placed at a distance [ = 1.0 m. Using the
uncertainty principle, evaluate the width of the slit at which the
width of its image on the screen is minimal.

3.37. Find the density of probability distribution for a particle
and effective dimensions of its localization region, if the state of the
particle is described by the wave function { (z) representing a super-
position of de Broglie waves whose amplitudes depend on wave
numbers k& as follows:

a = const (in the interval &k, = Ak, Ak < k});
(a) ap = 0 0
k 0 (outside this interval);

(B) @ = e uhon,

where k, and o are constants.
3.38. Find the spectrum of wave numbers & of de Broglie waves
whose superposition forms the wave function:

_ { ethox (in the interval [ > x > —I);
(a) ¢ (z) _{ 0 (outside this interval);

(b) P (x) = ethox—a?

where %, and o are constants.
Estimate the wave number interval in which the amplitude of
individual de Broglie waves appreciably differs from zero.

SCHRODINGER EQUATION.
PENETRATION OF A PARTICLE THROUGH A BARRIER

3.39. What solutions of the Schridinger time-dependent equation
are called stationary? Demonstrate that such solutions are obtained
when U depends on time implicitly.

3.40. How will the total wave function ¥ (z, ¢) describing sta-
tionary states change, if the origin of potential energy scale is shifted
by the certain value AU?

3.41. Solve the Schrdodinger time-dependent equation for the case
of a free particle moving in the positive direction of the z axis with
momentum p.

3.42. Demonstrate that the energy of a free moving particle can
be of any magnitude.
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3.43. A particle of mass m is located in a unidimensional square
potential well with absolutely impenetrable walls (0 <<z < [).
Find: (a) the energy eigenvalues and normalized eigenfunctions of
the particle; (b) the probability of the particle with the lowest energy
staying within the region /3 << z <C 21/3; (c) the number of energy
levels in the interval (£, E - dE).

3.44. A particle of mass m is located in a two-dimensional square
potential well with absolutely impenetrable walls (0 << x < a,
0 << y << b). Find: (a) the energy eigenvalues and normalized eigen-
functions of the particle; (b) the probability of the particle with the
lowest energy staying within the region 0 << x < a/3, 0 << y << b/3;
(¢) the energy values of the first four levels, if ¢ = b = I; (d) the
number of states that the particle possesses in the energy interval
(E, E -+ dE).

3.45. A particle of mass m is located in a three-dimensional square
potential well with absolutely impenetrable walls (0 << z << a,
0 <<y<<b, 0<<z<Cc) Find: (a) the energy eigenvalues and nor-
malized eigenfunctions of the particle; (b) the energy difference
between the third and fourth levels, if
a="b=c¢=1; (¢ the number of
states corresponding to the sixth level
(the degree of degeneracy), if a =b =¢;
(d) the number of states in the energy
interval (E, E + dE).

3.46. Demonstrate that at the point,
where the potential energy U (z) of a U
particle has a finite discontinuity, the 0
wave function remains smooth, i.e. its
first derivative with respect to coordi- 0 1 X
nate is continuous.

3.47. A particle of mass m is lo-
cated in the unidimensional potential
field U (z) whose shape is shown in Fig. 8. Find: (a) the energy
eigenvalues of the particle in the region E > U,; (b) the equation
describing the energy eigenvalues of the particle in the region £ <C
< Uy; transform it into the form

U

Fig. 8

sin kl = & VERmBU kI, k =V 2mE/h;

demonstrate by graphical means that the energy eigenvalues of the
particle form a discontinuous spectrum; (¢) the values of [2U, at
which the first and nth discrete levels appear. What is the total
. number of levels in the well for which 12U, = 754%/m? (d) The value
© of 12U, at which the energy of the only level is equal to £ = U,/2.
What are in this case the most probable coordinate of the particle
and probability of the particle being outside the classical boundaries
of the field? (e) The discrete energy levels of the particle, if 12U, =
= (25/18)n24%/m.

28

3.48. A particle of mass m is located in a symmetrical potential
field (Fig. 9). Find: (a) The equation defining the energy eigenvalue
spectrum of the particle in the region £ < U,; reduce that equation
to the form
L V 3mE

kl =nn—2 aresin ———;
}/ZmU0 ' k ?

where n is an integer. Solving this equation by graphical means,
demonstrate that the energy eigenvalues are discrete. (b) The value

14 v

0 / {7 { X
Fig. 9 Fig. 10

of *U, at which the energy of the particle in the ground state is
equal to £ = U,/2. What is the probability of the particle being
outside the well? (e) The value of [2U, at which the second level
appears. What is the energy of the ground state? (d) The value of
I2U, at which the nth level appears. How many discrete levels does
the given well contain, if 12U, = 754%/m?

3.49. A particle of mass m is located in a potential field shown
in Fig. 10, where U, << U,. Find: (a) the equation defining the
energy eigenvalue spectrum of the particle in the region F << U,;
reduce that equation to the form

hk

— arcsin ——————
Vim0, "’

kl = nn —arcsin

hk
V imU,
where n =1, 2, ..., k = V2mE/A;
U(b) thUe value of U, at which the first discrete level appears, if

s = 2U,.

3.50. Using the Schrédinger equation, find the energy of a harmonic
oscillator of frequency o in the stationary state (a) ¥ (z) = Ae~a*;
(b) ¢ () = Bxe=2***, where 4, B and a are constants.

3.51. The Schrédinger equation for a harmonic oscillator of
frequency  can be reduced to the form yi + (A — E2)¢ = 0, where
§ = ax, a is a constant, A is a parameter whose eigenvalues are equal
to 2n +1 (n =0, 1, 2, ...). Find the oscillator’s energy eigen-
values.

3.52. Making use of the formula given in the introduction to
Chapter 3, find for the first three levels of an oscillator of mass m
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and frequency : (a) the eigenfunctions and their normalization
coefficients; (b) the most probable values of the oscillation coordi-
nate x. Draw the approximate graphs of the probability density func-
tion for z values in these states.

3.53. A particle in the ground state is located in the unidimension-
al potential field U (z) o< z%. What is the probability of the particle
being outside the classical limits of the field?

3.54. Provided the eigenfunctions and energy eigenvalues of a
harmonic oscillator are known, find the energy eigenvalues of a
particle of mass m moving in the unidimensional potential field
U (x) = xa?/2 at z >0 and U = oo at x <L 0.

3.55. A particle of mass m moves in a three-dimensional potential

field U (z, y, 3) =%(x'~' + y? -+ 2?%), where » is the quasi-elastic

force constant. Determine: (a) the particle’s energy eigenvalues;
(b) the degree of degeneracy of the nth energy level.
Instruction. Use the formulas for a unidimensional oscillator.
3.56. A particle of mass m and energy E approaches a square
potential barrier (Fig. 11) from the left-hand side. Find: (a) the

o
Ul
\ E
1% - :
y X
7l X Yo
Fig. 11 Fig. 12

coefficients of reflection R and transparency D of the barrier for the
case £ > U,. Make sure that the values of these coefficients do not
vary with the direction of incident particles; (b) the reflection coef-
ficient R, if £ <C U,. For this case determine the effective penetra-
tion depth x.g, i.e. the distance from the barrier boundary to the
point at which the probability of finding a particle decreases e-fold.
Calculate z.y for an electron, if U, — F = 1.0 V.

3.57. A particle of mass m and energy E approaches a square
potential well (Fig. 12). Find: (a) the coefficients of transparency D
and reflection R; (b) the values of E at which the particle would
freely pass that well. Demonstrate that it happens when ! = nA/2,
where A is the particle’s wavelength in the well, n =0, 1, 2, . . ..

3.58. A particle of mass m and energy E tunnels through a square
potential barrier (Fig. 13). Find: (a) the coefficients of transparency
D and reflection R for the case £ > U,. See that the expressions
obtained coincide with the corresponding formulas of the previous
problem provided the sign of U, is reversed. Find D for £ — U,;
(b) the first three values of £ at which an electron would freely tun-
nel through such a barrier, if U, = 10.0 ¢V and [ = 5.0-10~% ¢m;
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(c) the transparency coefficient D for the case E << U,,. Simplify

the obtained expression for D < 1; (d) the probability of an electron
and proton with £ = 5.0 eV tunnelling through that barrier, if
Uy=10.0 ¢V and [ = 1.0-10-8 cm.

3.59. Find the transparency coefficient of a potential barrier

shown in Fig. 14 for a particle of mass m and energy E. Consider

1/
U Z/U'l

A

, Al
£ U £ Uz U ; E.
NS
) I 2 i
0 1 X g A X g

< 0 U x
Fig. 13 Fig. 14 Fig. 15

the two cases: (a) £ > U,; (b) U, > E > U,. See that the obtained
expressions coincide with the solutions of Problem 3.58, (a) and
(c), when U, = 0,

3.60. Using formula (3.5), find the probability of a particle of

mass m and energy F tunnelling through the potential barrier shown
in (a) Fig. 15; (b) Fig. 16, where U (z) = U, (1 — 2%/1%).

Uy ' uh
£ \L £
T 0 | x 0 \
Fig. 16 Fig. 17

3.61. A particle of mass m and energy E tunnels through a
barrier of the form

i 0 at z<< 0
U(x)=
Uy/(14zla) at z>0,
where U, is the barrier height (Fig. 17), a is a positive constant.

Using formula (3.5), demonstrate that the transparency coefficient
of that barrier is equal to

D~ e % (T=2¢¢=sin 2¢,) ,

it £E<<U,, with x = (aU/h) V2m[E, ¢, = arcsin V E/U,. Sim-
plify the obtained formula for the case £ < U,.

Instruction. When integrating, introduce the new variable ¢
according to the formula sin?¢ = E/U (z).

R |
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4
FUNDAMENTALS OF QUANTUM MECHANICS*

@ Operator A is linear if

A (e1Py -+ ca¥p) = ¢ A+ €2 A, (4.1)
-where ¢, and ¢, are constants; ¥, and {, are arbitrary functions.
@ Operators 4 and B are commutative if their commutator
(A, B|=AB—BA=o0. (4.2)

® Operator A is hermitian (seli-conjugate) if
| wady, ar= [ wadeypaz, (4.3)

where P; and ¢, are arbitrary functions.
@ Expansion of the function ¥ into eigenfunctions P, which compose the dis-
crete spectrum of a certain operator:

en= | woi dz. (4.4)

o

Y (2) = ) entbn (2);
@ Mean value of a mechanical quantity 4 in a state ¥:
() ey, (4.5)

where A is the corresponding operator; ¥ is the normalized wave function;
dt is a unit volume.
@ Schrédinger equation inTjoperator form:

ov
.0t

%

=AY, (4.6)

ili

where I is the total energy operator (the Hamiltonian).

@ Time derivative of operator A
= U, A, (4.7)

where [, A] is the commutator of operators; H is the Hamiltonian.

* In this chapter all operators (except for the coordinates and functions
that depend on coordinates only) are marked with the sign “.” over a letter.
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® Basic quantum-mechanical operators:

projection and square of momentum ;:—ih %, 272:212—[—}72 _|.Ap2-
T x Y 2!

total encrgy (the Hamiltonian) A= [;2 +U*—~—~h2
T 2m am VAU

o A A A oA A
rojections é v = p
proi of angular momentum Ly=yp,—zpy, Ly=1zpy —ap,,

i —pr 5 i 0
z y—YPx= —1 ag
square of angular momentum Iz Z%+Z2_{_ 12— — 1V,
X Y z " , ¢

where V2 is the Laplace operator taking the following fo . .
coordinates: g form in spherical

¢ 290 1

Ve b S V3 s
ot T ar e Vs, @’
1 a . [7] 1 0?
Ve, e o A T R S
¥, ¢ " sin 9 99 (sm o o )4-—51112 9 o2 ?

with V%Y . designating the angle-dependent part of the Laplace operator.
® Eigenvalues and cigenfunctions of the operator J2H

Lr=1(+4-1) 12,

Yim (8, @) =6y, (&) ™,

1=0,1,2, ..., (4.8)

m=0, 41, +2, ..., L. (4.9)

The functions 0 (ﬁ} for s-, p-, and d°states are presented in Table 4.1 (accurate
except for normalization factor).

Table 4.1 Table 4.2

State L, m 01| m (® State n, ! R(p), p=r/ry
s 0, 0 1 1s 1, 0 e—0
p { 1, 0 cos ¥ 2s 2, 0 (2—p)e*0/2
1,1 | sin® 2p | 2,1 pe—0/2
[ 2,0 | 3cos29—1 3s 3, 0 (21— 81p 4 202) e~ /3
d 2,1 sin O cos & 3p 3,1 9(6*9)3-0/3
l 2, 2 sin? 9 3d 3, 2 p2e=P/3

@ Schridinger equation for the radial part of wave function R (r) in the central-
symmetry field U (r):

02R 2 OR 2m . 12
or? _*—T T+T(F~—L T omr2 ) 0. (4.10)

The functions R (r) for hydrogon—like atoms are given in Table 4.2 (accurate
except for normalization factor); the symbol ry in the table denotes the first
Bohr radius.
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QUANTUM-MECHANICAL OPERATORS

4.1. Check the following operator equalities:

d d
(@) zzr=1+2

(b) 2P~ 1
d d d
(© (144 ) =1+25+5s
d \2 a2
(d) (x-{~%) ‘1+:c2—4—21—+ T
1 d \2_ & | 2 d
(e) (7—3‘;1) =y = dz ?
9 . 8 \2_ o 92 92
0 (5+ay) ==+ 2T Top
4.2. Find the result of operation carried out by the operato1s

dx? dx
4.3. Find the eigenvalue of the operator A corresponding to
the eigenfunction 4, if:

—fl—xz and (—d— x)z on the functions: (a) cosz and (b) e*.

A

A qz .
(a) A= ——, P, = sin 2x;
A a2 a
(h) A:_d 2+x2, 1PA—_—6-.\:/2;
sin ox
(c) A= x2 + z d?: Va=—""-

4.4. Find the eigenfunctions { and eigenvalues of the following
operators:

(a) —i —C%, if ¢ (z) = (x +a); a is a constant;
B — =, it $=0at 2=0 and r=1.

4.5. Demonstrate that if the operators A and B are linear, the

operators A+ B and AB are also linear.
4.6. Prove the following commutative relations:

(a) 14,3 B, =2 4, Bl (b)[A BCl=14,B1C + B4, Cl
4.7. Prove that if the operators A and B commute, then

(a) (A + 3)2 _ Azt 2iB+Bn A+ B)d — B)y=A"— B
(b) (] +B), (4 — B)] = 0.

48. Suppose A2 =3 A3, Prove that if the operatorsA commute

with the operator B the operators A% and B also commute.
L3
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4.9. Prove that if the commutator [A, Bl = 1, then
(a) 14, B2 = 2B; (b) [4, B3] = 3B%; (e) [42, B2] = 2 (AB + BA).

4.10. Check the following equalities involving commutators:

(a) Iz, pel = in, Iz, p,) =0, Ips, ‘,/] —0;
(b) [f (2), pal= ih—= f , 17 (2), pii= 2171 -+ A2 gfz ;
(c) [xzv [I, p;”: —47L2x.

In the above equalities f (x) denotes an arbitrary function of a
coordinate.
4.11. Check the following commutation rules for the Hamiltonian

“ H in the potential field U (z):

it

in o~
(a) [ I]; _—m_' Paxs
(b) (&, pa)= lh— ;
. 02U
at px“‘h"'a_»-
4.12. The operatorfi commutes with operators B and €. Can one

infer that the operators B and € are commutative?

4.13. l?rove the following theorems: (a) if the operators 4 and B
have their characteristic functions (eigenfunctions), such operators

commute; ‘(b) if the operators A and B commute, they have common
eigenfunctions. The proof is to be carried eut for the case when there
is no degeneracy.

4.14. Find the common eigenfunction of the following operators:

) (azx and p;; (b) Das éy, and p.; (¢) px and p2.

5. In a certain §tate 1|4 a system possesses a definite value of
the mechanical quantity 4. Does the quantity B also possess a definite

value in that state provided the corresponding operators A and B
are commutative?

4.16. Prove that if the operator A is hermitian, its eigenvalues are

" real.

4.17. Prove that the following operators are hermitian: (a) py;

(b) TPy (c) px; (d) H. Instruction: note that in the infinity both wave
functions and their derivatives turn to zero.

4.18. Find the operator that is conjugate to the operator: (a) x}yx;v
(b) ip,.
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4.19. Prove that if the operators A and B are hermitian and com-
mutative, the operator AB is hermitian.

4.20. Prove that if the operator A is hermitian, the operator An
is also hermitian (n is a positive integer).

4,21. Prove that if the operators/f and B are hermitian, the oper-
ators A - B and AB + BA are also hermitian.

4.22. Prove that if the operators A and B are hermitian and non-

commutative, the operator (a) [A, B] is non-hermitian; (b) i [4, B]
is hermitian. ' .
4.23. Find the eigenvalues and normalized eigenfunctions of the

operators: (a) [:z; (b) Iz

4.24. Find the eigenvalue of the operator L2 that corresponds to
its eigenfunction Y (0, ¢) = A (cos ¥ + 2 sin ¥ cos ¢).

4.25. Prove that the operator iz is hermitian. The proof is to be
carried out both in (a) polar and (b) Cartesian coordinates.

4.26. Prove that the operator 2 is hermitian, taking into account
that the operators ix, ﬁy, and le are hermitian.

4.27. Check the following commutation rules:

(a) [z, i)x] = 0; (b) ly, [:x] = —ihz; (¢) [z, ﬁx] = ify.

4.28. Prove the following commutation rules:

(a) [Ly, Dxl = 05 (b) [Lg, ) = ipys (¢) [, p.) = —ihp,,.

4.29. Using the commutation rules of the foregoing problem,
demonstrate that:

(a) Ly p2l = 0; (b) [Ly, p*) = 0; (e) L2, p*l = 0.

4.30. Prove that the operator [.? and kinetic energy operator T

commute.
4.31. Check the following commutation rules:

(a) [Ly, L) = il (b) 1Ly, L, = ikl (e) [L,, L] = ink,.

4.32. Using the commutation rules of the foregoing problem,
demonstrate that: (a) the operatOI [} commutes with the operators
L., Lu, and Lz, (b) [L+, L] = ZﬁLZ, where L+ = L -+ lL and
L. =L, LJ.

4.33. A spatlal rotator can be pictured as a particle of mass p
moving at a permanent distance r, from a centre. Find the energy

elgenvalues of such a rotator, assuming the eigenvalues of the opera-

tor L2 to be known.
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MEAN VALUES AND PROBABILITIES

4.34. Prove that if a mechanical quantity A is described by the
hermitian operator A, then: (a) its mean value is real; (b) the mean
value of that quantity squared is (A?%) = 5 |Aq, 12 dz.

4.35. Demonstrate that in a unidimensional case

o= | (v — v L) de.

4.36. Demonstrate that the mean value of the particle’s momen-
tum projection equals zero provided its discrete spectrum is station-

ary. Instruction. Use the expression for the operator [;x in terms of

the commutator of the two operators H and zx.

4.37. Find the mean kinetic energy of a particle in a unidimension-
al square potential well with absolutely impenetrable walls
(0 <z < 1), if the particle is in the state: (a) ¢ (z) = A sin? (az/l);
(b) ¥ (@) — Az (I — 2),

4.38. Calculate the mean values of kinetic and potential energies
of an oscillator with frequency o in the ground statey (x) = Ae ¥,
where a? = #/2A0, % is the quasi-elastic force constant (U = »z?/2),

4.39. Calculate the mean values ((Az)?) and ((Apx)?) and their
product for (a) a partitle located in the nth level of a unidimensional
square potential well with absolutely impenetrable walls
(0 <o << 1); (b) an oscillator i the ground state ¢ (z) = Ae **?
(c¢) a particle in the state ¢ (z) = Aethx-a2x2,

4.40. Determine the mean value of a mechanical quantity, de-

scribed by the operator I:E, in the state  (g) = A sin? ¢.
4.41. Calculate the mean values ((Ag)?) and ((AL,)?) and their
product for a system in the state \ (¢) = 4 sin ¢.

4.42. Demonstrate that in the state {, where the operator L,
has a definite eigenvalue, the mean values (L,) and (L,) are equal
to zero. Instruction. Make use of the commutative relations given
in Problem 4.31.

4.43. Calculate the mean value of the squared angular momentum
in the state ¢ (¥, @) = A4 sin ¥ cos ¢.

4.44. The allowed values of projections of angular momentum on
an arbitrary axis are equal to m#A, where m —= [, 1 — 1, ..., —L
Keeping in mind that these projections are equally probable and
all axes are equivalent, demonstrate that in the state with definite
value of [ the mean value of the squared angular momentum is
L2y = R (I + 1).

4.45. Prove that the eigenfunctions vy, and 1\, of the hermitian

operator /Al, that correspond to different eigenvalues A, and A, of
the discrete spectrum, are orthogonal.
4.46. Through direct calculations demonstrate the orthogonality

of eigenfunctions of: (a) the operator H in the case of a particle
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located in a unidimensional square potential well with absolutely

impenetrable walls; (b) the operator IAIZ.
4.47. A system is in the state described by the normalized wave
function ¢ (z) that can be expanded into the eigenfunctions of the

hermitian operator 4, ie. P (x) = Y cppp (). Assuming the
functions 1, to be normalized to unity, (a) derive the expression
defining the coefficients ¢;; (b) demonstrate that the mean value of

a mechanical quantity is (4) = > A, |c, |2, where A4, are the

eigenvalues of the operator 4. What is the physical meaning of
[en [P?

4.48. A unidimensional square potential well with absolutely
impenetrable walls (0 <C x <C [) contains a particle in the state
P (x). Determine the probability of its staying (a) in the ground
state, if ¢ (z) = A4 sin? (nz/l); (b) in the nth level, if ¢ (z) =
= Az (I — z); calculate the probabilities for the first three levels.

4.49. Determine the allowed eigenvalues of the operator iz
together with their probabilities for a system in the state: (a) ¢ (¢p) =
= A sin? ¢; (b) ¢ (@) = 4 (1 — cos @)%

4.50. Keeping in mind that the eigenfunections of the wave number
1

operator k (k = p/h) are ¢, (z) = (2mn) ?ei**, find the probability
distribution of values of £: (a) for a particle located in the nth level
of a unidimensional square potential well of width [ with absolutely
impenetrable walls; (b) for an oscillator in the state ¢ (z) = Ae %=,

VARTATION OF THE STATE AND MECHANICAL
VALUES IN THE COURSE OF TIME

4.51. Find out whether a wave function composed as a super-
position of stationary states, ¥ (z, t) = >, Py () ei®x’, can be a
solution of the Schrdodinger equation in both time-dependent and
time-independent forms.

4.52. A particle is located in a unidimensional square potential
well of width [ with absolutely impenetrable walls. Find the wave
function of the particle at the moment ¢, if at the initial moment it
had the form ¥ (z, 0) = Az (I — 2).

4.53. A system of two rigidly connected particles rotatmc in a
plane about its centre of inertia is referred to as a plane rotator.
Rz 92
PINTIA
where I is the system’s moment of inertia. Assuming that the
rotator’s wave function had the form @ (¢, 0) = 4 cos® ¢, at the
initial moment, determine this function at any moment ¢.

4.54. Having calculated the time derivative of the mean value of

the mechanical quantity 4 described by the operator A by means of
38

The energy operator of such a rotator has the form i =

B

the Schrodinger time-dependent equation, demonstrate that

dA A | i phi ih
(@) G =T+ (HA—Af)y ) =5
4.55. Prove the following operator equalities:

d ,» A dA | dB d ,an  dAd 5 A dB
a) g (A+B)=—r+—7-; (b)) - (AB)=— B+ A—.

4.56. Prove the validity of the following motion equations in the

operator form: (a) dz/dt = p./m; (b) dp./dt = —oU/ox.

4.57. According to Ehrenfest’s rule the mean values of mechanical
quantities obey the laws of classical mechanics. Prove that when
a particle moves in the potential field U (x): (a) {(da/dt) = (p.)/m;
(b) (dp./dt) = —(dU/dz).

4.58. Prove that in the case of a particle moving in the potential
field U (z), the following operator equalities are valid:

d . 1 A A
(a) i (22) = — (xpx + PsT);

p' oU
) L(@p) =g 2L,
o
A 0U A
(p‘ dx vy dz )‘)

4.59. Demonstrate that the time derivative of the operator IA/x
is equal to the operator of projection of the moment of external
forces, i.e.

() o (pD)=—

d = - U or
drle=Mo=—(y 5 —25)
4.60. A particle is in the state described by the eigenfunction

of the operator A that depends on time implicitly. Demonstrate that
the corresponding eigenvalue A of that operator does not vary with

time provided the operator A commutes with the Hamiltonian H.

4.61. What mechanical quantities (the energy E, projections of
momentum, projections and the square of angular momentum)
retain their values during the motion of a particle: (a) in the absence
of a field (free motion); (b) in the uniform potential field U (z) = az,
a being a constant; (¢) in a central-symmetry potential field U (r);
(d) in a uniform variable field U (z, t) = a (t) z?

4.62. A particle is in a certain state ¥ (x, t), with ¥ (z, ) not

being an eigenfunction of the operator A. Knowing that the operator
A does not depend on time explicitly and commutes with the Hamil-

tonian £, demonstrate that: (a) the mean value of the mechanical
quantity 4 does not vary with time; (b) the probabilities of definite
values of the mechanical quantity A are also independent of time.
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CENTRAL-SYMMETRY FIELD. HYDROGEN ATOM

4.63. Transform the total energy operator for a particle in the
central-symmetry field U (r) to the following form:
A a iz
}[’—]r—l‘—m—*'lj(f‘)
What form does the operator YA‘T take?
4.64. A particle of mass p moves in the central-symmetry poten-
tial field U (r). Find: (a) the Schrdédinger equations for the angle-
dependent and radial parts of the wave function ¢ (r, ¥, ¢) =

= R (r)-Y (9, ¢). Assuming the eigenvalues of the operator LZ?
to be known, reduce the equation for the function R (r) to the form
of Eq. (4.10); (b) how the wave function depends on the azi-
muth .

4.65. A particle is located in a central-symmetry potential field
in the state } (r, 9, ¢) == R, (r)-Y;,, (9, ¢). What is the physical
meaning of the function | Y ;,,, |*? Making use of Table 4.1, calculate
the normalization coefficients of the functions: (a) Y, ¢ (b) Y.

4.66. A particle of mass m moves in a spherical-symmetry poten-
tial well with absolutely impenetrable walls (0 << r << r). Through-
out the well’s interior U = 0.

(a) Using the substitution ¢ (r) = y (r)/r, find the energy eigen-

values and normalized eigenfunctions of the particle in s states
I =0).
( (b) )Calculate the most probable value r,, for the ground state
of the particle, and the probability of the particle being in the region
r <rp. Draw the approximate graphs of the functions y? (r) and
r22 (r) in this state. What is the physical meaning of these func-
tions?

(¢) Find the radial part R, (r) of the wave function describing the
p state of the particle (I = 1). To do this, differentiate the equation
defining the function R, (r) for s states and compare the expression
obtained with the equation defining the function R, (r).

(d) Calculate the energy of the first p level and compare it with
the ground state energy. Draw the approximate graph of the function
r2R? (r) for the first p level.

4.67. Using the results obtained in the foregoing problem find:
(a) the mean values (), (#2), and ((Ar)?) for a particle located in the
nth s level (I = 0); (b) the mean value of kinetic energy of a particle
in the state ¢ (r) = A (r} — r?); (c) the probability distribution of
various values of wave number % in the ground state, if the eigen-

functions of the operator k are known to have the form i (r) =
= (2m1)73/2 gikr,
4.68. A particle of mass m is located in a spherical-symmetry
potential field: U {r) =0 at r <<r, and U (r) = U,y at r > r,.
(a) Using the substitution  (r) = y (r)/r, derive the equation
defining the energy eigenvalues of the particle in s states (I = 0)
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in the region £ < U,; reduce this equation to the form
S R ‘/ZI)LE
sin kro =+ ]/ 2mril, :

h

(b) Make sure that the given well not always has discrete levels
(bonded stales). Determine the interval of values of r;U, at which
the well possesses only one s level.

(¢) Assuming r2U, = 8n2A%/27m, calculate the most probable value
rpr for the particle in the s state and the probability of the particle
being in the region r > r,.

4.69. Reduce the equation describing the radial part of the wave
function of an electron in the Coulomb field of a nucleus Z to a non-
dimensional form. As units of measurement use the atomic unit of
length (the first Bohr radius) and the atomic unit of energy (the
binding energy of an electron in a hydrogen atom).

4.70. Using the substitution R (r) = y (r)/r, find the asymptotic
form of the radial part R (r) of the wave function for bonded states
of an electron in the Coulomb field of a nucleus: (a) at long and
(b) short distance from the nucleus.

4.71. An electron in a hydrogen atom is in the stationary state
by the spherical-symmetry wave function 1 (r) =
= A (1 -} ar) e*r, where A, a, and a are constants. Find: (a) (using
the Schridinger equation) the constants a, o, and the energy of the
electron; (b) the normalization coefficient A.

4.72. For an 1s electron in a‘thydrogen atom find: (a) the most
probable distance ry, from the nucleus and the probability of the
electron being in the region r << ry;; (b) the probability of its being
outside the classical borders of the field.

4.73. For an 1s electron in a hydrogen atom calculate Lthe mean
values of: (a) the distance from the nucleus (), as well as ¢r?) and
square variation ((Ar)?); (b) the interaction force and potential
energy; (¢) the kinetic energy and root mean square velocity.

4.74. For 2p and 3d electrons in a hydrogen atom calculate:
(a) the most probable distance from the nucleus; (b) the mean square
variation ((Ar)?).

4.75. Find the mean electrostatic potential developed by an 1s
electron at the centre of a hydrogen atom.

4.76. Calculate the mean electrostatic potential at the distance r
from the nucleus of a hydrogen atom in the ground state. Instruction:
to find the potential ¢, developed by an “electron cloud”, one should
integrate Poisson’s equation V%¢, = —4mnp twice.

4.77. Find the probability distribution of values of wave number
for an electron in a hydrogen atom in the ground state, if the eigen-

kry, k=

functions of the operator 4 are known to have the form Y (1) =
— (2m) %2 gikr,




3
SPECTRA. ELECTRON SHELL OF ATOMS

@ Spectral labeling of terms: %{L} ;. where % is the multiplicity (x = 2§ - 1);
L, S, and J are quantum numbers (corresponding to orbital, spin, and total
moments respectively);

L=0,1, 23, 4 5, 6,...
symbol: S, P, D, F, G, H, I, ...
@ Selection rules for quantum numbers S, L, and J:
AS = 0; AL = +1; AJT =0, +1; J=0+J=0. (51
@ Terms of an atom (ion) with one valence electron:
RZ%4

T=m?, (5'2)

where R is the Rydberg constant; ZZ, is theeffective charge (in e units) of the
atomic skeleton (ion) in whose field the outer electron moves; n is the principal
quantum number of the valence electron; A is the quantum defect. The d1agram
of levels of such an atom (ion) is shown in Fig. 18 (the fine structure is ne-
glected). . ) )

® Dirac’s equation for the fine structure of levels in an atom (ion) with one
electron:

T =

Rz | wRZ( 2 )
2 (]’-ﬁ—1,2 4n )

5.3
n* n? (5.3)
where Z is the charge of nucleus (in e units); « is the fine structure constant; n
and 7 are quantum numbers (the principal quantum number and the number cor-
responding to the total angular momentum). )

@ Mechanical moments of an atom (orbital, spin, and total ones respectively):

pr=hVILLFD; ps=hVSESHI): pr=hVI{JT+D. (54

® In the problems of this chapter the inter-momentum coupling is assumed to

be normal, L—S (spin-orbital coupling).
® Hund rules: X )
of the terms given by electrons of given electronic configuration, the ones
with greatest value of S have the least encrgy, and of these the one with the
greatest L is the lowest; X
ol the basic (normal) term J = | L — S|, il the shell is less than half-
filled, and J = L -+ § in the remaining cases.
@ Electrons with equal quantum numbers n and [ are referred to as equivalent.
@ Boltzmann’s distribution law

AT ] - ~-E2)/ =
LB BT 6.9

N, g2
where g; and g, are the statistical weights (degeneracies) of the levels with
encrgies F, and E,.
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@ Probabilities of radiation transitions between levels 7 and 2 (E, > E,), i.e.
the number of transitions per 1 s per one atom (Z/N), for the cases of spontaneous
radiation, induced radiation, and absorption:
Zil;/]\,'2_____A21; Z;rlld/Nz——_—Bglum;
- (5.6)

abs/ AT
Z12 I N1 = By,

where A, By, By, are the Einstein coefficients; u,, is the volume spectral den-
?1ty lof radiation corresponding to frequency w of transition between the given
evels.
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Fig. 18 Fig. 19
® Relation between the Einstein coefficients:
& _ 23
Bz1~g—2 Biy=——5 Aur- (5.7
® Relation between the mean lifetime t and the width T of a level:
T.I' ~ k.
® X-ray term diagram is shown in Fig. 19.
@ Moseley’s law for A lines:
3 ,
u)Ku:ZR* (Z—o0)?, (5.8)

where R* is the Rydberg constant; Z is the atomic number; ¢ is the correction
constant (to be assumed equal to unity when solving the problems).

THE STATE OF ELECTRONS IN AN ATOM

_5.1. Find the ionization potential and first excitation potential
of a Na atom in which the quantum defects of the basic term 3.5 and
the term 3P are equal to 1.37 and 0.88 respectively.
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5.2. Calcula{e the quantum defects of S, P, and D terms for a
Li atom, if the binding energy of the valence electron in the groupd
state is known to be equal to 5.39 eV, the first excitation potent%al
to 1.85 eV, and the wavelength of the main line of the diffuse series
to 0.610 ym. Which of the mentioned terms is the closest to the
hydrogen-like ones and what is the reason for that? .

5.3. Find the binding energy of a valence electron in the ground
state of a Li atom, if the wavelength of the main line of the sharp
series and the short-wave cut-off wavelength of that series are equal
to 0.813 and 0.349 pm respectively. .

5.4. How many spectral lines allowed by the selection rules
appear in transition of Li atoms to the ground state from the state:
(a) 4S; (b) 4P?

5.5. Calculate the gquantum defects of S and P terms an(_{ the
wavelength of the main line of the sharp series in a Be™ ion, if the
wavelengths of the main line of the principal series and its short-
wave cut-off are known to be equal to 3210 and 683 A respec-
tively.

5.87. The terms of atoms and ions with one valence electron can
be written in the form T = R (Z — a)?/n?, where Z is the charge of
nucleus (in e units); a is the screening correctipn; n i.s the principal
quantum number of the valence electron. Using this formula, cal-
culate the correction e and quantum number n of the valencg electrog
in the ground state of a Li atom, if the ionization potentials gf Li
and Be* are known to be equal to 5.39 and 17.0 V, the correction a
being the same for both. ' .

5.7. Find the splitting (in eV’s) of the level 4P in a K atom, if
the wavelengths of the resonance line doublet components are kn_own
to be equal to 7698.98 and 7664.91 A. Compare the value obtained
with the resonance transition energy. ) ) ]

5.8. The main line of the sharp series of monatomic cesium is
a doublet with the wavelengths of 14 695 and 13 588 A. Find the
intervals (in em™') between the components of the subsequent lines
of this series. . .

5.9. Write out the spectral designations of electronic terms in a
hydrogen atom for n = 3. How many fine structure components have
the level of a hydrogen atom with the principal quantum number n?

5.10. For a He* ion calculate the intervals (in cm™!) between:
(a) the extreme fine structure components of the levels with n =
= 2, 3, and 4; (b) the neighbouring fine structure components of the
level with n = 3.

5.11. Calculate the difference in wavelengths of doublet compo-
nents of the line 2P — 1§ for a hydrogen atom and a He™ ion.

5.12. What hydrogen-like ion possesses the doublet of the main
line of the Lyman series, for which the difference in wave numbers
is equal to 29.6 c¢cm~'?

5.13. For He* ions determine the number of fine structure com-
ponents and the interval (in em™! units and wavelengths) between
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the extreme components of the main line of: (a) the Balmer series:
{b) the Paschen series.

9.14. What must be the resolving power of the spectroscope capable
of observing the fine structure of the main line of the Balmer series
in monatomic hydrogen?

5.15. Find allowed values of the total angular momenta of elec-
tron shells of atoms in the states ‘P and °D.

9.16. Write out allowed terms of atoms possessing besides filled
shells: (a) two electrons, s and p; (b) two electrons, p and d; (e) three
electrons, s, p, and d

9.17. How many different types of terms can a two-electron
system, consisting of d and f electrons, possess?

9.18. Write out allowed types of terms for the atom possessing,
in addition to filled shells, two p electrons with different principal
quantum numbers.

5.19. Determine allowed multiplicity of: (a) the Dy term;
(b) the terms of atoms Li, Be, B, and G, if only the electrons of
outermost unfilled subshells get excited.

9.20. Find the greatest possible total angular momentum of an
electron shell of an atom in F state, if it is known that five terms of
equal multiplicity, but with different values of quantum number J,
correspond to that state.

9.21. The number of allowed values of the quantum number J
for two different atoms in the P and D states is the same and equal to
three. Determine the spin mechanical moment of the atoms in these
states.

5.22. Find the angle between the spin and total angular momenta
in the vector model of the atom: (a) being in the 3D state with the
greatest possible value of the total angular momentum; (b) possess-
ing in addition to filled subshells three electrons (p, d, and f) and
having the total angular momentum that is the greatest possible
for this configuration.

9.23. An atom is in the *¥ state and possesses the greatest pos-
sible mechanical moment. Determine the degeneracy of that state in
terms of J. What is the physical meaning of the value obtained ?

9.24. Determine the greatest possible orbital angular momentum
of an atom being in the state whose multiplicity is five and degeneracy
(in terms of J) is seven. Indicate the spectral symbol of that state.

9.25. Find the greatest possible angle between the spin and total
mechanical moments in the vector model of the atom being in the
state whose multiplicity is three and degeneracy (in terms of J)
is five.

9.26. Determine the number of allowed states for: (a) an atom
with the given values of quantum numbers [, and S; (b) a two-
electron system composed of p and d electrons; (¢) an electron con-
figuration nd3.

5.27. Find the number of electrons in the atoms whose shells are
filled as follows: (a) the K and L shells and the 3s subshell are filled
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and the 3p subshell is half-filled: (b) the K, L, M
and 4d subshells are all filled. \V(h;t are these a[t(s)lrlnesll?s and 4s, 4p»
5.28. Find the maximum number of electrons possessing in an
atom the following equal quantum numbers: (a) n and [; (b) n
9.29. Using the Hund rules, write the electron conﬁgurationé and
ﬁlndtthe basig term of the atoms: (a) C and N; (b) S and Cl. The
electron configurations of these atoms ;
filling of ele(iron shells. oms comespond to-the regular
5.30. Making use of the Hund rules, find the basic term of the
atom whose unfilled subshell has the electron configuration: (a) nd?;
(b) nd. '
5.31. Determine the basic term of the ato
is exactly half-filled with five electrons. m whose outer shell
5.32. Find the degeneracy of the atom in the ground state, if the
electronic configuration of its unfilled subshell if nds. ,
9.33. Find allowed types of terms for an atom whose unfilled
subshell has the electronic configuration: (a) np?;, (b) np3; (¢) nd2
9.34. There are two electronic configurations, one of which pos-
sessing the same number of equivalent electrons that are required to
complete the subshell of the other. Using the following examples
fi;m;)pstll‘ati thfatllsuchd pairs of electronic configurations have thé
1aentical sets of allowed types of terms: (a) p! a 5, 2 4,
(¢) d* and d°. Explain 3t7}Iiis fact. () pTand p%s (b) p* and p*
9.35. Write allowed types of terms for the following electronic
configurations: (a) ns', n'p%: (b) npl, n'p2 Here n #=n'.

INTENSITY AND WIDTH OF SPECTRAL LINES

 9.36. Find the ratio of the number of atoms of gaseous lithium
in g{l)%()ﬂ}){ stz}I:cle to that1 in the ground state at a temperature of 7 =
= . The wavelength of t i — 2 i
ey g he resonance line (2P — 28) is

537 What fraction of hydrogen atoms is in the state with the
prlvnclpal quantum number » = 2 at a temperature of 7' = 3000 K ?

9.38. Demonstrate that the number of atoms excited to a certain
level diminishes with time as N — Nye !/, where 1 is the mean
lifetime of the atom on that level.

5.39: The intensity of a resonance line diminishes by a factor of
m = 65 over a distance / = 10 mm along the beam of atoms moving
at a velocity v = 2.0-10%® m/s. Calculate the mean lifetime of atoms
in the resonance excitation state. Evaluate the level’s width.

5.4Q. R.areﬁed mercury vapour whose atoms are in the ground
state is lighted by a mercury lamp emitting a resonance line of
wavelength A = 2536.5 A. As a result, the radiation power of the
mercury vapour at that wavelength turns out to be 7 = 35 mW.
Find the number of atoms in the resonance excitation state whose
mean lifetime is 1 = 1.5.10-7 s.

5.41. A sample of gaseous lithium containing N = 3.0-10%% atoms
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is heated to a temperature of 7 = 1500 K. In this case, the power
emitted at the resonant line’s wavelength A = 6708 A (2P — 28) is
equal to 7 = 0.25 W. Find the mean lifetime of Li atoms in the
resonance excitation state.

5.42. A system of atoms is in thermodynamic equilibrium with
its radiation at temperature 7. Suppose that the transition between
the two atomic energy levels, £, and F,, with statistical weights g
and g, produces the radiation of frequency o, the Einstein coefficients
being A,,, B,;, and By,. Recalling that at equilibrium the numbers
of direct and reverse transitions (£, == F,) per unit time are equal,
find the expression for volume spectral density of thermal radiation
energy: (a) with allowance made for induced emission; also find
the relation between the Einstein coefficients; (b) disregarding the
induced emission. Under what conditions can it be done?

5.43. Atomic hydrogen is in thermodynamic equilibrium with its
radiation. Find: (a) the ratio of probabilities of induced and spon-
taneous radiations of the atoms from the level 2P at a temperature of
T = 3000 K; (b) the temperature at which these probabilities
become equal.

5.44. A beam of light of frequency o, equal to the resonant fre-
quency of transition of atoms of gas (hw > kT), passes through that
gas heated to temperature 7. Taking into account induced radiation,
demonstrate that the absorption coefficient of the gas varies as

% (T) = %, (1 _e—hco/hT)’

where %, is the absorption coefficient at 7 = 0 K.

5.45. Under what conditions can light passing through matter be
amplified? Find the ratio of the populations of levels D, and P,
(Ep > Ep) in atoms of gas at which a beam of
monochromatic light with a frequency equal to
the frequency of transition between these levels i
passes through the gas without attenuation. |

5.46. Suppose that a quantum system (Fig. 20) |
is excited to level 2 and the reverse transition ,l
occurs only via level 7. Demonstrate that in this i
case light with frequency ®,; can be amplified, if 1
the condition g;4,, > g,4,, 18 satisfied, where 1
g, and g, are the statistical weights of levels 7
and 2 and A4,, and A,, are the Einstein coeffi-
cients for the corresponding transitions.

5.47. Let ¢ be the number of atoms excited to level 2 per unit
time (Fig. 20). Find the number of atoms in level 7 after the time
interval ¢ following the beginning of excitation. The Einstein coeffi-
cients A,,, A,, and 4,, are supposed to be known. The induced
transitions are to be ignored.

5.48. A spectral line A = 5320 A appears due to transition in an
atom between two excited states whose mean lifetimes are 1.2-10-*%
and 2.0-10-% s. Evaluate the natural width of that line, AA.

Fig. 20
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5.49. The distribution of radiation intensity within a spectral
line with natural broadening takes the form

v/2)?
where J, is the spectral intensity at the line’s centre (at o = ®o)}
v is the constant which is characteristic for every line (e.g. when an
excited state relaxes directly down to the ground state, y = 1/7,
T being the mean lifetime of the excited state). Using this formula,
find: (a) the natural linewidth 8w, if the value of v is known; (b) the
mean lifetime of mercury atoms in the 6'P state, if the transition t?
the ground state is known to result inc emission of a line 4 = 1850 A
with natural width 8 = 1.5-107* A.

Note. The linewidth is the width of the line’s contour measured at
half its height.

5.50. Making use of the formula of the foregoing problem: (a) dem-
onstrate that half the total intensity of a line is confined within
its linewidth, that is, within the width of line’s contour at the half
of its height; (b) find the total intensity of a line whose natural width
is 8o and spectral intensity at the centre J,.

5.51. The distribution of radiation intensity in a spectral line
with Doppler's broadening takes the form:

Jm — Joe—a ((0‘(1)0)2/(05; a= mvCZ/Zk‘T,

where J, is the spectral intensity at the line’s centre (at ® = 0y);
m is the mass of the atom; 7 is the temperature of gas, K.

(a) Derive this formula, using Maxwell's distribution.

(b) Demonstrate that the Doppler width of line A,, i.e. the width
of line’s contour at the half of its height, is equal to

Shiop — 21 V/ (I 2)]a.

5.52. The wavelength of the Hg resonance line is A = 2536.5 A.
The mean lifetime of the resonance level is 1 = 1.5:1077 s. Estimate
the ratio of the Doppler broadening of that line to its natural width
at a temperature of 7 = 300 K.

5.53. At what temperature is the Doppler broadening of each
component of the spectral doublet 22P — 125 of atomic hydrogen
equal to the interval between these components?

5.54. To obtain spectral lines without Doppler's broadening,
a narrow slightly divergent beam of excited atoms is used, the obser-
vation being performed at right angles to the beam. Estimate the
beam apex angle in the case of sodium atoms, if the Doppler broad-
ening of the resonance line A = 5896 A is ten times one tenth of its
natural width, the velocity of atoms is 1000 m/s, and the mean life-
time of resonance excitation state is 1.6-107% s.
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CHARACTERISTIC X-RAY SPECTRA

5.55. Proceeding from Moseley’s law, calculate the wavelengths
and energies of photons corresponding to the K, line in aluminium
and cobalt.

5.56. Determine the wavelength of the K, line of the element of
the Periodic Table, beginning from which the appearance of the L
series of characteristic X-ray radiation is to be expected.

5.57. Assuming the correction ¢ in Moseley’s law to be equal to
unity, find:

(a) to what elements belong the K, lines with the wavelengths of
1.935, 1.787, 1.656, and 1.434 A; what is the wavelength of the K,
line of the element omitted in this sequence;

(b) how many elements there are in the sequence between the
elements whose K, line wavelengths are equal to 2.50 and 1.79 A.

5.58. The correction in Moseley’s law differs considerably from
unity for heavy elements. Make sure that this is true in the case of
tin, cesium, and tungsten, whose K, line wavelengths are equal to
0.492, 0.402, and 0.210 A respectively.

5.59. Find the voltage applied to an X-ray tube with nickel anticath-
ode, if the wavelength difference between the K line and the short-
wave cut-off of the continuvus X-ray spectrum is equal to 0.84 A.

5.60. When the voltage applied to an X-ray tube is increased from
10 to 20 kV, the wavelength interval between the K, line and the
short-wave cut-off of the continuous X-ray spectrum increases three-
fold. What element is used as the tube anticathode?

5.61. How will the X-ray radiation spectrum vary, if the voltage
applied to an X-ray tube increases
gradually? Using the tables of the
Appendix, calculate the lowest voltage
to be applied to X-ray tubes with
vanadium and tungsten anticathodes,
at which the K, lines of these ele-
ments start to appear.

5.62. What series of the character-
istic spectrum are excited in molyb- Fig. 21
denum and silver by Ag K, radiation?

5.63. Figure 21 shows the K absorption edge of X-ray radiation and
the K, and K emission lines.

(a) Explain the nature of the abrupt discontinuity in absorption.

(b) Calculate and plot to scale the diagram of K, L, and M levels
of the atom for which Ag, = 2.75 A, Axy,=2.51 A, and Ax=
= 2.49 A. Of what element is this atom? What is the wavelength of
its L, emission line?

5.64. Knowing the wavelengths of K and L absorption edges in
vanadium, calculate (neglecting the fine structure): (a) the binding

energies of K and L electrons; (b) the wavelength of the K, line
in vanadium.

Absorplion

)
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5.65. Find the binding energy of an L electron in titanium, if
the wavelength difference between the first line of the K series and its
absorption edge is AA = 0.26 A.

5.66. In the first approximation, the X-ray radiation terms can be
described in the form 7 = R (Z — a)?/n?, where R is the Rydberg
constant, Z is the atomic number, a is the screening correction, n is
the principal quantum number of a distant electron. Calculate the
correction a for the K and L terms of titanium whose K absorption
edge has the wavelength Ay = 2.49 A.

5.67. Find the kinetic energy of electrons ejected from the K shell
of molybdenum atoms by Ag K, radiation.

5.68. Carbon subjected to Al K, radiation emits photoelectrons
whose spectrum comprises several monoenergetic groups. Find the
binding energy of the electrons ejected from carbon atoms with the
kinetic energy of 1.21 keV.

5.69. On irradiation of krypton atoms with monochromatic X-rays
of wavelength A, it was found that in some cases the atoms emit
two electrons, namely, a photoelectron removed from the K shell and
an electron ejected from the L shell due to the Auger effect. The
binding energies of the K and L electrons are equal to 14.4 and
2.0 keV respectively. Calculate: (a) the kinetic energies of both elec-
trons, if A = 0.65 A; (b) the value of A at which the energies of both
electrons are equal.

5.70. (a) Demonstrate that the emission spectra of characteristic
X-ray radiation consist of doublets.

(b) Why does the K absorption edge consist of a single discontinu-
ity whereas the L absorption edge is triple and M absorption edge
consists of five discontinuities?

5.71. (a) Indicate the spectral symbol of an X-ray term in an
atom with the electron (I = 1, j = 3/2) removed from one of its
closed shells.

(b) Write the spectral designatlions of allowed X-ray terms of an
atom in which one electron is removed from the L shell; from the
M shell.

5.72. Determine the number of spectral lines caused by the tran-
sitions between the K and L; K and M; L and M shells of an atom.

5.73. Using the tables of the Appendix, calculate: (a) the wave-
lengths of K, line doublet in tungsten; (b) the difference in
wavelengths of K, line doublet in lead.

3.74. Using the tables of the Appendix, calculate the binding
energy of 1s, 2s, 2py/,, and 2pgy,, electrons in a uranium atom.

ATOM IN A MAGNETIC FIELD ot

® Magnetic moment of an atom:

JIADESES+)—L (L)
y — 1_'_ d ;
g 27 (T 1) ’ (6-1)

where ug is the Bohr magneton, ¢ is the Landé splitting factor.
® Zeeman splitting of spectral lines: ‘

=g VI T T1)ug;

Ao = (mygy — m,g,) pgB/h, 6.2)

where m; and g; are the magnetic quantum numb 6
£ { ers and the Landé fa s of
the corresponding terms, B is the magnetic induction. ¢ factors of
® Leelnan component notation: s-component (Am = 0); g-component (Am =

® Selection rules for quantum numbers (i iti i i
! s n additien
Introduction to the [oreg;;oing‘ chapter): ( o those given in the

Amg = 0;  Am, =0, +1; Amy; =0, +1; (6.3)

if AJ = 0, the transition my=105m; =0 does not take place.
® Larmor precession frequency:

o, = eB/2me, (6.4

where e is the elementary charge, m is the electron mass.
@ Diamagnelic susceptibility of N isolated atoms:

z
Ve 1
o— 2 >
k= =g D (T, (6.5)
i=1
8 2y 1q a . 3
whelle (r3) is the mean squared distance between an ith electron and an atomic
nucleus.

® Paramagnetic susceptibility in a weak magnetic field:
x=a/T; o= Nu*3k, (6.6)

\\fherelT is the qbsoluto tmnpgrature, @ is the Curie constant, N is the number
gtamto ecules, w is the magnetic moment of a molecule, % is the Boltzmann con-
nt. ‘

MAGNETIC PROPERTIES OF AN ATOM.
ZEEMAN EFFECT

6'.1. Taking into account that the magnetic-to-mechanical moment
ratl.o for the spin angular momentum is twice as large as that for the
orbital one, derive formula (6.1) by means of the vector model.
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6.2. Calculate the Landé factor for the atoms: (a) with one valence
electron in the S, P, and D states; (b) in the 3P state; (c¢) in the S
states; (d) in the singlet states.

6.3. Write the spectral symbol of the term with: (a) S = 1/2,
J=205/2,g=06/7,(b) S=1,L =2, g=4/3.

6.4. Find the magnetic moment p and the allowed values of the
projection up of an atom in the state: (a) 'F; (b) 2Dg,.

6.5. The maximum value of projection of the magnetic moment of
an atom in the D, state is equal to four Bohr magnetons. Determine
the multiplicity of that term.

6.6. Determine the allowed values of the magnetic moment of an
atom in the *P state.

6.7. Calculate the magnetic moment of a hydrogen atom in the
ground state.

6.8. Demonstrate that the magnetic moments of atoms in the
*Dy/, and %Ggj, states are equal to zero. Interpret this fact on the
basis of the vector model of an atom.

6.9. Find the mechanical moments of atoms in the °F and "H
states, if the magnetic moments in these states are known to be equal
to zero.

6.10. Using the Hund rules, calculate the magnetic moment of an
atom in the ground state, in which the unfilled subshell has the elec-
tronic configuration: (a) np®; (b) ndd.

6.11. Using the vector model and the relation dJ/dt = M, where
J is the momentum of an atom and M is the mechanical moment of
external forces, show that the precession angular velocity of the
vector J in the magnetic field B is equal to ® = gugB/R, g being the
Landé factor.

6.12. Find the angular precession velocities of mechanical moments
of an atom in a magnetic field of B = 1000 G, if the atom is: (a) in
the 1P, 2Py, °F, states; (b) in the ground state and its unfilled sub-
shell has the electronic configuration np*. (Use the Hund rule.)

6.13. The mechanical moment of an atom in the 3F state pre-
cesses in a magnetic field of B =500 G at angular velocity @ = 5.5 X
X 10° s71. Determine the mechanical and magnetic moments of the
atom.

6.14. Using the vector model, explain why the mechanical moment
of an atom in the F,,, state precesses in magnetic field B at angular
velocity ® whose vector is directed oppositely to vector B.

6.15. An atom in the 2P,,, state is located on the axis of a circu-
lar loop carrying a current i = 10.0 A. The radius of the loop is

= 5.0 ¢m, the atom is removed from the centre of the loop by a
distance z = 5.0 cm. Calculate the maximum value of the interaction
force between the atom and the current.

6.16. In the Stern-Gerlach experiment a narrow beam of Ag atoms
(in the ground state) passes through a transverse strongly inhomoge-
neous magnetic field and falls on the screen (Fig. 22). At what value
of the gradient of the magnetic field is the distance between the ex-
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treme components of the split beam on the screen equal to 8§ = 2.0 mm
ifa = 10 cm, b = 20 c¢m, and the velocity of the atoms v = 300 m/s?

6.17. A narrow beam of atoms passes through a strongly inhomo-
geneous magnetic field as in the Stern-Gerlach experiment. Deter-
mine: (a) the maximum values of projections of magnetic moments'of
the atoms in the 7, 5S, and ®D states, if the beam splits into 4, 6,
and 9 components respectively; (b) how many components are observed
when in the beam the atoms are in the 3D, and F, states.

6.18. In the Stern-Gerlach experiment vanadium atoms in the
ground *Fy,, state were used. Find the distance between the extreme

Fig. 22

components of the split beam on the screen (see Fig. 22), if a =10 cm,
b = 20 cm, dB/9z = 23 G/em, and the kinetic energy of the atoms is
T = 0.040 eV. ;

6.19..An atom is located in the magnetic field B = 3.00 kG.
Determine: (a) the tptal splitting (in cm~) of the D term; (b) the
spectral symbol of the singlet term whose total splitting equals
0.84 cm 1.

6.20. Plot the diagram of allowed transitions in a magnetic field
between the following states: (a) D — P; (b) ¥ — 'D. How many
components are there in the spectral line corresponding to each of
these transitions?

6.21. A spectral line A = 0.612 um is caused by the transition
between two singlet terms of an atom. Determine the interval A\
between the extreme components of that line in magnetic field
B = 10.0 kG.

6.22. The intoerval between the extreme components of a spectral
line A = 5250 A exhibiting the normal Zeeman effect is equal to

Al =0.22 A. Find the interval (in eV units) between the neighbour-

ing sublevels of the Zeeman splitting of the corresponding terms.
6.23. A spectral instrument with a resolving power A/SA —

= 1.0-10° is used in observing the components of a spectral line

A = 5360 A caused by the transition between the two singlet atomic
terms. At what minimum magnitude of magnetic field can the
components be resolved, if the observation line is: (a) parallel to,
(b) at right angles to the magnetic field direction ?

6.24. In the case of the anomalous Zeeman effect a magnetic field
is regarded as weak, if the magnetic splitting of a term is considerably
less than the natural multiplet splitting. Find: (a) at what value of
magnetic field the interval between the neighbouring components of
the 3%P,), and 3%P,;, terms of a Na atom is equal to 1/10 of the
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natural splitting of the 3%P state, if the wavelengths of the Na reso-
nance line doublet are 5895.93 A (2P, — 2S,,,) and 5889.96 A
(2Pg/s — 2S1)5); (b) the same for the 2P, and 2Py, terms of a hydro-
gen atom in the 22P state, recalling that the natural splitting is
defined by the Dirac equation for the fine structure; (¢) the same for
they*P,, and 2P,/, terms of a He* ion in the 22P state. Compare the
result with that obtained for a hydrogen atom.

6.25. Using the expression for the magnetic moment of an atom,
derive the formula for spectral line splitting in the case of the anom-
alous Zeeman effect in a weak magnetic field.

6.26. What kind of the Zeeman effect, normal or anomalous, is
observed in a weak magnetic field in the case of spectral lines:

(a) 2P~ 1§, *Dypy— *Pyyy; *Dy— PPy, S5~ °Hy;
(b) of the atoms H, He, Li, Be, B, and C?

6.27. Draw the diagram of allowed transition between the 2Py,
and 2S,/, terms in a weak magnetic field. For the corresponding
spectral line calculate: (a) the shifts of the Zeeman components in
g B/A units; (b) the interval (in cm™! units) between the extreme
components, it B = 5.00 kG.

6.28. Find the minimum resolving power A/8) of a spectral instru-
ment capable of resolving the Zeeman structure of the Na spectral
line 5890 A (2P4/,— 2S,/,) in magnetic field B = 2.0 kG.

6.29. Draw the diagram of allowed transitions in a weak magnetic
field and calculate the displacements (in ppB/% units) of the Zeeman
components of the spectral line: (a) 2D g/, — 2Py/a; (b) 2D/ — 2Py,

6.30. Calculate the displacements (in pupB/% units) in a weak
magnetic field of the Zeeman n components of the spectral line:
(a) 3D;— 3P, (b) 3D,— 3P,

6.31. Using the vector model, demonstrate that in a strong magnet-
ic field, when the I — S coupling breaks up completely, the magnet-
ic interaction energy is equal to AEg = (m. 4+ 2mg) pugB. Prove
that this leads to the normal Zeeman effect.

6.32. At what value of magnetic field will the interval between o
components of the Li resonance line exceed ten-fold the value of
natural splitting of that line? The wavelengths of the doublet of that
line are equal to 6707.95 and 6707.80 A.

6.33. Show that the frequency of transition between the neighbour-
ing sublevels of the Zeeman term splitting coincides with the fre-
quency of precession of an angular momentum of atom in a magnetic
field.

6.34. The magnetic resonance occurs when a substance consisting
of atoms with inherent magnetic moments is exposed to two magnetic
fields: the stationary field B and the weak variable field B, directed
perpendicular to the former one. Demonstrate that the sharp energy
absorption maxima are observed when the frequency of the variable
field is equal to w = gupB/h.
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6.35. A gas consisting of atoms in the 2D/, state is exposed to
the joint action of the stationary magnetic field B and the variable
field B, directed transversely to the stationary one and having
a frequency of 2.8-10° Hz. At what value of magnetic induction B
does the resonance energy absorption occur?

6.36. Find the magnetic moment of Ni atoms in the ®F state that
exhibit the resonance energy absorption under the combined action
of the stationary magnetic field B = 2.00 kG and the variable field B,
which is perpendicular to the stationary one and has a frequency
v = 3.50-10% Hz.

DIA- AND PARAMAGNETISM

6.37. Calculate the magnetic moments of He and Xe atoms in
a magnetic field of B = 10.0 kG. Their diamagnetic susceptibilities
are equal to —1.90 and —43.0 (in 10~° cm®/mol units) respectively.

6.38. A small sphere of diamagnetic material is slowly moved
along the axis of a current-carrying coil from the region where the
magnetic field is practically absent to the point at which the field has
the value B. Demonstrate that the work performed in the process
is equal to A = —XVB?2, where y is the magnetic susceptibility of
a unit volume of th¢ diamagnetic material, V" is the volume of the
sphere.

p6.39. Find the force that the circular loop of radius R = 5.0 cm,

carrying a current / = 10 A, exerts on a Ne atom located on the
axis of the loop at a distance z = 5.0 cm from its centre. The dia-
magnetic susceptibility of neon is y = —7.2-10 cm?/mol.

6.40. Using the expression for the Larmor precession frequency,
show that the diamagnetic susceptibility of a monatomic gas is
v &~ —Ze*N(r?)/6mc?, where Z is the atomic number, N is the
number of atoms, (r?) is the mean squared distance between the
nucleus and the electrons.

6.41. Calculate the molar diamagnetic susceptibility of atomic
hydrogen in the ground state. Its wave function takes the form
P (r) = (qur?)~Y2%-7/r1, where r; is the first Bohr radius.

6.42. Recalling that the outer electrons are primarily responsible
for diamagnetic properties of an atom (why?), evaluate the radii of
outer electron shells in He, Na*, and Cl-, whose diamagnetic suscep-
tibilities are equal to —1.9, —6.1, and —24.2 respectively (in
10-% cm3/mol).

6.43. An atom with spherical-symmetry charge distribution is
located in the magnetic field B. Express the magnetic induction By
at the atom’s centre, caused by the precession of electron shell, via
the electrostatic potential V, developed by the electron shell at the
same point.

6.44. When a paramagnetic gas is located in the magnetic field B
at the temperature 7', then in the absence of spatial quantization the
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mean value of projectin of the molecule’s magnetic moment
(up) =pL (a) = (coth a————i—) ; a=uB/kT,

where p is the molecule’s magnetic moment, L (2) is Langevin’s
function.

(a) Derive this expression, using Botzmann’s distribution law.
Plot the graph L (a).

(b) See how this formula transforms in the case of a weak (¢ < 1)
and a strong (a>> 1) magnetic field.

6.45. The magnetic moment of a mole of a certain paramagnetic
gas in a weak magnetic field B = 100 G at T = 300 K is equal to
1.5-107% J/(G-mol). Determine the Curie constant relating to one
mole of gas, and the magnetic moment of a molecule.

6.46. Determine the paramagnetic susceptibility of 1 cm?® of gas
consisting of O, molecules with magnetic moments 2.8 pg in a weak
magnetic field. The gas is under normal pressure and temperature.

6.47. A paramagnetic gas consisting of atoms in the 2§,,, state
is in a magnetic field B = 25 kG at a temperature of 7 = 300 K.
Calculate the ratio n = AN/N, where AN is the difference in the
number of atoms with positive and negative projections of magnetic
moments on the field direction, NV is the total number of atoms.
Perform the calculations: (a) with allowance made for the spatial
quantization; (b) in classical terms, i.e., ignoring the spatial quan-
tization.

6.48. Find the magnetic moment of a paramagnetic gas consisting
of V atoms in the 25/, state at the temperature 7' in the magnetic
field B. Simplify the obtained expression for the case uB< kT.

6.49. A paramagnetic gas is in a magnetic field B = 20.0 kG at
a temperature of 7 = 300 K. Taking into account the spatial quan-
tization, calculate the ratio y = AN/N (see Problem 6.47). Perform
the calculation for the cases when the atoms are in the state: (a) 1P;
(b) 2P:s/z-

6.50. Demonstrate that in a weak magnetic field the mean pro-
jection of the magnetic moment of an atom (with the allowance
made for the spatial quantization) (up) = p2B/3kT, where p =
=gVJ (U +1) ps

6.51. A paramagnetic gas consists of Li atoms in the ground state.
Calculate: (a) the Curie constant for one mole of that gas; (b) the
magnetic moment of 1 g of that gas at a temperature of 300 K in
a magnetic field B = 1.00 kG.

6.52. Calculate the paramagnetic susceptibility of 1 g of mon-
atomic oxygen in a weak magnetic field at the temperature 1600 K.
The atoms are in the ground 3P, state.

¢

7
DIATOMIC MOLECULES

® Rotational energy of a diatomic molecule

E;=HkBJ (J +1); B =2, 7.1
where B is the rotation constant, I is the molecule’s moment of inertia, J is
the rotation quantum number, J =0, 1, 2, ...

J selection rule: AJ = 1.
@ Vibrational energy of a diatomic molecule

Evzhm(v—}—%)lil—x(v%—é)], (7.2)

&

where ® = Vm is the vibration frequency, » is the quasielastic force constant,

£
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a b
Fig. 23 Fig. 24

n is the reduced mass of a molecule, v is the rotation quantum number, ”If—’
=0, 1, 2, ..., z is the anharmonicity coefficient (z = 0 for harmonic oscil-
lator).
v selection rule:
A +1, if 2=0
U*{ *1, +2, ... in other cases.

® Interaction energy as a function of the distance between the nuclei of a
diatomic molecule is shown in Fig. 23, where D is the dissociation energy.
@ Mean energy of a quantum harmonic oscillator .

he | ho

(Ey=5+ s - (7.3)

® Fig. 24 illustrates the diagram describing the emergence of red (a) and violet
(b) satellites in the Raman scattering of light.
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ROTATIONAL AND VIBRATIONAL STATES

7.1. Using the tables of the Appendix, find for H, and NO mole-
cules: (a) the energy required for their promotion to the first rota-
tional level (J = 1); (b) the angular rotation velocity in the state
with J = 1.

7.2. For an HCI molecule find the rotational quantum numbers J
for two neighbouring levels whose energies differ by 7.86-10-3 eV.

7.3. Determine the angular momentum of an oxygen molecule in
the state with rotational energy 2.16.10-2% eV.

7.4. Find the temperature values at which the mean kinetic
energy of translation of H, and N, molecules is equal to their rota-
tional energy in the state with quantum number J = 1.

7.5. Taking into account the degeneracy g of rotational levels
(g = 2J + 1), calculate the ratio of hydrogen molecules being in
true rotational states with J = 1 and J = 2 at the temperature
T = 300 K.

7.6. Find the quasielastic force constants for H, and CO mole-
cules.

7.7. The potential energy of interaction of atoms in a diatomic
molecule can be described approximately by the following formula

U(p)=Uy(1—e-20)2; p="T0

re °
where ry is the equilibrium nuclear separation, U, is the depth of
the potential well, @ is the intrinsic molecular constant. Calculate
the values U, and « for a hydrogen molecule.

7.8. For a hydrogen molecule calculate: (a) the classical vibra-
tion amplitude corresponding to the zero vibrational energy; (b) the
root-mean-square value of the vibration coordinate z in the ground
state which is described by the wave function v (z) oc e~ ®**/2,
where o = pw/k; w is the reduced mass, @ is the vibration fre.
quency.

7.9. Find the energy required to promote an H, molecule from the
ground state to the first vibrational level (v = 1). How much higher
is this energy as compared to that required to promote the given mole-
cule to the first rotational level (J = 1)?

7.10. Determine the temperature at which the mean kinetic energy
of translation of Cl, molecules is equal to the energy required to
promote these molecules from the ground state to the first vibra-
tional level (v = 1).

7.11. For an OH molecule find the difference in energies of the
states with quantum numbers v =1, J' =0 and v =0, J = 5.

7.12. For an HF molecule calculate the number of rotational
levels located between the ground and first vibrational levels.

7.13. Determine the greatest possible vibrational quantum number,
the corresponding vibrational energy, and dissociation energy of
a diatomic molecule whose natural vibration frequency is o and

58

A S -

anharmonicity coefficient z. Calculate these quantities for an H,
molecule.

7.14. Calculate the anharmonicity coefficient for a Cl, molecule,
if its natural vibration {requency and dissociation energy are
known.

7.15. Calculate the difference in dissociation energies of heavy
and light hiydrogen molecules, D, and H,, if the vibration frequency
of an H molecule is known.

7.16. Find the ratio of HBr molecules being in purely vibrational
states (without rotation) with quantum numbers v = 2 and v =1
atd7 = N0 K. At what temperature will that ratio be equal to 1 : 10?

7.17. Taking into account the degeuneracy of rotational levels (see
Problem 7.5), determine the ratio of the number of hydrogen mole-
cules in the states with quantum numbers " = 1, J' = 0 to those
with v =0, J =5 at T = 1500 K.

7.18. Derive formula (7.3).

7.19. Using formula (7.3), calculate the temperature at which:
{a) the mean vibrational energy of a Cl. molecule is twice the zero
vibrational energy; (b) the level correspondlng to the mean vibra-
tional energy of an O, molecule coincides with the fifth rotational
level of that molecule (J/ = 5, v = 0).

7.20. Proceeding from formula (7.3) derive the expression for
molar vibrational Keat capacity of diatomic gas at constant volume.
Find the approximate forms of that expression for low and high tem-
peratures (AT < hiw and A7T?2> ho).

7.21. Using formula (7.3), calculate the molar vibrational heat
capacity at constant volume for a gas counsisting of Cl, molecules
at temperatures of 150, 300, and 450 K. Plot the approximate graph
of Cuvy (7).

MOLECULAR SPECTRA. RAMAN EFFECT

7.22. Demonstrate that the intervals (expressed in terms of wave
numbers) between the neighbouring spectral lines of the true rota-
tional spectrum of a diatomic molecule are of the same value. Find
the moment of inertia of a CH molecule and the distance between
its nuclei, if the intervals between the neighbouring lines of the
true rotational spectrum of these molecules are equal to Av =
= 29.0 em™1.

7.23. The wavelengths of two neighbouring lines of the true rota-
tional spectrum of HCl molecules are equal to 117 and 156 um.
Determine: (a) the rotational constant B’ in cm™ units and the mo-
ment of inertia of these molecules; (b) the rotation quantum numbers
of the levels between which occur the transitions corresponding to
these lines.

7.24. Determine by what amount the angular momentum of a CO
‘molecule chianges on emission of a spectral line A = 1.29 mm belong-
ing to the true rotational spectrum.
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7.25. How many lines are there in a true rotational spectrunr
of an OH molecule?

7.26. In the vibration-rotation absorption spectrum of HBr mole--
cules, the wavelengths of the zero lines corresponding fto forbiddem
transitioms (AJ = 0) between the ground level and the closest vibra—
tional levels (v = 0 and v =1, 2) are equal to 2559.3 and
5028.2 cm-'. Determine the vibration frequency and anharmonicity
coefficient of these molecules.

7.27. Consider the vibration-rotation band of spectrum of a dia-
tomic molecule for which the selection rule AJ == +1 is valid. Show
that if the rotational constant is the same for the states between
which the transition occurs, the spectral line frequencies of the band are

0= w, 2Bk k=1,2,3, ...

where w, is the frequency of the zero line forbidden by the J selectiom
rule, B is the rotational constant.

7.28. Calculate the moment of inertia and anharmonicity coeffici-
ent of an HF molecule, if the wave numbers of four consecutive
spectral lines of rotational structure of vibration band are equal to
3874, 3916, 4000, and 4042 cm~l. These lines are known to corre—
spond to the transitions AJ == +1 and v == 1— v = 0. The vibra-
tion frequency of the given molecule corresponds to the wave num-
ber v=4138.5 ecm L. The rotational constant is assumed to be equak
for all levels.

7.29. Find the fractional isotope shift (AA/A) of lines in the true
rotational speetrum of the mixture of H3*Cl and H37Cl molecules..

7.30. Consider the spectral line caused by the transition v"==1,
J" = 0— v=0,J =1in CO molecules. Calculate in terms of wave
numbers the isotope shifts Avyy, and Av.,; of vibrational and rota-
tional components of the line (v = vyj, — vyot) and their ratio
for the mixture of *C'®0 and '?C*?0 molecules. The anharmonicity
is to be neglected.

7.31. Find the vibration frequency and quasielastic force constant
of an S, molecule, if the wavelengths of the red and violet satellites,
closest to the fixed line, in the vibrational spectrum of Raman scat-
tering are equal to 3466 and 3300 A. The anharmonicity is to be
neglected.

7.32. Determine the vibration frequency of an HF molecule, if
in the vibrational spectrum of Raman scattering the difference in
wavelengths of the red and violet satellites, closest to the fixed line,
is equal to AL = 1540 A. The wavelength of the incident light is
7»,=03350 A. The anharmonicity coefficient of the molecule is z =
= 0.0218.

7.33. Find the ratio of intensities of the violet and red satellites,
closest to the fixed line, in the vibrational spectrum of Raman scat-
tering by Cl,; molecules at a temperature of 7 = 300 K. By what
factor will this ratio change, if the temperature is doubled?
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7.34. Suppose that for certain molecules the selection rule for
the rotational quantum number is AJ = +1. Demonstrate that
the rotational spectrum of Raman scattering of these molecules obeys
‘the selection rule AJ = 0, 42.

7.35. In the rotational spectrum of Raman scattering the fre-
quencies of red and violet satellites of diatomic molecules (with the
selection rule being AJ = 0, +2) are described by the formula

0 =w0,*=2B2k+1); k=1,2,3, ...,

-where o, is the fixed line frequency and B rotational constant.

(a) Derive this formula. .
(b) Determine the moment of inertia and the nuclear separation

in an O, molecule, if the difference in wave numbers of the two neigh-

bouring red satellites is equal to 5.8 cm % ) ‘
7.36. In the rotational spectrum of Raman scattering of light

with wavelength A, = 5461 A the difference in wavelengths of the

red and violet satellites, closest to the fixed line, equals AL = 7.2 A
for N, molecules. Bearing in mind the selection rule AJ = 0, +2,
£ind the rotational constant B’ in cm~! units and moment of inertia

of these molecules.
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8
CRYSTALS

€ Period of identity is a distance between the neighbouring identical atoms
along a certain direction in a lattice.
© Interplanar distance in a simple cubic lattice

d=af VIREFI2F12, 8.1y

where o is the lattice constant, k, k, I are the Miller indices of the considered
system of planes.
€ Bragg’s equation

2d sin O = »nl, (8.2)

where ¥ is the glancing angle, » is the reflection order, & is the wavelength.
@ Conditions under which the reflections of the nth order are possible from the
set of planes (R*k*I*), where h* = nh, k* == nk, I* = nl: in the case of space-
centered lattice the sum of A*, k*, and I* is even; in the case of face-centered
lattice the indices i*, 4% and [* must possess parity.

NaCl
GsCl
J Laltice
constant
[ Tna=5.654
: s =411A
a a !
Fig. 25

® BOl‘Il'—LaI.l(!é I()rm‘ula, defining the binding energy of ionic crystals as related
lo a pair of ions of opposite charge

U —a q? _ﬁ_ ’ o 1.748 for a NaCl type lattice

r rm 1.763 for a CsCl type lattice,

thrc ¢ is the ionic charge, r is the smallest distance between the ions of opposite
charge, o, B, and n are constants (o is the Madelung constant). The structure of

NaCl and CsCl crystals is illustrated in Fig. 25.
® Compressibility (due to hydrostatic pressure)

(8.3}

1 4v
K=—va (8.4)
where V is the volume of a crystal, p is the pressure.
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@ Debye equation for molar vibrational energy of a crystal:

z3dr 7 0— N®max

1 T\Ae/T
E=9R0[ 5+ () f s e=Tomex (8.5)
[}

where R is the universal gas constant, 0 is the Debye characteristic temperature,
Wmax 18 the maximum vibration frequency calculated from the condition that
the total number of vibrations is equal to the number of vibrational degrees of
freedom in a crystal.

Molar vibrational heat capacity of a crystal at 7 < 0:

12 (T3
C_—gnR(-é—) . (8.6)

CRYSTALLINE STRUCTURE. X-RAY DIFFRACTION

8.1. Knowing the density and crystal type, determine the lattice
constant of sodium and copper.

8.2. Find the density of NaCl and CsCl crystals (see Fig. 25).

8.3. Derive formula (8.1).

8.4. Knowing the lattice constant a, calculate the interplanar
distances dyy9, dyq9, d;1; and their ratios for: (a) simple; (b) space-
centered; (c) face*centered cubic lattices.

8.5. Calculate the periods of identity along the straight lines [111]
and [011] in the crystalline lattice of AgBr whose density is 6.5 g/cm3.
The lattice in question is of the cubic NaCl type.

8.6. Determine the ratio of periods of identity along the direc-
tions [100], [110], and [111] for the simple, space-centered, and face-
centered cubic lattices.

8.7. Determine the structure of an elementary cell of a crystal
belonging to the cubic system with 4-fold symmetry axis, if the inter-
planar distance for the set of planes (100) is known to be equal to
d;=1.58 A and for the planes (110) d, = 2.23 A. The density of
the crystal is 19.3 g/em?3.

8.8. A parallel X-ray beam with the wavelength A falls in an
arbitrary direction on a plane rectangular net with periods ¢ and b.
What pattern will be observed on a screen positioned parallel to
the plane net? Find the directions to the diffraction maxima.

8.9. A plane X-ray beam falls on a three-dimensional rectangular
lattice with periods a, b, ¢. Find the directions to the diffraction
maxima, if the incident beam direction is parallel to the edge a of
the elementary cell. For which wavelengths will the maxima bhe
observed ?

8.10. A plane X-ray beam falls in an arbitrary direction on a sim-
ple cubic lattice with constant a. At which wavelengths are the dif-
fraction maxima observable?

8.11. Using a simple cubic lattice as an example, demonstrate
that Bragg’s equation follows from Laue’s equations.
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8.12. Find the lattice constant for AgBr (of a NaCl lattice type),
if the K, line of vanadium is known to form the first-order reflection
from the set of planes (100) with glancing angle ¥ = 25.9°.

8.13. Calculate the wavelength of X-rays forming the second-
order reflections from the set of planes (100) in a NaCl crystal (see
Fig. 25) with glancing angle § = 25.0°. Find also the angle at which
these X-rays form the highest order reflections from the given set
of planes.

8.14. A NaCl single crystal (see Fig. 25) is photographed by Laue’s
method along the four-fold axis (z axis). The photoplate is located
at a distance L =50 mm from the crystal. Find for the maxima corre-
sponding to reflections from the planes (031) and (221): (a) their dis-
tances from the centre of Laue’s diagram; (b) the wavelengths of
X-rays.

8.15. A beam of X-rays of wavelength A falls on a NaCl crystal
(see Fig. 25) rotating about the four-fold symmetry axis, with the
incident beam direction being at right angles to the rotation axis.
Determine the value of A if the directions to the maxima of the sec-
ond and the third order formed by the set of planes (100) make an
angle o = 60°. .

8.16. A beam of X-rays with a wavelength A = 0.71 A falls on
a rotating single crystal of metal located on the axis of cylindrical

n

+2 80 400 200 o000 o0p

+ ®e o0 00 00 00 oo o6 oo

0 ® 060 060 000 ¢ 0 ¢ o0

-7 % 00 00 %0 00 o0 o0 e

—2 ®0® 000 oce oo 00
Fig, 26

photographic camera of radius 57.3 mm. The incident beam direction
is perpendicular to the rotation axis (the camera’s axis). The X-ray
pattern comprises the system of maxima distributed over the layer
lines (Fig. 26). Determine the type of the metal’s cubic lattice
(space- or face-centered) and find its constant a, if the distance be-
tween the layer lines n = 2 and n = —2 is equal to 65.0 and
23.5 mm respectively, the rotation being performed about directions
[110] and [111].

8.17. What orders of monochromatic X-ray reilection will disap-
pear on transition from the simple cubic lattice to space- and face-
centered ones? The lattice constants are assumed to be equal in all
three cases. Consider the reflections from the planes (100), (110),
and {(111).

8.18. Find the values of the Miller indices &, k, I for the planes
that provide the reflections forming the first five lines in a Debye
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powder photograph of the face- and space-centered cubic lattices.

8.19. Calculate the magnitude of diffraction angles 24 for the
first five lines in a Debye powder photograph of: (a) aluminium and
(b) vanadium, if A = 1.54 A.

8.20. Determine the reflection indices A*, k*, [* and the corre-
sponding interplanar distances for three lines in Debye powder pho-
tograph of aluminium whose diffraction angles (23) are equal to
17°30", 33°50", and 54°20°, when A = 0.71 A.

8.21. A narrow beam of electrons with an energy of 25 keV passes
through a thin polycrystalline film and forms a set of diffraction
rings on a flat screen fixed at a distance L = 20.0 cm from the film.
The diameter of the first ring is D = 13.1 mm. Calculate the lattice
constant. The lattice is known to be a space-centered cubic
one.

8.22, In an electron diffraction photograph of a polycrystalline
film with cubic lattice, the diameter ratio of the first two diffraction
rings is 1 : 1.4. Taking into account that the diameters of these rings
are considerably smaller than the distance between the film and
the screen, determine the type of the lattice (face- or space-centered).

BINDING ENERGY. HEAT CAPACITY OF CRYSTALS

8.23. Calculate the Madelung constant for a unidimensional crys-
tal, that is, a chain of ions With alternating positive and negative
charges. In calculations use the expansion of the function In (1 + z)
into a series.

8.24. Using formula (8.3), find: (a) the expression for the binding
energy of ionic crystal at equilibrium; (b) the refractive index » of
NaCl and CsCl crystals (see Fig. 25) whose binding energies at equi-
librium are equal to 765 and 627 kJ/mol respectively.

8.25. A NaCl crystal with compressibility K = 3.47-10-1! Pa-!
was hydrostatically compressed so that its volume diminished by
1.0%. Find: (a) the pressure to which the crystal was subjected;
(b) the increment of the volume density of crystal’s binding energy.

8.26. The compressibility of a NaCl crystal at equilibrium (see
Fig. 25) is equal to K == 3.47-1071! Pa-'. Using formula (8.3), cal-
culate: (a) the refractive index r; (b) the binding energy of a mole of
this crystal at equilibrium.

8.27. Calculate the values of the same quantities as in the fore-
going problem for a CsCl crystal (see Fig. 25) whose compressibility
is K = 5.10-10-1! Pa-1,

8.28. A NaCl crystal (see Fig. 25) whose compressibility is equal
to K = 3.47-1071! Pa-! at equilibrium was subjected to omnidirec-
tional tension. Using formula (8.3), find how the distance between
the ions increases when the crystal becomes expanded up to the theo-
retical tensile strength value (at which the negative pressure reaches
the highest magnitude). What is the magnitude of that pressure?
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8.29. Along with formula (8.3), another expression for binding
energy of ionic crystal is frequently used:

U= —agr + Ae-t/?,

where « and g have the same meaning, A and p are certain new con-
stants. Using that formula, find: (a) the expression for the binding
energy of an ionic crystal at equilibrium; calculate the constant p for
a NaCl crystal (see Fig. 25) whose binding energy at equilibrium is
equal to 765 kJ/mol; (b) the expression for compressibility of crys-
tals with the NaCl type of the lattice at equilibrium.

8.30. Determine the vibrational energy and heat capacity of a crys-
tal at the temperature 7', treating each atom of the lattice as a quan-
tum harmonic oscillator and assuming the crystal to consist of N
identical atoms vibrating independently with the same frequency o.
Simplify the obtained expression for heat capacity for the cases
kT > Ao and kT < fo.

8.31. Consider a unidimensional crystal model, a chain of N
identical atoms, whose extreme atoms are stationary. Let a be the
chain’s period, m the mass of an atom, x the quasielastic force
constant. Taking into account only the interaction between the
neighbouring atoms, find: (a) the oscillation equation of this chain
and the spectrum of characteristic values of the wave number £;
(b) the frequency dependence of the wave number and the total num-
ber of allowed vibrations; determine the highest vibration frequency
and the corresponding wavelength; (c) the phase velocity as a func-
tion of the wave number and the ratio of phase velocities correspond-
ing to the longest and shortest wavelengths; (d) the number of
characteristic vibrations of the chain in the frequency interval
(0, ® + dw).

8.32. Assuming the propagation velocity of vibrations to be inde-
pendent of frequency and equal to v, find for a unidimensional crys-
tal, that is, the chain of V identical atoms and length L: (a) the num-
ber of longitudinal vibrations in the frequency interval (®, o
-+ do); (b) the characteristic temperature 0; (c) the molar vibration-
al energy and molar heat capacity at the temperature 7'; simplify
the expression obtained for heat capacity for the cases when 7'>> 8
and 7« 0.

8.33. Assuming the propagation velocity of transverse and longi-
tudinal vibrations to be the same, independent of frequency, and
equal to v, find for a two-dimensional crystal, that is, a square plane
net consisting of NV atoms and having the area S: (a) the number of
vibrations in the frequency interval (o, ® -+ do); (b) the character-
istic temperature 0; (c) the molar vibrational energy and molar heat
capacity at the temperature I’; simplify the expression obtained for
the heat capacity for the cases when I'>> 0 and T« 0.

8.34. Find the values of the quantities of the foregoing problem
from a three-dimensional crystal, that is, a cubic lattice consisting
of N identical atoms. The volume of the lattice is V.
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8.35. Assuming the propagation velocities of longitudinal and
transverse vibrations to be independent of frequency and equal to
v, and v; respectively, find the number of vibrations dZ in the
frequency interval (o, o -+ dw) and the characteristic temperature 0:
(a) of a two-dimensional crystal (a plane net consisting of V identical
atoms); the area of the plane net is S; (b) of a three-dimensional
crystal (a cubic lattice of N identical atoms and volume V).

8.36. Calculate the characteristic temperature for iron in which
the propagation velocities of longitudinal and transverse vibrations
are equal to 5850 and 3230 m/s respectively.

8.37. Using the Debye equation, calculate: (a) the ratio AE/E,,
where AE is the energy required to heat a crystal from 0 K up to 0;
E, is the zero vibrational energy; (b) the energy required to heat
a mole of aluminium crystal from 6/2 up to 0.

8.38. Using the Debye equation, calculate the molar heat capacity
of a crystal lattice at temperatures 6/2 and 0. By how many percents
dO(Ies t")he heat capacity at temperature 0 differ from the classical
value?

8.39. Calculate the characteristic temperature and zero vibration-
al energy (in units of J/mol) for silver, if its heat capacity at tem-
peratures 16 and 20 K is known to be equal to 0.87 and 1.70 J- K1 X
X mol~' respectively.
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Fig. 27

8.40. Figure 27 illustrates the temperature dependence of the heat
capam‘:y ofea.cryital (according to Debye). C,; is the classical heat
capacity, .S . .
ﬁn%: ity is the characteristic temperature. Using this graph,

(a) the characteristic temperature for silver, if its 1
capacity equals 15 J-K-1.mol™! at 7 = 65 K;, molar heat

(b) the molar heat capacity of aluminium at 7 = 100 K, if it
eql(la)ls 225 J.K-L-mol-L at 7 — 280 K: '

¢) the highest vibration frequency wmax for co
' pper whose heat
capacity at 7 = 125 K differs from the aglassical value by 25%.

8.41. Evaluate the maximum values of energy and momentum

of a phonon (acoustic quantum) in aluminium.

5% 67



8.42. In a crystal consisting of N identical atoms the number of
phonons in the frequency interval (o, ® -+ dw) at the tempera-
ture T is equal to

i3 w? do
n(m)dm:9N(E) e_hw/T——[‘

where 0 is the characteristic temperature of the crystal.

(a) Derive this expression, using the formula for dZ, obtained
in the solution of Problem 8.34.

(b) Determine the most probable values of energy and frequency
of phonons at the temperature 6/2.

(c¢) Find the temperature, beginning from which the most proba-
ble frequency of phonons becomes equal to their maximum frequency.
The temperature 0 is assumed to be known.

{d) Find the character of temperature dependence of the total
number of phonons when I'<« 6 and 7> 6.

8.43. The scattering of light by a transparent solid can be treated
as a scattering of photons by phonons, assuming that photons possess
the momentum Zw/c’ in a substance, where ¢’ is the velocity of light
in that substance. Using the laws of conservation of energy and mo-
mentum, demonstrate that the light scattered through angle ¥ con-
tains, in addition to the fixed component, two more components with
fractional shift Aw/w == 2 (v/c’) sin (8/2), where o is the incident
light frequency, and v the sonic velocity in the substance.

8.44. At cryogenic temperatures some substances (e.g. paramag-
netic salts) possess a heat capacity C; which exceeds a lattice heat ca-
pacity Cy,; many-fold. The heat capacity C; has been found depend-
ing on internal degrees of freedom, in particular, on the interaction
of spins with intracrystalline fields. Assuming that each atom inde-
pendently orients its spin either parallel or antiparallel to a certain
direction and the difference in energies of the atom in these states
equals AE, find: (a) the temperature dependence of C;; (b) the value
of the ratio AT/AE at which C; reaches a maximum; (¢) the ratio
C; max/Ciat for the case when C; h,« corresponds to a temperature
T = 06/100; 0 is the characteristic temperature.
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METALS AND SEMICONDUCTORS

@ Concentration of free electrons with energies falling into the interval (£, £ 4-

+ dE)
Vs

m2js

V' E dE
1+6(E—Ef)/kT

where f (E) = [1 + JAETEAFTI 4 i called the Fermi-Dirac function, g (E)
is the density of states, E; is the Fermi level. For metals

n kT \2 B
Eszﬂ,[L_—u—( Em) ]; Ejy= o (3n)303,

where Ey, is the Fermi level at 0 K, n is the concentration of free electrons.
In the above formulas the energies E and E; are counted off the bottom of

the conduction band.

@ Hall coefficient for a semiconductor

E_L 1
JBe  ec (nebet-nnbp)?

where ¢ is the electronic charge, n, and n;, are the concentrations of electrons and
holes, b, and b, are their mobilities, B is the magnetic induction.

n(E)dE =1 (E) g (E) dE = 9.1)

nebg _— ”hb121

R= 9.2)

FERMI DISTRIBUTION

9.1. Using the uncertainty principle, find the number of free elec-
trons whose kinetic energies fall within the interval (7, T 4 dT) in
a metal at 0 K. The metal is shaped as a rectangular parallelepiped
of volume V. The number of quantum states is to be determined
under the assumption that only those states can be physically distin-
guished whose electron momentum projections differ at least by
Ap, = 2nh/l,, I, being the edge of the parallelepiped (similarly,
for Ap, and Ap,).

9.2. Using the Fermi distribution, derive an expression for the
highest kinetic energy Tnax of free electrons in a metal at 0K, if their
concentration is equal to n. Calculate 7yax for silver, assuming one
free electron to correspond to each atom.

9.3. Using the Fermi distribution, find at O K: (a) the mean ki-
netic energy of free electrons in a metal, if their highest kinetic energy
T max is known; (b) the total kinetic energy of free electrons in 1 cm?
of gold, assuming one free electron to correspond to each atom.

9.4. What fraction of free electrons in a metal at 0 K has a kinetic
energy exceeding half the maximum energy?
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9.5. Calculate the temperature of an ideal gas consisting of parti-
cles whose mean kinetic energy is equal to that of free electrons in
copper at 0 K. Only one free electron is supposed to correspond to
each copper atom.

9.6. Calculate the interval (in eV units) between the neighbouring
levels of free electrons in a metal at 0 K near the Fermi level, if the
volume of the metal is V = 1.00 cm® and the concentration of free
electrons is 2.0-10% cm~2.

9.7. The difference in the values of F; and E is frequently ne-
glected in calculations. Evaluate by how many percents E; and Ey
differ in the case of tungsten at the temperature of its melting. As-
sume that there are two free electrons per each atom.

9.8. For a metal at O K whose free electrons can reach the highest
velocity vy, find the mean values of: (a) the velocity of free electrons;
(b) the reciprocal of their velocity, 1/v.

9.9. Calculate the most probable and mean velocities of free
electrons in copper at 0 K, if their concentration is 8.5-10%% ¢cm 3.

9.10. Using a simple cubic lattice as an example, demonstrate
that, if one free electron corresponds to each atom, the shortest de
Broglie wavelength of such electrons is approximately double the
distance between the neighbouring atoms.

9.11. Derive the function defining the distribution of free electrons
over the de Broglie wavelengths in a metal at 0 K. Draw the graph.

9.12. The mean energy of {ree electrons in a metal at the tempera-
ture 7 is equal to

3 - 5n2 ( kT \2
B =5 B[ 145 (5) )

Using this formula, find for silver with free electron concentration
6.0-1022 cm~%: (a) the ratio of heat capacities of an electron gas and
a crystal lattice at a temperature of T = 300 K; (b) the temperature
at which the heat capacity of electron gas equals that of the lattice.
9.13. The free electron concentration in metallic sodium is n =
=92.5.1022 ¢m-3. Find the electron gas pressure p; demonstrate that
p = (2/3) E, where E is the volume density of its kinetic energy.
9.14. The number of free electrons in a metal which fall within

velocity interval (v, v =+ dv) is defined as follows:

dav
T~ dv = dv, dv, dv,.

m 3
n(v)dv772( 2nh) —

(a) Derive the above expression from formula (9.1).

(b) Find the concentration of electrons whose velocity projec-
tions fall within interval (vg, vy + dvy) at 0K, if the highest velocity
of free electrons is equal to vp.

9.15. Using the formula of the foregoing problem, prove that,

when two different metals are in contact, their Fermi levels reach the
same height.
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9.16. Using the formula of Problem 9.14, show that the number of
electrons leaving a metallic surface (due to ‘Fhe}"m}onlc emission)
of 1 cm? are per 1 s with the velocities falling within interval (v, v -+
+ dv) is equal to

v (v) dv = 2a (m/2nR)° e~ AtTRT Y3 dy,

where T, is the kinetic energy of the electron, A4 is the work func-
tion. Take into account that A> kT.

9.17. Using the formula of the foregoing problem, find: (a) the
mean kinetic energy of thermionic emission electrons; (b) the_therm-
jonic current density; (¢) the work function, if the increase in tem-
perature from 1500 K to 2000 K leads to the increase of thermionic
current 5.0-10% times. '

9.18. Having determined the concentrations of free electrons
and holes, demonstrate that at sufficiently low t‘emperatu_res the
Fermi level in an impurity-free semiconductor is in the middle of
the forbidden band. '

9.19. At sufficiently low temperatures the concentration of free
electrons in a semiconductor of n type is

e :ﬁ‘/ 2n, (ka/Zﬂhz)w* o~ AE/2RT

where n, is the concentration of donor atoms and AE their activa-
tion energy. . .

(a) Derive this expression using the Fermi distribution.

(b) Find the location of the Fermi level.

PROPERTIES OF METALS AND SEMICONDUCTORS

9.20. The electric conductance of a metal o = ne*t/m, where n 1S
the free electron concentration; e and m are the electronic cha}'ge and
mass; T isthe relaxation time which is related to the_ electron’s mean
free path as (A =T (vy; v is the mean vglomty of elegét.ron%
Calculate T, (M) and the free electron mobility, if » = 8.5-10 cm
and resistivity o= 1.60-10-% Q-cm. Compare the obtained value of
() with the interatomic distance in copper. _

9.21. Find the refractive index of metallic sodium for electrons
with kinetic energy T = 135 eV. Only one free electron 1s assumed
to correspond to each sodium atom. '

9.22. Suppose that due to a certain reason the free electrons shift
by the distance v at right angles to the surface of a flat metalhc layer.
As a result, asurface charge appears together with restoring force which
brings about the so-called plasma oscillations. Determine the fre-
quency of these oscillations in copper whose free electron concentra-
tion is n = 8.5-10% cm 3. How high is the energy of plasma waves 1n
copper? ‘

9.23. BExperiments show that alkali metals are transparent to
ultraviolet radiation. Using the model of free electrons, find the
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threshold wavelength of light beginning from which that phenomenon
is observed in the case of metallic sodium (whose free electron
concentration is n = 2.5-10%2 c¢m3).

9.24. The alkali metals exhibit temperature-independent para-
magnetic properties which can be explained as follows. On applica-
tion of the external magnetic field B, the free electrons with spins
oriented oppositely to the vector B start reorienting along it and,
in accordance with the Pauli principle, promoting to higher non-
occupied levels. This process will proceed until the decrease in the
magnetic energy of electrons equalizes the increase in their kinetic
energy. From this condition find the paramagnetic susceptibility of
a metal of 1 cm3 volume in a weak magnetic field, if the free electron
concentration is n = 2.0-10%*2 c¢m™3,

9.25. The photoconduction limit in impurity-free germanium is
equal to Ay &~ 1.7 pm at very low temperatures. Calculate the tem-
perature coefficient of resistance of

this semiconductor at T = 300 K. & ]
9.26. Find the lowest energy of *¢

electron-hole pair formation in \

pure tellurium at 0 K whose elec- 0 \

tric conductance increases 1| = 5.2

times, when the temperature is -

raised from 7, = 300 K to 7, = \

= 400 K -4
9.27. Figure 28 illustrates the

logarithmic electric conductance as -5 ]

a function of reciprocal tempera- 0 / 2 3 4 09T

ture (7 in Kelvins) for boron-doped

silicon (n-type semiconductor). Fig. 28

Explain the shape of the graph. By
means of the graph find the width of the forbidden band in silicon and
activation energy of boron atoms.

9.28. A sample of impurity-free germanium, whose forbidden band
width is 0.72 eV and electron and hole mobilities are 3600 and
1800 cm?/(V-s), is exposed to an electromagnetic radiation field at
300 K. Under these conditions the sample’s resistivity equal 43 Q-cm.
Determine the fraction of the electric conductance caused by pho-
toconduction. Instruction. Make use of the solution of Problem 9.18.

9.29. The resistivity of impurity-free germanium at room temper-
ature p = 50 Q-.cm. It becomes equal to p; = 40 Q.cm, when the
semiconductor is illuminated with light, and ¢ = 8 ms after switch-
ing off the light source, the resistivity becomes equal to p, =
= 45 Q-.-cm. Find the mean lifetime of conduction electrons and
holes.

9.30. Using the formula cited in Problem 9.19, calculate the acti-
vation energy of donor atoms in an n-type semiconductor, if the
electron mobility is known to be equal to 500 cm?/(V-s), concentration
of donor atoms to 5.0-10'7 ¢m~3, and resistivity at 50 K to 1.5 kQ.
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9.31. A sample of n-type germanium has a resistivity p =
= 1.70 Q-cm and a Hall coefficient B = 7.0-10-%7 CGSE at the
temperature 7 = 300 K. Find: (a) the concentration and mobility
of conduction electrons; (b) their mean free path.

9.32. In the Hall effect measurements a plate of widthd = 1.0 cm
and length I = 5.0 cm made of p-type semiconductor was placed in
the magnetic field B = 5.0 kG. A potential difference U = 10,0V
was applied across the edges of the plate. In this case the Hall field
is V = 0.050 V and resistivity p = 2.5 Q-cm. Determine the Hall
coefficient, concentration of holes and hole mobility.

9.33. Having considered the motion characteristics of electrons
and holes in a semiconductor carrying a current and placed in an
external magnetic field, find the Hall coefficient as a function of con-
centration and mobility of charge carriers. ‘

9.34. Calculate the difference in the mobilities of conduction elec-
trons and holes in impurity-free germanium, if in a magnetic field
B = 3.0 kG the ratio of the transverse electric field strength £
to the longitudinal one, E, is known to be equal to 0.06(_).

9.35. The Hall effect could not be observed in a germanium sample
whose conduction electron mobility is 2.1 times that of holes. For
this sample find: (a) the ratio of conduction electron :}nd hole con-
centrations; (b) what fraction of electric conductance is effected v

electrons.



10
PRINCIPAL CHARACTERISTICS OF NUCLEI

@ Radius of nucleus with mass number 4:

R = 1.44'3.10-13 cm. (10.1)
‘@ Binding energy of nucleus (in mass units):
Eb - ZmH + (A - Z) my — ]W, (10.2)

where Z is the atomic number of nucleus, 4 is the mass number, my, my, and
M are the masses of hydrogen, neutron, and the given atom. In calculations
one can use the more convenient formula

Ey=ZAg + (A4 —2Z)A, — A, (10.3) J
where Ay, A,, and A are the mass surpluses of lg—______Z_
a hydrogen atom, a neutron, and an atom cor- !]/Z
responding to the given nucleus.

® Semi-empirical formula for the binding energy
of a nucleus:

a/ A
E (MeV)= 14.0A~—»13.OA-,3—0.584—AI—/§—
(A—27)? 335
—10.3 522 s (10.4)
-+1 when A4 and Z are even,
b= 0 when 4 is odd (for any 2),

—4 when A4 is even and Z is odd.

@ Total angular momentum of an atom:

F=17J41,
(10.5)
F=J 1, J T —1, ..., |J—1I],
where J is the angular momentum of the atom’s = = —~——————

electron shell, I is the spin of the nucleus. For /§— ——— ’/Z
allowed transitions

AF =0, +1; F=0-» F=0. Fig. 29

©® Magnetic moment of a nucleus (or rather its maximum projection):

= gluy, (10-6)
where g is the gyromagnetic factor, I is the spin of a nucleus, uy is the nuclear
magneton.
® Model of nuclear shells (Fig. 29). Here ; is the quantum number of the nucle-
on’s total angular momentum; the encircled numbers indicate the number of
nucleons of one sort (either protons or neutrons) which fill up all the levels
lying below the corresponding dotted line, a shell’s boundary. The protons and

neutrons fill up the levels independently and in accordance with the Pauli
principle.
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RADIUS, MASS, AND BINDING ENERGY OF NUCLEX

10.1. Evaluate the density of nuclear matter, nucleon concen-
tration, and volume density of electric charge in a nucleus.

10.2. The scattering of protons by a thin lead foil obeys the
Rutherford formula provided the values Bp for protons do not exceed
450 kG-.cm. Evaluate the radius of a lead nuclei.

10.3. The results of experiments on scattering fast electrons by
nuclei agree well enough with the distribution of electric charge
volume density in a nucleus:

0 (7”) oc [1 + e(r—rﬁ)/é]—i’

where r,=1.084"% .10 c¢m, 6 = 0.545.107%3 cm.
Find the most probable radius of distribution of electric charge in an
Ag nucleus. Compare the result obtained with the nucleus’ radius.

10.4. In the modern system of atomic masses a unit mass is adopt-
ed to be 1/12 of the mass of a ?C atom (to replace the old unit mass
equal to 1/16 of the mass of an 0 atom). Find the relation between
the new and the old unit masses. How did the numerical values of
atomic masses change on adoption of the new unit?

10.5. Find the percentage (atomic and mass) of the 13C isotope
in natural carbon which consists of 12C and 3C isotopes. The atomic
mass of natural carbon and of both isotopes are supposed to be
known. .

10.6. Find the atomic masses of *H, 2H, and O isotopes, if the
differences in masses of the three fundamental doublets are known
(in a.m.u.’s): 'H, — 2H = 0.001548; 2H, — 1/,1*C = 0.042306;
RCIH, — %0 = 0.036386.

10.7. Using formula (10.3), find:

(a) the binding energy of a nucleus possessing an equal number of
protons and neutrons and a radius 2/3 of that of 2*Al nucleus;
(b) the binding energy per nucleon in SLi, %°Ar, %7Ag, and 2°Pb
nuclei.

10.8. Determine: (a) the binding energy of a neutron and o-par-
ticle in a 2'Ne nucleus; (b) the energy required to split an O nucleus
into four identical particles.

10.9. Find the excitation energy of a 2°’Pb nucleus appearing on
the capture of a slow neutron by a 2%Pb nucleus.

10.10. Calculate the binding energy of a neutron in a N nucleus,
if the binding energies of N and N nuclei are known to be equal to
104.66 and 94.10 MeV.

10.11. Find the energy required to split an %O nucleus into an
a-particle and '2C nucleus, if the binding energies of %0, 12C, and
“He nuclei are known to be equal to 127.62, 92.16, and 28.30 MeV.

10.12. Find the energy liberated on the formation of two c-parti-
cles as a result of fusion of 2H and ®Li nuclei, if the binding energy
per nucleon in 2H, *He, and °Li nuclei are known to be equal to 1.11,
7.08, and 5.33 MeV respectively.
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10.13. Demonstrate that in the case of uniform distribution of
charge over the volume of a nucleus, the energy of the Coulomb
repulsion of protons is equal to Ug = 0.6Z%?/R, where Z and R
are the charge and the radius of the nucleus.

10.14. Calculate the difference in binding energies of mirror
nuclei 338 and 33Cl, if the mass of *3Cl] is known to exceed the mass of
33 atom by 0.00599 a.m.u. Compare the obtained value with the
difference in energies of the Coulomb repulsion of protons in these
nuclei (see the formula in the foregoing problem). Explain the coin-
cidence of the results.

10.15. Assuming the difference in binding energies of mirror nuclei
#BNa and #Mg to be determined only by the difference in energies of
the Coulomb repulsion in these nuclei (see the formula in Prob-
lem 10.13), calculate their radii. Compare the obtained result with
the result calculated from the formula for nucleus’ radius.

10.16. Using the semi-empirical formula, calculate: (a) the bind-
ing energies of *°Ca and 1°7Ag nuclei; (b) the binding energies per
nucleon in ®V and 2°Hg nuclei; (¢) the masses of 5S¢ and °Zn
atoms.

10.17. Using formula (10.4) determine the charge of a nucleus
whose mass is the smallest among nuclei with the same odd value of
mass number A. Using the obtained formula, predict the character of
activity (either electron or positron) of the following B-active nuclei:
0370 127Gy - and 41Cs.

SPIN AND MAGNETIC MOMENT OF A NUCLEUS

10.18. Determine the number of hyperfine structure components
in the basic term of the following atoms: *H (35;/,), ®Li (3Sy,5)
"Be (1S,), N (483/,), and 3°Cl (3P,,). The basic term of electron shell
is indicated in parentheses.

10.19. Determine the spin of a 3Co nucleus whose basic atomic
term *Fy,, possesses eight components of hyperfine splitting.

10.20. Find the number of components of hyperfine spitting of the
spectral lines 2P, — 2S,,, and 2P,/,— 25y, for %K atoms. The
nuclear spin is supposed to be known.

10.21. Two terms of an atom have different values of the quantum
number J (J, and J,). What quantum number (J or /) can be deter-
mined from the number IV of the components of hyperfine splitting
of each term in the case when the numbers of the components of both
terms are: (a) equal (V; = V,); (b) different (V, == N,)?

10.22. The intensities of hyperfine components of the spectral
line 2P,;;, — 28y, in sodium relate approximately as 10 : 6. Taking
into account that the hyperfine structure emerges due to splitting
of the 2S,,, term (the splitting of the 2P, term is negligible), find the
spin of **Na nucleus.
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10.23. The electron shell of an atom produces at the nucleus’
site the magnetic field B, whose direction coincides with that of the
angular momentum J of the electron shell. An additional energy of
interaction of the nucleus’ magnetic moment with that field depends
on orientation of the angular momenta J and I which is specified
by the spatial quantization rules. Proceeding from these concepts
demonstrate that the intervals between the neighbouring sublevels
defined by the quantum numbers F, F -1, F -+ 2, ... relate as
F+10:(F+2): ...

10.24. The 2D, term of a ?®Bi atom has four components of
hyperfine splitting with the ratio of the intervals between the neigh-
bouring components being equal to 4 : 5 6. By means of the rule
of the intervals (see the foregoing problem) find the nuclear spin
and the number of the components of hyperfine splitting for the line
28175 *Dgyo. . s

10.25. The hyperfine structure sublevels of the 2P/, term in a 35C1
atom experience splitting in a weak magnetic field. Find the fotal
number of the Zeeman components.

10.26. In a strong magnetic field each sublevel of the %S,/, term in
42K and ®Rb splits into five and six components respectively. Find
the nuclear spins of these atoms.

10.27. Calculate the angular precession velocities of an electron,
proton, and neutroh in a magnetic field B = 1000 G.

10.28. In studies of magnetic properties of Mg atoms in the ground
2§, state by the magnetic resonance method, the resonance energy
absorption is observed at a constant magnetic field B = 5.4 l;G
and a frequency of a.c. magnetic field vo = 1.40 MHz. Determine
the gyromagnetic ratio and nuclear magnetic moment. (The spin is
supposed to be known.)

10.29. The magnetic resonance method was used to study the
magnetic properties of "Li'*F molecules whose electron shells possess
the zero angular momentum. At constant magnetic field B = 5000 G,
two resonance peaks were observed at frequencies v, = 8.30 MHz
and v, = 2.00 MHz of an a.c. magnetic field. The control experiments
showed that the peaks belong to lithium and fluorine atoms respecti-
vely. Find the magnetic moments of these nuclei. The spins of the
nuclei are supposed to be known.

10.30. According to the gas model of a nucleus, the nucleons form
a gas filling up the volume of the nucleus and obeying the Fermi-
Dirac statistics. On the basis of that assumption, evaluate the highest
kinetic energy of nucleons inside a nucleus. The gas is supposed to be
completely degenerate, and the number of protons and neutrons
in a nucleus to be equal.

10.31. Using the nuclear shell model, write the electronic configura-
tions of "Li, 13C, and 2°Mg nuclei in the ground state.

10.32. Using the nuclear shell model, determine the spins and
parities of the following nuclei in the ground state: 70, ?°Si, K,
45G¢, and %3Cu.
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10.33. Using the vector model, d
. X , demonstrate t
1c ratio for a nucleon in the state I, ; is hat the

8s— 81
AF1 0
Fglrlelje;ch? pluls/gign is to be taken for j = 7 - 1/2 and the minus sign
rati(])s. » & and g, are the spin and orbital gyromagnetic
10.34. Using the formula of the f i
- . oregoing problem, calculate th
magnetlc‘ moment in the states s,,, P12, and pg, of: (a) a neutros
(gz10=3g),[§b) a proton (g; = 1).
-09. Using the formula of Problem 10.33 determi
| : : .93, ne tl -
tum numbel_‘ j for a proton in the f state, if its magnetic morlrfeg;l?p
th% s3té31te) 1s equal to p = 5.79 u,. "
-0b. Using the nuclear shell model determi i
momenr Using ] h " rmine the magnetic
moments o 1e nuclei: (a) °®H and 3He; (b) O and 3K in the
10.37. Contrary to the assumpti i i
‘ ption of uniform filling of

ﬂllellsil the spin of a F nucleus equals 5/2, and not 1/2% gu;;ocslflfr
at the magnetic moment, equal to 2.63 Wx, isdefined by an unpaire(%y
proton, dete_armme the level occupied by that proton. The proton’
gyromagnetic ratios are g, = 5.58 and g, =1 . protons
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11
RADIOACTIVITY

® Fundamental law of radioactive decay:

NeeNpe~M; p-tIn2 (11.1y

where A is the decay constant, t is the mean lifetime of radioactive nuclei, T is

their half-life.
@ Specific activity is the activity of a unit mass of a substance.

@ Poisson distribution law

n ,—{(n)
Ao (11.2)

p(n)= =

where p (n) is the probability that » random events will occur in a certain period
of time, (n) is the average number of times the event occurs during this period.
@ Gaussian (norme}w],) distribution

1 —~e2/202
ple)=——"—c¢ 11.3)
= : (11.3)
where ¢ = | n — (n)| is the deviation from the mean, o is the standard error

of a single measurement,
o=V~ Vn

® Standard error of the sum or difference of independent measurements

o=V oi+oi+ ..., (11.4)

where ¢; are the standard errors of independent measurements.

RADIOACTIVE DECAY LAWS

11.1. Find the decay probability for a nucleus during the time
interval ¢, if its decay constant is equal fo A.

11.2. Demonstrate that the mean lifetime of radioactive nuclei
equal T = 1/A, where A is their decay constant.

11.3. What fraction of the original number of %Sr nuclei: (a) will
remain after 10 and 100 years? (b) will disintegrate during one day;
during 15 years?

11.4. There is a stream of neutrons with a kinetic energy of
0.025 eV. What fraction of neutrons decays at a distance of 2.0 m?

11.5. Calculate the decay constant, mean lifetime, and half-life
of a radionuclide whose activity diminishes by 6.6 per cent during
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11.6. Determine the age of ancient wooden items, if it is known
‘that the specific activity of *C nuclide amounts to 3/5 of that in
lately felled trees.

11.7. A fresh preparation contains 1.4 pg of 2Na radionuclide.
‘What will its activity be after one day?

11.8. Determine the number of radioactive nuclei in a fresh speci-
men of #Br, if after one day its activity became equal to 0.20 Ci.

11.9. Calculate the specific activity of pure 23Pu.

11.10. How many milligrams of beta-active #Sr should be added
to 1 mg of inactive strontium to make the specific activity of the
preparation equal to 1370 Ci/g?

11.11. In the bloodstream of a man a small amount of solution
was injected, containing a %*Na radionuclide of activity 4 =
= 2.0-10% s~1. The activity of 1 cm?® of blood sample taken after ¢ =
= 5.0 hours turned out to be @ = 16 min~t.cm~3. Find the total
blood volume of the man.

11.12. A preparation contains two beta-active components with
different half-lives. The measurements resulted in the following depen-
dence of the count rate N (s~') on time ¢ expressed in hours:

0 1 2 3 5 10 20 30
60.0 34.3 2t.1 14.4 8.60 5.00 2.48 1.25

Find the half-lives of both components and the ratio of radioactive
nuclei of these components at the moment ¢ = 0.

11.13. A radionuclide A4, with decay constant A, transforms into
a radionuclide A, with decay constant A,. Assuming that at the
initial moment the preparation consisted of only N;, nuclei of
radionuclide 4,, find: (a) the number of nuclei of radionuclide 4,
after a time interval #; (b) the time interval after which the number
of nuclei of radionuclide 4, reaches the maximum value; (e) under
what condition the transitional equilibrium state can evolve, so that
the ratio of the amounts of the radionuclides remains constant.
What is the magnitude of that ratio?

11.14. The decay product of 28U is 226Ra which is contained in
the former substance injthe proportion of one atom per 2.80-10° uran-
ium atoms. Find the hali-life of 2*%U, if it is known to be much long-
er than that of 2*Ra (equal to 1620 years).

11.15. Via beta-decay a '2Pd radionuclide transforms into
a beta-active 1'2Ag radionuclide. Their half-lives are equal to 21
and 3.2 hours respectively. Find the ratio of the highest activity of
the second nuclide to the initial activity of the preparation, if at the
initial moment the preparation consisted of the first nuclide only.

11.16. A 8Cd radionuclide goes, through the transformation
" chain

118 Cd - > iiSIn

30 min
(the corresponding half-lives are indicated under the arrows). Assum-
ing that at the moment ¢ = O the preparation consisted of Cd only,

——> 118 S (stable)
4.5 min
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find: (a) the fraction of nuclei transformed into stable ones after
60 min; (b) in what proportion the activity of the preparation di-
minishes after 60 min.

11.17. A radionuclide 4, decays via the chain: 4; —>Ad,—~>A4;—...

A 2 A
(the corresponding decay constants are indicated undtlar the2 arroi;vs).
Assuming that at the initial moment the preparation consisted of
N,o nuclei of radionuclide A4;, derive the expression for the law of
accumulation of A4; nuclide.

11.18. Find the mass of lead formed from 1.0 kg of 2*¥U during the
period equal to the age of the Earth (2.5-10° years).

11.19. A preparation contains 10 ug of 2?Ra and its decay prod-
ucts which are in the state of transitional equilibrium with radon.
Using the tables of the Appendix, determine: (a) the a-activity
of 2 Rn and f-activity of *°Pb of the preparation; (b) the total
a-activity of the preparation.

11.20. A ?"Mg radionuclide is produced at a constant rate of
¢ = 5.0-10%° nuclei per second. Determine the number of **Mg nuclei
that would accumulate in the preparation over the time interval:
(a) exceeding considerably its half-life; (b) equal toits half-life.

11.24. A 1#Sh radionuclide is produced at a constant rate of
g = 1.0-10° nuclei per second. Having the half-life 7 =60 days it
decays into the stable 1%Te. Find: (a) how soon after the beginning
of production the activity of *24Sb radionuclide becomes equal to
A = 10 pCi; (b) what mass of **Te will be accumulated in the prep-
aration four months after the beginning of its production.

11.22. An A, radionuclide produced at the constant rate g nuclei
per second goes through the following transformation chain:

44 - A, e A; (stable)

(the decay constants are indicated under the arrows). Find the
law describing the accumulation of nuclei 4, A,, and 4, in the
course of time, assuming that at the initial moment the preparation
did not contain any of them.

11.23. A 138Xe radionuclide produced at a constant rate of ¢ =
= 1.0-10'° nuclei per second, goes through the following transfor-
mation chain

138X e 138Cg > 138Ba (stable)

17 min 32 mi

(the half-lives are indicated under the arrows). Calculate the com-
bined activity of the given preparation 60 min after the beginning of
accumulation.

11.24. A %*Mo radionuclide with a half-life of 67 hours transforms
into a stable *¥Tc¢ nuclide through PB-decay. As this takes place,
75% of B-transformations goes through the isomer **Tc¢™ whose half-
life is 6.04 hours. Determine: (a) the fraction of stable nuclei in the
preparation 5.00 hours after, assuming that at the initial moment it

6—0339 81



contained only #*Mo; (b) the number of stable **Tc nuclei in the prep-
aration 20 hours after the beginning of accumulatlop, assuming
99)\[o to be produced at a constant rate of 1.0-10' nuclei per second.

a- AND p-DECAY

11.25. A stationary ?*Po nucleus emits an a-particle with kinetic
energy T, -=8.34MeV. Provided that a daughter nucleus is produced
in the ground state, find the total energy released in this process.
What fraction of that energy is accounted for by the kinetic energy
of the daughter nucleus? What is the recoil velocity of the daughter
nucleus?

11.26. 219Pg nuclei emit o-particles with kinetic energy 7=
— 5.30 MeV, with practically all daughter nuclei being formed imme-
diately in the ground state. Determine: (a) the amount of heat
released by 10.0 mg of 21°Po preparation during the mean lifetime
period of these nuclei; (b) the initial activity of the 20Pg preparation,
if during its half-life period it releases 2.2 kJ of heat.

11.27. The decay of 21°Po nuclei (in the ground state) is accom-
panied by emission of two groups of a-particles: the _principal one
with an energy of 5.30 MeV and low-intensity one with an energy
of 4.50 MeV. Find the energy of a-decay of the initial nuclei and that
of gamma-quanta emitted by the daughter nuclei. .

11.28. 226Th nuclei decay from the ground state with emission of
o-particles with energies of 6.33, 6.23, 6.10, and 6.03 MeV. Calculate
and plot the diagram of the levels of the daughter nucleus.

11.29. The decay of #2Po nuclei is accompanied by emission of
four groups of a-particles: the principal one with an energy of
8.780 MeV and long-range ones with energies of 9.492, 10.422, and
10.543 MeV. Calculate and plot the diagram of the levels of a **Po
nucleus, if the daughter nuclei are known to be produced in the
ground state. .

11.30. Evaluate the height of the Coulomb barrier for oc—partlcles
emitted by **Rn nuclei (the rounded top of the barrier is to be ig-
nored). What is the barrier width (tunnelling distance) of these nuclei
for a-particles ejected with a kinetic energy of 5.5 MeV? .

11.31. Determine the ratio of the height of the centrifugal barrier
to that of the Coulomb barrier for a-particles emitted by 2**Po nuclei
and having the orbital moment [ = 2. The rounded top of the Cou-
lomb barrier is to be ignored. .

11.32. A nucleus emits an o-particle whose kinetic energy I' is
considerably less than the Coulomb barrier height. In this case the
coefficient of transparency of the barrier is equal to

D=e" 1/T; x=2nZe2 ) 2m/h,

where Ze is the charge of the daughter nucleus, m is the mass of

a-particle. )
(a) Derive this formula from the general expression for D (3.5).
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(b) Calculate the transparency ratio for a-particles emitted by
226Th nuclei with energies of 6.33 and 6.22 MeV.

11.33. *'2Po nuclei in the first excited state decay through twe
competing processes: the direct emission of a-particles (long-range
group) and emission of a-particle after transition of the excited nucle-
us to the ground state (principal group of a-particles). 35 long-range
a~-particles are emitted for each 1.0-10% a-particles of the principal
group. Find the decay constant of the given excited level in terms of
emission of long-range a-particles, if the mean lifetime of that
level is T = 1.8-101% s,

11.34. Find the width of the first excited level of 2*Po in terms of
emission of gamma-quanta, if the decay of the excited nuclei in-
volves 4.3-10-7 long-range a-particles and 0.286 y-quanta for each
a-particle of the principal group. The decay constant in terms of emis-
sion of long-range a-particles is equal to 2.0-10% s~1,

11.35. Calculate the total kinetic energy of particles emerging
on f-decay of a stationary neutron.

11.36. How does one determine the amount of energy released in
p-—-decay, pt-decay, and K-capture, if the masses of the parent and
daughter nuclei, and the electron mass are known.

11.37. Knowing the mass of the daughter atom and P-decay ener-
gy Q, find the atogmic mass of: (a) *He which undergoes a f~—-decay
with an energy of Q = 3.50 MeV; (b) 22Na, undergoing a B*-decay
with an energy of Q = 1.83 MeV.

11.38. Determine whethér the following processes are possible:
(a) PB—decay of ®V nuclei (—0.05602); (b) p*-decay of 3°Ca nuclei
(—0.02929); (¢) the K-capture in *Zn atoms (—0.06679). The excess
of atomic mass is indicated in parentheses, M — A (in a.m.u.’s).

11.39. A 3P nucleus undergoes j-decay to produce a daughter
nucleus directly in the ground state. Determine the highest kinetie
energy of P-particles and the corresponding kinetic energy of the
daughter nucleus.

11.40. Calculate the maximum magnitude of momentum for elec-
trons emitted by °Be nuclei, if the daughter nuclei are produced
directly in the ground state.

11.41. A 1'C nucleus undergoes a positronic decay to produce
a daughter nucleus directly in the ground state. Calculate: (a) the
highest kinetic energy of positrons and the corresponding kinetic
energy of the daughter nucleus; (b) the energies of the positron and
neutrino in the case when the daughter nucleus does not recoil.

11.42. A ®He nucleus undergoes p~—-decay to produce a daughter
nucleus directly in the ground state. The decay energy isQ = 3.50 MeV.
An electron with the kinetic energy 7 = 0.60 MeV escapes at
right angles to the direction of motion of the recoil nucleus. At
what angle to the direction at which the electron escapes is the
antineutrino emitted?

11.43. Calculate the energy of y-quanta released in B-decay of
%A1 nuclei (Fig. 30).
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{1.44. Determine the number of y-quanta per one p-decay of _38Cl
nuclei (Fig. 31), if the relative number of $-decays with the given
partial spectrum of B-particles is equal to: 31% (By), 16% (B.),
and 53% (Bs). . ‘

11.45. p-decay of >*Mn nuclei in the ground state is .accomp'anled
by the emission of three partial spectra of B-particles with maximum
kinetic energies of 0.72, 1.05, and 2.86 MeV. The concurrent y-quanta

ZﬂAl Jsm
5y
B V)
’ Y/
e 7
B BA-
Fig. 30 Fig. 31

have the energies of 0.84, 1.81, 2.14, 2.65, and 2.98 MeV. Calculate
and draw the diagram of levels of the daughter nucleus.

11.46. *'Ar nuclei experience the K-capture after which the.daugh-
ter nuclei are formed directly in the ground state. Neglecting the
binding energy of the K-electron, determine the kinetic energy and
velocity of the daughter nucleus. '

11.47. Find the energy of aneutrino in the K-capture in 131Cs atoms,
if the total energy released in this process equals 355 keV, and the
binding energy of the K-electron in the daugh‘ger atom is 35 keV,
with the daughter nucleus being formed directly in the ground state.

11.48. The K-capture in "Be results occasionally in the formation
of an excited daughter nucleus emitting a y-quantum with an ener-
gy of 479 keV. Determine the kinetic energy of the daughter nucleus
after emission of y-quantum, if the neutrino and the rgcoﬂ nucleus
move at right angles to each other. What is the magnitude of that
energy in the case when the daughter nucleus is formed directly in

the ground state?

v-RADIATION: INTERNAL CONVERSION,
MOSSBAUER EFFECT

11.49. An isomeric nucleus ®1Se™ with an excitation energy of
103 keV passes to the ground state, emitting either a y-quantum or
conversion electron from the K-shell of the atom (the binding energy
of the K-electron being equal to 12.7 keV). Find the velocity of the
recoil nucleus in both cases. . o m

11.50. Passing to the ground state, an isomeric 109Ag™ nucleus
emits either a y-quantum with an energy of 87 keV or a conversion
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K-electron with Bp = 860 G-.cm. Calculate the binding energy of
the K-electron.

f1.51. 299T] atoms resulting from B-decay of 2°3Hg atoms emit
4 groups of conversion electrons with kinetic energies of 266.3,
264.2, 263.6, and 193.3 keV. To what shell of a Tl atom, K, Ly, L,
L, does each group correspond? The electron binding energy in
the shells is 87.7, 15.4, 14.8 and 12.7 keV respectively. Calculate
the energies of y-quanta concurrent with that decay.

11.52. Excited Pr nuclei resulting from p-decay of *Ce
nuclei pass to the ground state by emission of y-quanta or con-
version electrons. Determine the excitation energy of a M'Pr nucleus,
if for the conversion K-electrons Bp = 1135 G-cm and the binding
energy of the K-electrons is equal to 42 keV.

11.53. Excited '7Sn nuclei resulting from p-decay of In
nuclei pass to the ground state, emitting two consecutive y-quanta.
This process is followed by emission of
conversion K-electrons for which Bp is equal
to 3050 and 1300 G.e¢m. The binding energy -
of K-electrons equals 29 keV. Determine AN
the energy of the y-quanta. Ay

11.54. Find the number of conversion
electrons emitted per second by a *Fe bk
preparation with an activity of 1.0 mCi.
The diagram of p-decay of *°Fe nuclei is &
shown in Fig. 32. The internal conversion
coefficients for vy-quanta are equal to
1.8-107% (y,), 1.4-107% (y,), and 7-1073 (y;). Fig. 32
The probabilities of y, and y; emission
relate as 1 : 15. Note: the internal conversion coefficient is theratio
of the probability of conversion electron emission to that of y-quan-
tum emission.

11.55. A free nucleus *'Ir with an excitation energy of £ =
= 129 keV passes to the ground state, emitting a y-quantum. Find
the fractional change of energy of the given y-quantum due to recoil
of the nucleus.

11.56. A free nucleus **Sn with an excitation energy of £ =
= 23.8 keV passes to the ground state, emitting a y-quantum. The
given level has a width T' = 2,4.10-% eV. Determine whether the
resonance absorption of such a y-quantum by another free '°Sn nu-
cleus is possible, if initially both nuclei were stationary.

11.57. What must be the relative velocity of a source and an
absorber consisting of free %Ir nuclei to observe the maximum
absorption of y-quanta with an energy of 129 keV?

11.58. As it was shown by Mossbauer, each y-line of the spectrum
emitted by the excited nuclei of a solid has two components: a very
narrow one with energy equal to the transition energy in the nuclei,
and a much broader one which is displaced relative to the former.
For a 5Fe y-line corresponding to the energy of 14.4 keV the fraction-
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al shift of the displaced component is AAA = 1.35-1.OT7. Demon-
strate that that component is caused by the recoil nuclei occurring
in the process of y-emission. . - )

" 11.59. Figure 33 illustrates the absorption of the Mgssbauer Y—hne
with an energy of 129 keV as a function of the relative velocity of
a source and an absorber (**1Ir). Taking into account that the emission
of the given line is caused by the transition of excited nuclei directly
to the ground state, find the width

and lifetime of the corresponding v, om/s

-4 -2 0 7 4 6 8

excited level. . 0
11.60. A gamma source 1S g —
placed 20.0 m above an absorber. % ;5
With what velocity should thesource =
be displaced upward to counter- % ,, \
balance completely the gravita- g = \
tional variation of the y-quanta = . \
energy due to the Earth’s gravity =7
at the point where the absorber is §~ 03 {
located? .§( g ]
11.61. The relative widths of 0 VIREER
the Méssbauer v-lines in ®Fe and :
$77n are equal to 3.0-1071® and Fig. 33

5.0-10-16 respectively. To what . .
height above the Earth surface has one to raise an absorber (*"Fe
and ¢7Zn) to make the gravitational displacement of the Mossbauer
line exceed the width of the lines when being registered on the Earth
surface? .
11.62. In the process of emission of y-quanta corresponding to
a Méssbauer line the recoil momentum is taken by a crystal as

77/_/-
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Fig. 34

a whole, so that the momentum of the emitting atom remains con-
stant. The mean kinetic energy of such an atom, however, increases
due to a decrease in its mass following the radiation. As a result,
the Mossbauer line frequency turns out to be less than the transition
frequency @, that is, 0 = 0, (1 — @?)/2¢?), where (v*) is the
square of the root-mean-square velocity of the atom.

(a) Derive this expression from energy considerations.

(b) By how many Kelvins must the temperature of the source
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exceed that of the absorber, so that the temperature shift of the
Maossbauer y-line in ®'Fe counterbalances completely the gravitational
shift ? The source is placed at a distance of I = 20 m above the absorb-
er. The mean kinetic energy of atoms in the crystal is assumed to be
equal to 3k7T/2.

11.63. Figure 34 illustrates the Mossbauer absorption velocity
spectrum in the case when the emission line of y-quanta with an
energy of fo = 14.4 keV is not split (a 5?Co source is inserted into
non-magnetic steel), while a plate of natural iron serves as an absorb-
er. The positive velocity values signify the motion of the source
toward the absorber. Using the level diagram of Fig. 34, find the
magnetic moment of a *”Fe nucleus in the excited state and induction
of the magnetic field acting on the nucleus in iron. The magnetic
moment of a *Fe nucleus in the ground state is equal to p =
= 0.090 uy.

REGISTRATION STATISTICS
OF NUCLEAR RADIATION. COUNTERS

11.64. In measuring the activity of a certain preparation a counter
registers 6 pulses per minute on the average. Using formula (11.2)
evaluate the probability of the count rate having a value between 9
and 11 pulses per minute.

11.65. 2000 measurements of activity of a preparation are to be
performed during equal time intervals. The mean number of pulses
registered during each measurement is equal to 10.0. Assuming
the total measurement time to be small in comparison with the half-
life of the radionuclide being investigated, determine the number of
measurements in which one should expect registering 10 and 5 pulses
exactly.

11.66. The mean count rate value registered in the studies of
a radionuclide with a long half-life is 100.0 pulses per minute. Deter-
mine the probability of obtaining 105.0 pulses per minute, and the
probability of absolute deviation from the mean value exceeding
5.0 pulses per minute.

11.67. Calculate the probability of obtaining the absolute error
of measurement exceeding: {(a) o and (b) 20, where ¢ is the standard
@rror.

11.68. A counter placed in a radiation field to be investigated
registered 3600 pulses during 10 minutes. Find: (a) the standard
error in the count rate, pulses per minute; (b) the duration of measure-
ment sufficient to determine the count rate with an error of 1.00%.

11.69. While measuring the intensity of radiation (including the
background), a counter registered 1700 pulses during 10.0 minutes.
The separate background measurement yielded 1800 pulses during
15.0 minutes. Find the count rate (pulses per minute) caused by the
radiation investigated and its standard error.

11.70. Demonstrate that in the presence of a background whose
intensity is equal to that of the investigated radiation one has to
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register 6 times as many pulses to provide the same measurement
accuracy as in the case when the investigated radiation is not accom-
panied with any background radiation.

11.71. The count rate of the background pulses is equal to n, =
= 15 pulses per minute, and the count rate of a preparation studied
in the presence of the background is n,, = 60 pulses per minute. Let
tp and fp; be the times of measurement of the background and that
of the preparation in the presence of the background. Find the opti-
mum ratio ¢,/t,, at which the preparation count rate is determined
zvith the highest accuracy for the given total time of measurement
ty -+ tpb)-

11.72. Using the data of the foregoing problem, find the minimum
values of ¢, and ¢;,;, at which the preparation count rate can be deter-
mined with accuracy m = 0.050. :

11.73. A Geiger-Miiller counter with time resolution T =
= 2.0.-107* s registered » = 3.0-10* pulses per minute. Determine
the real number N of particles crossing the counter during one
minute.

11.74. What fraction of particles crossing a counter with time
resolution T = 1.0:107% s will be missed at the count rates of n =
= 100 and 1.0-10° pulses per second?

11.75. In measuring the activity of a preparation a Geiger-
Miiller counter with time resolution of 2.0-10* s registered 1000
pulses per second in the presence of the background. The separate
background measurement by means of the same counter yielded 600
pulses per second. Determine the number of particles from the prepa-
ation crossing the counter during 1 s.

11.76. Two radioactive sources are placed near a counter. With
alternate screening of the sources the counter registers n, and n,
pulses per second. Both sources simultaneously yield n;, pulses per
second. Find the time resolution of the given counter.

11.77. The number of particles crossing a counter per unit time
is equal to N. Find the number of pulses recorded per unit time, if
the time resolution of the counter is known to be equal to ©; and
that of the recording facility to 7,. Consider the cases: (a) T, > 7,;
(b) 1, << 7,.

11.78. In a scintillation counter with a photomultiplier tube, the
de-excitation time of the scintillator is equal to 7, = 0.6-107% s
and the time resolution of the photomultiplier tube to 7T, =
= 3.0-10-% s. Determine the number of electrons falling on the
scintillator during one second, if the photomultiplier tube yields
n = 5.0-10% pulses per second.

11.79. An electromechanical reader with the time resolution t
is incorporated at the output of an amplifier (without a scaler).
Find how the number of pulses n registered per unit time depends
on the mean number of particles N crossing a Geiger-Miiller counter
per unit time. Instruction: it should be taken into account that if at
the moment when the electromechanical reader has not yet completed
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a cycle of pulse registration another pulse comes in, the latter will
not be registered. The non-registered pulse, however, will increase
the reader’s dead time caused by the first pulse.

11.80. The pulses from a Geiger-Miiller counter are amplified
and fed directly to an electromechanical reader. Determine the time
resolution of the electromechanical reader, if on bringing a radio-
active preparation closer to the counter the number of registered
pulses exceeds a maximum value nmax = 46 pulses per second.

11.81. Two identical counters incorporated into a coincidence
circuit are exposed to cosmic radiation. Determine the number of
spurious coincidences An, if the number of pulses coming to the
input of the coincidence circuit from one counter is equal to n;
and from the other to n,, the time resolution of the circuit being 7.

11.82. A radioactive preparation is placed symmetrically in front
of two identical counters incorporated in a coincidence circuit. The
time resolution of the circuit is v = 1.0-4077 s. The registration
efficiency of each counter is 25%.
Determine the number of particles , S s
falling on each counter during one % { d
second, if the count rate of the L::
coincidence circuit An = 2.0-103 ' %
pulses per second. ”

11.83. A radioattive preparation

A is placed in front of two iden- Coincidence
tical counters S; and S, as'shown stroutt
in Fig. 35. The counters are incor-

porated in a coincidence ecircuit Fig. 35

with the time resolution 7 =

= 1.0.10-% s. To determine the preparation activity, the count
rates of background radiation Ar, and of preparation in the presence
of the background n,; are measured. Both measurements are taken
during equal time intervals t. Find the magnitude of ¢ at which the
preparation count rate is determined accurate to 5.0%, if the number
of pulses produced by each counter is equal to 1.00-10% pulses per
second when the background radiation is measured and to 100 pulses
per second when only the preparation is measured.

11.84. A radioactive preparation is placed between two identical
v-quanta counters incorporated into a coincidence circuit. The prep-
aration’s f-decay involves the emission of two quanta y, and y,.
Under experimental conditions the given y-quanta can be registered
by the counters with probabilities n; = 5-10~* and m, = 7-107%
Determine the number of counts registered by the coincidence circuit
(as a percentage of the number of pulses registered by one of the
counters within the same time), neglecting the correlation between
the directions of motion of the outgoing v, and 7y, quanta.
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INTERACTION OF RADIATION WITH MATTER

® Specific ionization loss of energy of a heavy charged particle moving in

a matter:
_( oF ) — 4ningqe? In 2mev? —pe
0z /ion mev? I(1—p?) ’

where g and v are the charge and velocity of the i i
r  the particle, p = v/c, -
tronjc concentration in the matter, 7 ~ 13.5Z eV is the ’nﬁxean iocnirzlgtli?)flhgn%lrecy
of an atom of the matter, Z is the atomic number, ¢
11\?e‘}li:mplrwal formulas for the mean path of particles with kinetic energy T,
an o-particle in air at NTP

(12.1)

Ry = 0.317%% cm; 4 < T << 7 MeV; (12.2)
an a-particle in a substance with mass number 4
R, = 0.56R,, (cm) A2 mg/cm?, (12.3)
where R, (cm) is the ran f i in air;
! pro%o I(l irl) o5 thy NTPge of the particle of the same energy in air;
Rp (T) = R, (4T) — 0.2 cm; T > 0.5 MeV, (12.4)

where R, is the mean path of a-particle with kineti in ai
1 6 I h of - inetic energy 47T .
® Specific radiation and ionization losses of energy for 51317 elecltrlfoflIr

oF ) 4rg 183 oE
- = =—nTz2 . _(PE/92)10n ~ 800
( 9z )raa™ 137 "12*1n Z'3 ' (3E[0z)raa  ZTmey ’ (12.3)

where 7 is the kinetic energy of an electron, r, is the classical electronic radius

n is the concentration of at i . A
stance. oms in a substance, Z is the atomic number of a sub-

@ If an electron loses its ener i i iati i i
I | gy primarily due to radiation, its k i
decreases, as it moves in a substance, according to the law netic energy

T =Ty “/'rad (12.6)

where Ipaq is the radiation length, that i i i !
onory T34 1e the radiati gth, is, the distance over which the electron 8

® Mean path of electrons with kinetic energy T, MeV, in aluminium

1.38
0.40771-38, 0.5 << T < 0.8 MeV,

R(g/cm?) =
( ) 0.5427 —0.133, 0.8 T <3 MeV,

(12.7)
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These formulas give the path values in any substance with sufficient accuracy

provided the energy losses of the electrons are due primarily to ionization.
® Absorption law for B-particles

J = Joe—udv

where J is the flux of B-particles, p is the linear absorption coefficient, d is the
layer thickness of a substance. The mass absorption coefficient

(12.8)

wip=22/T§I%. i 0.5 < Tgmax <6 MeV, (12.9)
where T'gmax is the cut-off energy in the spectrum of B-particles, MeV.
@ Attenuation law for a narrow beam of monochromatic y-radiation:
J= T ™ p=11oa, (12.10)
where p, T, o are the linear coefficients of attenuation, absorption, and scatter-

ing.
® Units of dose (roentgen, rad, and rem) and tolerance rates are given in
Table 15 of Appendix.

PROPAGATION OF CHARGED PARTICLES
THROUGH MATTER

12.1. Find the maximum possible angle through which an o-par-
ticle can be scattered due to collision with a stationary free electron.

12.2. An a-particle with a kinetic energy of 25 MeV moved past
a stationary free electron with an aiming parameter of 2.0.-10-? cm.
Find the kinetic energy of the recoil electron, assuming the trajectory
of the a-particle to be rectilinear and the electron to be stationary
during the flyby.

12.3. A fast a-particle moves through a medium containing r elec-
trons per 1 cm® with the velocity v. Determine the energy lost by the
a-particle per unit length due to interaction with electrons relative
to which its aiming parameter falls within interval (6, b + db).

12.4. Calculate the specific ionization loss of energy for a deuteron
with an energy of 4.0 MeV in nitrogen at NTP.

12.5. Find the ratio of specific ionization losses: (a) for an a-par-
ticle and proton with an energy of 5.0 MeV in neon; (b) for an
a-particle with an energy of 10.0 MeV in copper and aluminium.

12.6. A point source of a-particles with an energy of 5.3 MeV
is located at the centre of a spherical ionization chamber of radius
14.0 cm. At what values of air pressure in the chamber will the satu-
ration current be independent of pressure?

12.7. Using the empirical formulas, find: (a) the number of ion
pairs produced by an a-particle with an initial energy of 5.5 MeV
over the first centimeter of its path in air (if the energy required to
produce one ion pair is assumed to be equal to 34 eV); (b) the fraction
of ion pairs produced by a proton with an initial energy of 2.5 MeV
over the first half of its mean path in air.

12.8. A radioactive 2*8Pu preparation emitting o-particles with
an energy of 5.5 MeV is electroplated on a thick metallic base. Find
the minimum thickness of the layer at which the further addition

Nn



of #%Pu will not produce any increase in i i - i
emitted by that II))reparation.y tensity of a-particles
~ 12.9. Find the kinetic energy of a-particles whose mean path in
iron equals 11.0 um.

' 12.10. Determirie the range of an a-particle in lead, if its energy
Is known to correspond to a range of 17 pm in aluminium.

: 112]11t ogpfr;ﬁglis with fanl(lanerg'y of 13.7 MeV fall on an aluminium
oil. wha ickness of the foil is th -
particles equal to 7.0 MeV? ® energy of passed-through

12.12. An aluminium foil is located at a distance of 5.0 ¢cm from
a radioactive preparation emitting a-particles with an energy of
9.0 MeV. Of what minimum thickness must the foil be to screen all
the a-particles? The ambient medium is air.

12.13. Using formula (12.1), find how the mean ranges of a proton
and a deuteron in a matter are related provided their velocities are
equal. Calculate the range of a deuteron with an energy of 2.0 MeV
in air.

. 112.1(?. Find the mean range of protons with an energy of 3.0 MeV

ead.

~ 12.15. A fast heavy particle with charge ¢ and velocity v moves
in a sub;tance with electronic concentration » and produces 8-elec-
trons on its way. Assuming the process of their production to involve
the ela.stlc scattering of the primary particle by free electrons
dgterrpme: (a) the cross-section do of production of 8-electrons Wit}{
kinetic energies falling within interval (T, T + dT); (b) the total
number of' d-electrons produced by the primary particle per unit
length of its trajectory; the minimum value of kinetic energy T'in
that an electron is to possess to form a visible trace, is supposed to
be known.

12.1.6. When a fast heavy charged particle moves through photo-
graphic emulsion, it forms

2mng2e? 1 1
No= met? (T 2 2)
e th mev

6-electr‘ons per unit length of its trajectory; n is the electronic con-
centration, g and v are the charge and velocity of the primary par-
ticle, Tth_ is the threshold kinetic energy of an electron required to
for:m a visible trace in emulsion, m, is the electronic mass. Using
thl's formula, determine: (a) the lowest energy of the a-particle suf-
ficient to produce 8-electrons in photographic emulsion for which
T =.M.O keV; (b) the energy of the c-particle that produces
a maximum number of 8-electrons per unit length in the photographic
emulsmq with n = 6.0-10% ¢cm~% and 7y, —= 17.5 keV; calculate
the maximum number of §-electrons produced over 1/10 mm of the
a-particle’s trajectory; (e) the charge of the primary particle if the
maximum density of §-electrons produced by it is known to be one
i?g;t)h of that produced by an a-particle (in the same emul-
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12.17. Calculate the specific radiation loss of energy in aluminium
for an electron with a kinetic energy of 20 MeV. By what factor does
the specific radiation loss of energy of an electron in lead exceed that
in aluminium?

12.18. Evaluate the kinetic energies of electrons at which the
specific bremsstrahlung loss of energy is equal to the specific radiation
loss in nitrogen (at NTP), aluminium, and lead.

12.19. Evaluate the kinetic energy of electrons at which the spe-
cific radiation loss of energy in aluminium amounts to 1/4 of the total
specific loss of energy.

12.20. Evaluate the total specific loss of energy in aluminium for
an electron with a kinetic energy of 27 MeV.

12.21. Find how the radiation length ;54 of an electron depends on
the atomic number Z of a substance. Calculate [,,q for an electron
in nitrogen (at NTP), aluminium, and lead.

12.22. Fast electrons that passed through a layer of some sub-
stance 0.40 cm thick diminished their energy by 25% on the average.
Find the radiation length of the electron if its energy loss is known
to be primarily due to radiation.

12.23. Evaluate the initial energy of electrons, if on passing
through a lead plate 5.0 mm thick their energy is equal to 42 MeV
on the average. )

12.24. When eleétrons of sufficiently high energies decelerate in
the field of a nucleus, the cross-section of gamma-quanta emission
within the frequency interval (o, o + dw) in the vicinity of the
maximum frequency of bremsstrahlung is defined by the formula
do :nl:ad _0)“’_ , where n is the number of nuclei in unit volume. Find
the probability that an electron will lose over 90 % of its initial energy
on passing through a zinc plate of thickness [ = 1.0 mm.

12.25. Using the empirical formulas, calculate the kinetic energy
of elecirons whose mean path in aluminium is equal to 100 mg/cm?.

12.26. Find the mean path of relativistic electrons whose Bp =
= 5.0 kG-cm in graphite.

12.27. A beam of electrons with a kinetic energy of 0.50 MeV
falls normally on an aluminium foil 50 mg/cm? thick. Using the
empirical formulas, evaluate the mean path of the electrons, passed
through this foil, in air.

12.28. Evaluate the minimum mass thickness of a f-radioactive
204T] preparation beginning from which the further increase of its
thickness does not increase the intensity of a stream of p-particles
emitted by the preparation.

12.29. What fraction of P-particles emitted by 3P is absorbed
by an aluminium foil 20 mg/cm? thick?

12.30. The increase in the thickness of the window of a Geiger-
Miiller counter by 60 mg/cm? reduces the count rate of P-particles
by 50 per cent. What is the highest energy of f-particles of theradio-
active source studied?
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12.31. Find the half-value thickness for B-particles emitted by
a radioactive 3P preparation for air, aluminium, and lead.

12.32. A charged particles, moving uniformly in a medium with
the refractive index r, emits light if its velocity v exceeds the phase
velocity of light ¢’ in that medium (Cherenkov radiation). Using
the laws of conservation of energy and momentum, demonstrate
that the angle at which light is emitted is defined by the expression
cos O = ¢’/v. Recall that the momentum of a photon in a medium is
equal to Awm/c’.

12.33. Calculate the threshold kinetic energies of an electron and
a proton at which the Cherenkov radiation occurs in a medium with
a refractive index of n = 1.60. What particles have the threshold
kinetic energy in that medium equal to 29.6 MeV?

12.34. Find the kinetic energy of electrons that, moving through
a medium with a refractive index of n = 1.50, emit light at the
angle 30° to the direction of their motion.

PROPAGATION OF GAMMA-RADIATION
THROUGH MATTER

12.35. The increase in the thickness of a lead plate by 2.0 mm
reduces the intensity of a narrow beam of monochromatic X-rays
having passed through that plate by a factor of 8.4. Find the energy
of photons, using the tables of the Appendix.

12.36. What is the thickness of an aluminium plate that attenu-
ates a narrow beam of X-ray radiation with an energy of 200 keV
to the same degree as a lead plate 1.0 mm in thickness?

12.37. The attenuations of narrow beams of X-ray radiation with
energies of 200 and 400 keV passing through a lead plate differ by
a factor of four. Find the plate’s thickness and the attenuation of the
200 keV beam.

12.38. Calculate the half-value thickness for a narrow beam of
X-rays with a wavelength of 6.2-10-2 A in lead, water, and air.

12.39. How many layers of half-value thickness are there in
? {pl:;te attenuating a narrow beam of monochromatic X-rays 1000-
old?

12.40. Plot (u/p)'/® versus X-ray radiation wavelength dependence
in the case of copper, using the following data:

o

Y
di/z,um

0.40 0.80 1,20 1.60 2.00 2.40 2.80
78.0 11.0 3.34 (2.7 7.21 4.55 3.00

(dy/5 is the half-value thickness).
12.41. Using the tables of the Appendix, select a metal foil that,
being transparent to the K, radiation, attenuates considerably the

K g radiation of: (a) cobalt (Ax, = 1.79 A, Ay, = 1.62 A); (b) nickel
(Agg = 1.66 A, hgg — 1.50 A).
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12.42. Calculate the thickness of copper foil at which the attenu-
ation of the K, radiation of zinc (g, = 1.29 A) is 10 times that
of the K, radiation (Axz = 1.43 A). Make use of the plot obtained
in Problem 12.40.

12.43. In the case of soft X-ray radiation, the differential cross-
section of a photon scattering by a free electron is described by the
formula

do

o=
where r, is the classical electronic radius, ¥ is the angle of photon
scattering. Using this formula, find: (a) the total cross-section of
scattering; (b) the fraction of photons scattered through the angles
¥ << 60°; (c¢) the fraction of the recoil electrons outgoing within the
range of angles from 45° to 90°.

12.44. Calculate the mass and linear scattering coefficients for
soft X-rays in neon and oxygen at NTP. Recall that the atomic
scattering coefficient is defined by the Thomson formula

8o Zet
Oq = —3~ " 55 O~ per atom.
12.45. The mass absorption coefficient of X-ray radiation with

A = 0.209 A in iren is equal to 1.26 cm?/g. Calculate the correspond-
ing atomic scattering coefficient.

12.46. Taking into account that the atomic absorption coefficient
T, = CZ*A\® at A <C Ak, where A is the wavelength of K absorption
edge, C is the constant equal for all substances, determine: (a) the

mass absorption coefficient t/p for X-ray radiation with A = 1.00;&
in vanadium, if in aluminium t/p = 40 cm?/g for A = 1.44 A;
(b) the ratio of mass absorption coefficients of X-ray radiation in
bones and tissues of human body; the bones are known to consist
of Cay(PO,),, and the absorption in tissues is mainly due to water.

12.47. After passing through an aluminium plate 2.9 em thick
a monochromatic beam of y-quanta attenuates by a factor of 2.6,
Using the tables of the Appendix, find the corresponding mass scatter-
ing coefficient.

12.48. A point source of y-quanta with an energy of 0.80 MeV
is placed in the centre of a spherical layer of lead whose thickness
is equal to Ar = 3.0 cm and outer radius to r = 5.0 cm. Find the
flux density of non-scattered y-quanta at the external surface of the
layer, if the source activity 4 = 1.00 mCi and each disintegration
produces one quantum.

12.49. A narrow beam of y-quanta composed of equal number of
quanta with energies 0.40 and 0.60 MeV falls normally on’a lead plate
1.00 cm in thickness. Find the ratio of intensities of both components
of the beam after its passing through that plate.

12.50. A narrow beam of y-radiation composed of quanta of all
energies in the range from 0.60 to 0.80 MeV falls normally on an alu-

r2
Te (14 cos? 9),
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minium plate 2.0 em thick. Find the attenuation of the beam’s inten-
sity after passing through the plate, if the attenuation coefficient
is a linear function of energy of quanta in this interval and the spec-
tral intensity of incident radiation is independent of frequency.

12.51. Using the table of the Appendix, determine the interaction
cross-section (b/atom) of y-quanta with an energy of 1.00 MeV in
aluminium.

12.52. A narrow beam of y-quanta with an energy of 0.15 MeV
attenuates by a factor of four after passing through a silver plate
2.0 mm thick. Find the interaction cross-section (b/atom) of these
v-quanta in silver.

12.53. Using the tables of the Appendix, calculate the mean free
path of y-quanta with an energy of 1.00 MeV in air, water, and
aluminium.

12.54. Calculate the mean free path of y-quanta in a medium whose
half-value thickness is equal to 4.50 cm.

12.55. Making use of the plots of the Appendix, find the mean free
path of y-quanta with an energy of 2.0 MeV in lead, as Well as the
mean paths of these quanta in the case of Compton scattering, photo-
electric effect, and electron-positron pair production. How are these
paths interrelated?

12.56. Using the plots of the Appendix, find the photoabsorption.

probability for a y-quantum with an energy of 2.0 MeV in a lead
plate 2.0 mm thick.

12.57. A beam of monochromatic y-radiation attenuates by a factor
of six after passing through a lead plate 3.2 em thick. U‘sing the
plots of the'Appendix, calculate the mass Compton scattering coef-
ficient of that radiation in lead.

12.58. The total cross-section of Compton scattering of y-quantum
by a free electron is described by the formula

3 22 —2 £3 1 9e24-8¢ -2
Gcomp = 5 Or [i—T In (14 2e) +—W] ;

where ¢ = Aw/mc? is the energy of a y-quantum expressed in units
of electron rest mass, op is the Thomson scattering cross-section.

(a) Simplify this formula for the cases & <1 and &> 1.

(b) Calculate the linear Compton scattering coefficient for y-quan-
ta with energy ¢ = 3.0 in beryllium. . _

(¢) Find the mass Compton scattering coefficient for y-quanta with
energy & = 2.0 in light-element substances. _

12.59. Using the plots of the Appendix, calculate the. cross-section
of electron-positron pair production for a y-quantum with an energy
of 6.0 MeV in a lead plate whose thickness is equal to the half-value
thickness. .

12.60. At what thickness of a lead plate is the probablhty.of a
y-quantum with an energy of 7.0 MeV to produce an electron-positron
pair equal to 0.10?
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12.61. A thin lead plate was irradiated in the Wilson cloud cham-
ber with y-quanta with energies of 3.0 MeV. In the process, the num-
ber of electron tracks was found to exceed the number of positron
tracks by a factor of } = 3.7. Find the ratio of the probability of
electron-positron pair production to the total probability of all
other processes proceeding in this case.

12.62. Derive the expression for the threshold energy of y-quantum
required to produce a pair in a field of a nucleus with mass M.

12.63. Demonstrate that a y-quantum cannot produce a pair out-
side the field of a nucleus, even when such a process is allowed in
terms of energy.

12.64. Determine the total kinetic energy of an electron-positron
pair produced by a y-quantum with the threshold value of energy
in the field of a stationary proton.

12.65. Calculate the energy of a y-quantum that produced an
electron-positron pair in the field of a heavy nucleus, if for each
particle of the pair Bp = 3.0 kG-cm.

RADIATION DOSIMETRY

12.66. The saturation current of an ionization chamber placed
in a uniform y-radiation field is equal to 1.0-10~* A. The chamber
has the volume of 50 cm3 and is filled with air under a pressure of
2.0-10% Pa and at 27 °C. Find the y-radiation dose rate.

12.67. Determine the radidtion dose rate (mR/h) and the absorbed
dose rate (mrad/h) in air and in water at the points where the flux
density of y-quanta with an energy of 2.0 MeV is equal to 1.30-10*
quanta per cm?® per second.

12.68. At a certain distance from the radioactive source with
a half-life of 26 hours, the y-radiation dose rate amounts to 1.0 R/h
at the initial moment. Determine: (a) the radiation dose accumu-
lated for 6.0 h; (b) the time interval during which the absorbed dose
becomes equal to 1.0 rad.

12.69. Disregarding the absorption in air, determine the y-radi-
ation dose rate (uR/s) at a distance of 2.0 m from a point source with
an activity of 100 mCi. The energy of y-quanta is 1.0 MeV. The
v-quanta yield equals 0.50 quanta per disintegration.

12.70. A point radioactive source with an activity of 18 mCi
emits two y-quanta with energies of 0.80 and 1.00 MeV per disinte-
gration. Ignoring the absorption in air, find the minimum distance
from the source at which the radiation dose rate is equal to the
tolerance dose rate for a 36-hour working week.

12.71. For radionuclides: (a) 2*Na, (b) **K, and (c¢) 3%Cl calculate
the y-constants (K ,), i.e. the radiation dose rate (R/h) at a distance
of 1 cm from a point source with activity of 1 mCi. The disintegra-
tion schemes of these radionuclides are shown in Fig. 36.

12.72. A source of y-quanta with energy £ = 1.00 MeV is uni-
formly distributed along a straight line. The length of the source is
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1 =10.0 cm and intensity J = 1.00.-10° quanta per second. Cal-
culate the radiation dose rate at the point, located at the perpendic-
ular drawn through the midpoint of the source, at a distance R =
= 5.0 cm from the source.

12.73. A source of y-quanta with energy £ = 2.0 MeV is uniformly
distributed over the surface of a round disc of radius R = 3.0 cm.

2Na

—
1.6MeV
2.75MeV
—L— 2.15MeV
2 Mg %20 T8 Ar

Fig. 36

The source’s activity is 4 = 100 mCi/cm?2, the y-quanta yield is
equal to unity. Find the radiation dose rate at the point removed
by a distance 2 = 6.0 cm from the source’s centre and located at the
axis of the disc.

12.74. At a point through which passes a narrow beam of y-quanta
with an energy of 1.00 MeV, the radiation dose rate amounts to
3.8 pR/s. Determine the thickness of a lead screen reducing the dose
rate at that point to the tolerance dose rate for a 36-hour working
week.

12.75. A point y-source with activity 4 = 100 pCi is located
at the centre of a spherical lead container with an outside radius
r = 10.0 cm. Find the minimum thickness of the container’s walls
at which the dose rate outside the container would not exceed
2.8 mR/h. The energy of y-quanta is £ = 2.00 MeV, and the yield
n = 0.50 quanta per disintegration.

12.76. A narrow beam of y-quanta with an energy of 2.00 MeV
falls normally on a lead screen of thickness [ = 5.0 cm. Determine
the absorbed dose rate in lead in the vicinity of the point where
the beam leaves the screen, provided the dose rate at the point where
it enters the screen equals P, = 1.0 R/s.

12.77. At what distance from a small isotropic source of fast
neutrons with a power of 4.0-107 neutrons per second will the neutron
radiation dose rate be equal to the tolerance dose rate for an 18-hour
working week ?

12.78. A stream of neutrons with kinetic energy 7 = 0.33 MeV
and density J = 1.4-10° neutrons/(cm?-s) penetrates a thin graphite
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plate. Calculate the dose absorbed by graphite during ¢ = 1.0 h
if the elastic scattering cross-section of neutrons ¢ = 4.8 b/nucleus.
The mean fraction of energy transferred by the neutron to a nucleus
with the mass number A4 during collision f = 24/(1 + A)2.

12.79. What number of a-particles with an energy of 4.4 MeV
absorbed by 1 g of biological tissue corresponds to an absorbed dose
of 50 rem? The Q.F. for a-particles is equal to 10.

12.80. 1.6-10* a-particles with an energy of 5 MeV fall normally
on the skin surface of 1 ¢cm? area. Determine the mean absorbed dose
(rad and 1:em) in the layer equal to penetration depth of o-particles
in biological tissue. The range of a-particles in biological tissue
is 1/815 of that in air; the Q.F. for a-particles is equal to 10.

12.81. A beam of B-particles from a radioactive *Sr source falls
n.ormally on the surface of water. The flux density J = 1.0-10* par-
ticles/(cm?-s). Determine the dose (rad) absorbed by water at its
surface during an interval £ = 1.0 h. The mean energy of fB-particles
is assumed to be equal to 7 gmax/3.



13
NUCLEAR REACTIONS

® Energy diagram of a nuclear reaction
mp M- M*—>m' 4+ M+ Q,

proceeding via the compound nucleus M* is shown in Fig. 37, where m 4+ M
and m’ 4~ M’ are the sums of rest masses of particles before and after the reac-

~

tion, T and T’ are the total kinetic energies of particles before and after the
peaction (in the € frame), E* is the excitation energy of the compound nucleus,

J
~ 2
T *
£ ~
: —j——t—— T’
m+M — q
£ £ m+M
M%
Fig. 37 Fig. 38

0 is the energy of the reaction, E and E’ are the binding energies of the particles m
and m’ in the compound nucleus. The figure also illustrates the energy levels
1, 2, and 8 of the compound nucleus.

@® Threshold kinetic energy of an incoming particle (in a laboratory frame L)
at which an endoergic nuclear reaction becomes possible

mEM o1,

Tt =—7
here m and M are the masses of the incoming particle and the target nucleus,

® Vector diagram of momenta* for particles involved in the reaction
M (m, m’) M’ is shown in Fig. 38. Here pp,, pp’, and p,,- are the momenta of
the incoming particle and particles generated as a result of the reaction (in ihe

[ frame), O is the centre of a circle whose radius equals the momentum p of
generated particles (in the C frame):

=V @+0), (13.2)
where ' is the reduced mass of generated particles, Q is the reaction’s energy,

T is the total kinetic energy of particles prior to the reaction (in the C f’rame),
the point O divides the section A4 C into two partsin the ratio 40 : OC = m' : M’,

(13.1)

* The similar diagram for elastic scattering is given on page 16.
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& is the angle at which the outgoing particle m’ moves in the ¢ fi'anjé,ﬁﬁsét]ﬁa,g :
angle of divergence of generated particles in the L frame. LW o
® Detailed balancing principle: for the reaction

my (8) 4 My (Iy) = my (s3) + My (1y)
the cross-sections of a direct c;, and a reverse process 0, are related as
(2s1+1) (211 -+1) 019PF= (25, +1) (215, +1) 05103,

if both processes proceed at the same magnitude of the total energy of interact-

ing particles in the C frame. Here s; and I; are the particles’ spins, p; and p,
are the momenta of particles in the € frame.

(13.3)

CONSERVATION LAWS IN NUCLEAR REACTIONS

13.1. An a-particle with kinetic energy T, = 1.0 MeV is scat-
tered elastically by an initially stationary ®Li nucleus. Find the
kinetic energy of the recoil nucleus ejected at an angle & = 30°
to the initial direction of the o-particle’s motion.

13.2. Find the kinetic energy of an incoming a-particle, if after
its elastic scattering by a deuteron: (a) Bp of each particle turns
out to be 60 kG-cm; (b) the angle of divergence of two particles
¢ = 120° and the amount of energy acquired by the deuteron 7'; =
= 0.40 MeV.

13.3. A non-relativistic deuteron is elastically scattered through
an angle of 30° by a stationary nucleus. The recoil nucleus is ejected
at the same angle to the direction of motion of the incoming deu-
teron. To what atom does that nucleus belong?

13.4. Plot the vector diagrams of momenta for elastic scattering
of a non-relativistic a-particle by a stationary nucleus: (a) ®Li,
(b) *He, (c) 2H, if the angle of scattering of the a-particle in the
C frame is equal to 60°. In what case is the relation between the
energy of scattered o-particle and its angle of scattering described
by a non-single-valued function? Find the greatest possible angle
of scattering of the a-particle for each of these three cases.

13.5. Find the fraction of the kinetic energy lost by a non-rela-

tivistic a-particle due to elastic scattering at an angle ¥ = 60°
(in the C frame) by a stationary *?C nucleus.

13.6. A proton with a kinetic energy of 0.90 MeV sustains an
elastic head-on collision with a stationary deuteron. Find the pro-
ton’s kinetic energy after the collision.

13.7. A non-relativistic neutron is scattered elastically through
the angle ¥, by a stationary *He nucleus so that the latter is ejected
at an angle of 60° to the direction of motion of the incoming neutron.
Determine the angle 9,.

13.8. A non-relativistic o.-particle is elastically scattered by a ¢Li.
Determine the angle of scattering of the a-particle: (a) in the L

frame provided that in the C frame ¥, = 30°; (b) in the C frame
provided that in the L frame O, = 45°
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13.9. Deuterons with a kinetic energy of 0.30 MeV are elastically
scattered by protons. Find the kinetic energy of the deuterons scat-
tered through the greatest possible angle in the L frame. What is the
magnitude of the angle?

13.10. Find the energy of the reaction Li(p, «)*He if the mean
binding energies per nucleon in “Li and ‘He nuclei are known to
be equal to 5.60 and 7.06 MeV respectively.

13.11. Determine the energies of the following reactions:
(a) 3H(p, y)*He; (b) ¥N(a, d)*®0; (¢) 1*C(a, d)*N; (d) ®Li(d, na)’He.

13.12. Using the tables, calculate the mass of N atom, if the
energy of the reaction O(n, p)'"N is known to be Q = —7.89 MeV.

13.13. Find the velocity with which the products of the reaction
1B(n, a)’Li come apart; the reaction proceeds due to interaction
of slow neutrons with stationary boron nuclei.

13.14. Find the energy of neutrons produced due to photodisin-
tegration of beryllium according to the reaction °Be(y, n)®Be by
y-quanta with an energy of iw = 1.78 MeV. The energy of the reac-
tion is Q = —1.65 MeV.

13.15. A deuterium target irradiated by y-quanta with an energy
of iw = 2.62 MeV emits photoprotons for which Bp = 63.7 kG-cm.
Ignoring the difference in the masses of a neutron and a proton, find
the binding energy of a deuteron.

13.16. Calculate the energies of the
(a) ?H{d, p)®H, if the energy of the incoming deuterons 7, =
= 1.20 MeV and the proton, outgoing at right angles to the direction
of the deuteron’s motion, has an energy T, = 3.30 MeV;
(b) ¥N(x, p)¥*0, if the energy of the incoming o-particles T, =
= 4.00 MeV and the proton, outgoing at an angle & = 60° to the
direction of motion of a-particles, has an energy of T, = 2.08 MeV.

13.17. Determine the kinetic energy of protons activating the
reaction *Be(p, a)®Li + 2.13 MeV, if the range of a-particles, out-
going at right angles to the direction of motion of the protons, is
equal to 2.5 cm in air at NTP.

13.18. Deuterons with a kinetic energy of T; = 10.0 MeV collide
with carbon nuclei and initiate the reaction *C(d, «)'B, Q =
= -}5.16 MeV. Determine the angle between the directions in which
the products of the reaction are ejected, if: (a) the produced nuclei
diverge in a symmetric pattern; (b) the o-particle is ejected at
right angles to the deuteron beam.

13.19. Derive formula (13.1).

13.20. Calculate the threshold kinetic energies of a-particles
and neutrons in the following reactions:

() a+"Li— B+ n; (b) a+ 2C— N -+d;
(¢) n+12C—>°Be-+o; (d) n-+-170—>14C +a.
13.21. Calculate the threshold kinetic energy of an incoming

particle in the reaction p + 3H — 3He -+ n, for the cases when that
particle is: (a) a proton; (b) a tritium nucleus.
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13.22. Determine the kinetic energies of “Be and O nuclei pro-
duced in the reactions:

(a) p+4 "Li—"Be-n, = —1.60 MeV;
(b) n+YF—> 1304 p--4n, Q= —35.8 MeV

for the threshold value of energy of the proton and neutron.

13.23. A lithium target is irradiated with a beam of protons whose
kinetic energy exceeds the threshold value 1.50 times. Find the
energy of neutrons ejected as a result of the reaction "Li(p, n)’Be —
— 1.65 MeV at an angle of 90° to the proton beam.

13.24. Evaluate the lowest kinetic energy an incoming o-par-
ticle requires to overcome the Coulomb potential barrier of a "Li
nucleus. Will this amount of energy be sufficient for the o-particle
to activate the reaction “Li(x, n)*B?

13.25. Neutrons with the kinetic energy 7 = 10.0 MeV activate
the reaction °B(n, d)?Be for which Ty, = 4.8 MeV. Find the kinetic
energy of deuterons for the reverse reaction under assumption that
the total energies of interacting particles are equal for both processes
in the C frame.

13.26. Derive the expression for the momentum p of particles
produced by the reaction M (m, m'y M’ - Q in the C frame, if the
kinetic energy of &n incoming particle in the L frame is equal to Tp,.

13.27. Determine the kinetic energy of oxygen nuclei ejected
following the reaction “N(p, n)'*0 — 5.9 MeV at an angle of 30°
to the direction of motion of the striking protons whose kinetic
energy is 10.0 MeV. Obtain the solution, using the vector diagram
of momenta drawn to scale.

13.28. Find the highest kinetic energy of a-particles produced
by the reaction *0(d, «)¥N -+ 3.1 MeV, if the energy of the striking
deuterons is 2.0 MeV.

13.29. Find the width of the energy spectrum of neutrons pro-
duced by the reaction “B(a, n)*N + 0.30 MeV, if the kinetic
energy of striking a-particles is equal to 5.0 MeV.

13.30. A lithium target is bombarded with a-particles with the
kinetic energy T,. As a result of the reaction "Li(x, n)'*B, Q =
= —2.79 MeV, the target emits neutrons. Find:

(a) the kinetic energies of neutrons ejected at the angles 0, 90,
and 180° to the direction of motion of the striking a-particles, if
T, = 10.0 MeV,;

(b) at what values of T, the neutrons will be emitted into the
front hemisphere only (& <C 90°).

13.31. To obtain high-intensity fluxes of fast neutrons, lithium
deuteride LiD is placed into a reactor, so that slow neutrons activate
the reaction ®Li(n, a)>H + 4.80 MeV. The generated tritium nuclei
in its turn activate the reactions: (a) D(¢, n)*He 4 17.6 MeV and
(b) 7Li(t, n)’Be + 10.4 MeV, providing fast neutrons. Find the
highest energies of these neutrons.
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13.32. Neutrons with an energy of 1.50 MeV strike a target pos-
sessing the nuclides SLi and 2H. Using the vector diagram of momenta,
determine the width of energy spectrum of neutrons appearing
after the following successive transformations: :

n+SLi—*He--3H; 3H - 2H — “He -+ n.

13.33. Find the greatest possible angles (in the L frame) at which
the products of the following reactions move:

(a) *Be(p, n)’B—1.84MeV, if 7, =4.00 MeV;
(b) “He (n, d)*H—17.5MeV, if T, =24.0 MeV.

Here T is the kinetic energy of a striking particle.

13.34. A beam of neutrons with an energy of 7.5 MeV activates
the reaction 12C(n, a)®Be — 5.70 MeV in a carbon target. Find:
(a) the fraction of a-particles ejected into the front hemisphere
(¥ << 90°), assuming the angular distribution of the reaction prod-
ucts to be isotropic in the C frame; (b) the angle at which the
a-particle is ejected in the C frame, if the corresponding angle in
the L frame is equal to O, = 30° :

13.35. Find the threshold energy of a y-quantum sufficient to
activate the endoergic photodisintegration of a stationary nucleus
of mass M, if the reaction yield is equal to Q. 1

13.36. Calculate the kinetic energies of neutrons in the following
disintegration reactions: (a) vy +d—n + p; (b) v + "Li —>n +
-+ °Li, if the y-quanta possess the threshold values of energy.

13.37. Demonstrate that in a nuclear photodisintegration reaction
Y + M — m; + m,, when the products of the reaction are non-
relativistic, the momenta of generated particles in the C frame are
described by the formula p ~ V'2u” (Q + %), where p’ is the
reduced mass of the generated particles, Q is the energy of the reac-
tion, 4@ is the energy of the y-quantum.

13.38. y-quanta with an energy of 6.40 MeV interacting with
tritium nuclei activate the reaction 3H(y, n)?H, Q = —6.26 MeV.
Assuming the angular distribution of neutrons in the C frame to be
isotropic, find the probability of a deuteron being ejected into the
front hemisphere (#; <C 90°) in the L frame.

13.39. A beryllium target is irradiated with a narrow beam of
deuterons with an energy of 7, = 190 MeV. Beyond the target,
a beam of neutrons is observed (in the direction of the primary deu-
teron beam) with an angular width of A6 = 16°. Making use of the
assumption concerning the mechanism of stripping reaction, find
the energy spread of the neutrons.

13.40. Find the possible spin value of a *O nucleus in the ground
state appearing due to stripping reaction involving the interaction
of deuterons with %0 nuclei, if the orbital moment of captured neu-
trons equals I, = 2. Compare the result with the spin value given
by the nuclear shell model. :
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13.41. Consider the two following reaction branches proceeding
via a compound ®Be* nucleus:

2 2iHe (1)

7L; — 8Be*
p-+7Li—%Be TN @
The spin and parity of “Li and ®Be nuclei in the ground state are
equal to 3/2- and 0F respectively, the spin of a-particle is 0, the
internal parity of proton is to be assumed positive. Using the laws
of conservation of angular momentum and parity, find for the cases
when the orbital moment of proton [ is equal to 0 and 1: (a) the
possible values of spin 7 and parity P of the compound nucleus;
(b) the states (spin and parity) of the compound nucleus in both
reaction branches.

ENERGY LEVELS IN A NUCLEUS.
REACTION CROSS-SECTIONS AND YIELDS

13.42. Find the excitation energy of a stationary nucleus of
mass M which it acquires on the capture of y-quantum of energy 4 o.

13.43. Determine the excitation energy of a *He nucleus appearing
after the capture ¢f a proton with a kinetic energy of 2.0 MeV by
a stationary ®H nucleus.

13.44. What is the lowest kinetic energy of a neutron capable,
after inelastic scattering by a ?Be nucleus, to transfer to the latter
an excitation energy of 2.40 MeV?

13.45. A "Li target is bombarded with a beam of neutrons with
energy I’ = 1.00 MeV. Determine the excitation energy of nuclei
generated due to inelastic scattering of neutrons, if the energy of
neutrons scattered inelastically at right angles to the incident beam
is T = 0.33 MeV.

13.46. Calculate the energies of protons scattered inelastically
at right angles by stationary **Ne nuclei. The lower levels of **Ne
nucleus are known to correspond to excitation energies of 1.5, 2.2,
and 4.2 MeV. The energy of the striking protons T, = 4.3 MeV.

13.47. Find the kinetic energies of neutrons providing the maxi-
mum interaction cross-sections for 10 nuclei, if the lower levels of
the compound nucleus correspond to the following excitation ener-
gies: 0.87, 3.00, 3.80, 4.54, 5.07, and 5.36 MeV.

13.48. Deuterons bombarding a carbon target activate the nuclear
reaction 3C(d, n)*N whose maximum yield is observed for the
following values of energy of deuterons: 0.60, 0.90, 1.55, and 1.80 MeV.
Find the corresponding levels of the compound nucleus through
which the given reaction proceeds.

13.49. A boron target is irradiated with a beam of deuterons
with an energy of 1.50 MeV. It is found that due to the reaction
(d, p) in ®B nuclei the target emits protons with energies of 7.64,
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5.51, and 4.98 MeV at right angles to the beam of deuterons. Find
the levels of excited 'B nuclei corresponding to these energies.

13.50. Find the ratio of intensities of monochromatic groups of
neutrons that are inelastically scattered at right angles to the inci-
dent beam by the ??Al nuclei whose lower levels correspond to exci-
Pation energies of 0.84, 1.02, and 1.85 MeV. The energy of the strik-
ing neutrons is equal to 1.40 MeV. The cross-section of inelastic
scattering of neutrons in the vicinity of the threshold is known to be
proportional to the velocity of inelastically scattered neutrons.

13.51. Find the expression for the cross-section of the reaction
A (a, b) B, if the cross-section of the compound nucleus formation o,
and the widths of its level, I' and 'y, through which the reaction
proceeds, are known. Here I' is the total width of the level, and T,
is the partial width corresponding to the emission of particle b.

13.52. Determine the mean lifetime of excited nuclei appearing
after the capture of neutrons with an energy of 250 keV by ®Li nuclei,
if the mean lifetimes of these nuclei are known with respect to
emission of neutrons and a-particles: t, = 1.1-10-2° s, 7, = 2.2 X
X 1072° s (no other processes are involved).

13.53. The rate of a nuclear reaction can be characterized by the
mean duration T of bombardment of a given nucleus prior to the
moment of its activation. Find 1 for the reaction ®Ni(x, r)%%Zn,
if the current density of a-particles is J = 16 pA/cm® and the reac-
tion ecross-section ¢ = 0.5 b.

13.54. Find the flux density of neutrons at a distance of 10 cm
from a small (Po-Be) source containing 0.17 Ci of #1°Po, if the yield
of the reaction °Be(a, n)*C is equal to 0.8.10-4

13.55. A beryllium target becomes an intensive neutron source
due to irradiation with deuterons accelerated to an energy of 10 MeV.
Find the number of neutrons emitted per 1 s per 100 pA of deuteron
current, if the yield of the reaction °Be(d, n)}°B is equal to 5-10-2.
What amount of radium must a (Ra-Be) source possess to have the
same activity? The yield of that source is assumed to be equal to
2.0-107 neutrons per second per one gram of Ra.

13.56. A BF,; gas having the volume V = 10 cm® at NTP is
irradiated with thermal neutrons whose flux density J = 1.0-10* neu-
trons/(s-cm?). Find: (a) the number of nuclear reactions (2, o) in-
volving boron nuclei occurring within the given volume during one
second; (b) the thermal power liberated in this volume as a result
of the reaction (n, ) involving boron nuclei.

13.57. The irradiation of a thin target of heavy ice with 1 MeV
deuterons activates the reaction 2H(d, n)®He whose yield and cross-
section are equal to 0.8-107% and 0.020 b respectively. Determine the
cross-section of this reaction for the deuterons’ energy of 2 MeV,
if at this energy the yield amounts to 4.0-10-5,

13.58. The yield of the reaction (y, n) on the exposure of a copper
plate of thickness ¢ = 1.0 mm to y-quanta with an energy of 17 MeV
is w = 4.2.10%. Find the cross-section of the given reaction.
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13.59. A narrow beam of monochromatic neutrons (0.025 eV)
with an intensity of 2.0-108 neutrons/s passes through a chamber con-
taining a nitrogen gas at NTP. Find the cross-section of the reaction
(n, p), if it is known that 95 protons are produced during 5.0 ms
over 1.0 cm of the beam’s length.

13.60. A thin plate of 13Cd is irradiated with thermal neutrons
whose flux density is 1.0-10%2 neutrons/(s-cm?). Find the cross-
section of the reaction (n, y), if the content of 13Cd nuclide is known
to diminish by 1.0% after six days of irradiation.

13.61. A thin plate made of boron of natural isotopic content is
irradiated for a year with thermal neutrons of intensity J = 2.00 X
% 10'2 neutrons/s. The reaction involving °B nuclei reduces their
content to 16.4% by the end of irradiation. Determine the cross-
section of the given reaction.

13.62. Determine the yield of the reaction (n, a) activated in
a target 0.50 cm thick, made of lithium of natural isotopic content,
by a beam of thermal neutrons.

13.63. An iron target is irradiated with a beam of protons with
an energy of 22 MeV. As a result of the nuclear reaction (p, n) whose
yield w = 1.2-10-% a 3%Co radionuclide is produced with a half-life
of 77.2 days. Determine the activity of the target v = 2.5 h after the
beginning of irradiation, if the proton’s current J = 21 pA.

13.64. A targét of metallic sodium was irradiated with a beam of
deuterons with an energy of 14 MeV and a current of 10 pnA for
a long period of time. Find’the yield of the reaction (d, p) producing
a 2¢Na radionuclide, if the activity of the target 10 h after the end
of irradiation is 1.6 Ci.

13.65. A thin phosphorus plate of thickness 1.0 g/cm?® was irra-
diated for v = 4.0 h with a neutron flux of 2.0-10' neutrons/s with
a kinetic energy of 2 MeV. One hour after the end of irradiation, the
activity of the plate turned out to be 105 pCi. The activity is known
to result from 31Si nuclide produced by the reaction (r, p). Determine
the cross-section of the given reaetion.

13.66. A thick* aluminium target irradiated with a beam of
a-particles with an energy of 7.0 MeV emits 1.60-10° neutrons/s
resulting from the reaction (o, n). Find the yield and mean cross-
section of the given reaction, if the current of a-particles is equal
to 50 pA.

13.67. A thick* beryllium target is bombarded with o-particles
with an energy of 7.0 MeV. Determine the mean cross-section of the
reaction (a, n), if its yield amounts to 2.50-107%.

13.68. A thick* target made of “Li nuclide is bombarded with
a-particles with an energy of 7.0 MeV. Find the mean cross-section
of the reaction “Li(e, n)*®B — 4.4 MeV, if its yield w = 2.8-107°.

* A target is referred to as “thick” when its thickness exceeds the range of
a striking particle in the target’s material.
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13.69. A beam of o-particles with an energy of 7.8 MeV enters
a chamber filled with air at NTP. The length of the chamber along
the beam exceeds the range of a-particles of the given energy. Find
the mean cross-section of the reaction “N(a, p)*"0 — 1.20 MeV, if
the yield of the reaction is 2.0-107%, The nitrogen content in air
is 78% by volume.

13.70. A beam of neutrons with an energy of 14 MeV falls nor-
mally on the surface of a beryllium plate. Evaluate the thickness
of the plate sufficient for the 10% reproduction of neutrons by means
of the reaction (n, 2r) whose cross-section ¢ = 0.50 b for the given
energy of neutrons. Other processes are assumed non-existent, the
secondary neutrons are not to be absorbed in the plate.

13.71. A thick target containing n, nuclei/cm? is irradiated with
heavy charged particles. Find how the cross-section of a nuclear
reaction depends on the kinetic energy 7 of striking particles, if the
reaction yield as a function of the particles’ energy, w (7'), and the
expression for ionization loss of energy of these particles, d7/dx =
= f (T'), are known.

13.72. When a deuterium target is irradiated with deuterons, the
following reaction occurs: d + d —3He + n, Q = 43.26 MeV.
Making use of the detailed balancing principle, find the spin of a 3He
if the cross-section of this process equals ¢; for energy of deuterons
7 = 10.0 MeV, while the cross-section of the reverse process for the
corresponding energy of striking neutrons o, = 1.8g;. The spins
of a neutron and a deuteron are supposed to be known.

13.73. Using the detailed balancing principle, find the cross-
section o, of the reaction o -+ SLi-—> ®Be -+ p — 2.13 MeV, if
the energy of striking a-particles is 7' = 3.70 MeV and the cross-
section of the reverse reaction with the corresponding energy of pro-
tons is ¢, = 0.050 mb.

13.74. Using the detailed balancing principle, demonstrate that
the cross-section of an endoergic reaction 4 (p, n) B activated due
to irradiation of a target with protons of energy T, is proportional

to VTp — T'p tn in the vicinity of the threshold, if in the case of slow
neutrons the cross-section of the reverse reaction is proportional
to 1/v,, v, being the velocity of the neutrons.

13.75. The cross-section of the deuteron photodisintegration
reaction y +d—-n 4+ p, Q = —2.22 MeV is g, = 0.150 mb for
an energy of y-quanta 2w = 2.70 MeV. Using the detailed balancing
principle, find the cross-section ¢, of the reverse process for the cor-
responding energy 7', of striking neutrons. Calculate this value of T',.

NEUTRON PHYSICS

@ Aiming parameter of a neutron
b=2 V1041, (14.1)
where & = A/2x is its wavelength, I is the orbital quantum number.

® Breit-Wigner formula for an individual level gives the cross-section of for-
mation of compound nucleus by slow s-neutrons (= 0y

" Ty .
R (14.2)
2J 41

8= 2@IFD) °

T are the wavelength and kinetic energy of an incoming neutron,
\g’ilei? txh(;rjl lignetic effergy of a ngeutrop corresponding to the given level of the
compound nucleus M* (Fig. 39), g is the statisti-
cal weight, 7 is the spin of thf target nucleus, J
is the spin of the given level of the compound
nucleus, I' and T, is the total and neutron width
of the level, T,, depends on the wavelength of the 7 7
incoming neutron, #Iy, = kolng, % and 'y, are
the neutron’s wavelength and neutron width of
the level at T = T. , — E,
® Rate of nuclear reaction:

R = (I) ® reaction/(cm?-s), (14.3)
’ —

where ()= N {g) is the mean macroscopic cross- m*
section of reaction, N is the concentration of nu-

clei, ® = n {(v) is the flux density of neutrons, n Fig. 39
is the concentration of neutrons, and (v} is their

an velocity. .
I2eMean valu}é of the cosine of the angle at which neutrons are scattered due to

elastic collisions with stationary nucleivof mass number A4:

£y

(cos ﬁ):%.  (14.4)

® Logarithmic loss of energy is In (T4/T), where T, and T are the initial and

final kinetic energies of a neutron. _ ) ] ]
.n Mean logarithn%ic loss of energy of a neutron undergoing a single elastic col-

lision with a nucleus:

- 2
1o a; a;(A 1) , (14.5)

S=1 AFT

1—a

where 4 is the mass number of the nucleus.
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® Age of neutrons moderated from energy Ty down to I
To
B g t_ar .
=) EESs,, T ’
T (14.6)
D=3 (1—(cos ),
where § is the mean logarithmic loss of energy, ¥, and Z;, are the macroscopic
scattering and transport cross-sections.

® Moderation density ¢ (E) is the number of neutrons in 1 cm?® crossing a given
energy level E per one second in the process of moderation. For a point source
of fast monoergic neutrons in an infinite homogeneous moderating medium

n —p2
Ig (1) =———e /T,

= (14.7)

where n is the source intensity, neutrons/s, T is the neutron age, cm?, r is the
distance from the source, cm.
® Neutron diffusion equation for a medium without multiplication:
d
Tj:pvzm_zam;
(14.8)

1 -
D= =500 Lait=V DiZq,

where n is the concentration of neutrons, D is the diffusion coefficient, V2 is
the Laplace operator, @ is the flux density of neutrons, 2, is the macroscopic
absorption cross-section, Lgyp is the diffusion length.

® Neutron albedo f§ is the probability of neutrons being reflected after multiple
scattering in a medium.

NEUTRON SPECTROSCOPY

14.1. One of the first designs for mechanical selection of neutrons
consists of two discs fixed to an axle rotating at a speed of n rps.
The distance between discs is L. Each disc has a radial slit displaced
relative to each other by the angle a. Find the energy of neutrons
filtered through such a selector, if » = 100 rps, L = 54 cm, and
o = 8°

14.2. In a mechanical neutron selector, constructed as a stack
of alternating aluminium plates of a thickness of 0.75 mm and thin
cadmium layers, the total length of the stack is equal to 50 mm.
‘What must be the speed of rotation of the stack to arrest neutrons
with energies below 0.015 eV? What is the neutron pulse duration
in this case?

14.3. A mechanical time-of-flight neutron selector has a resolution
At/L ps/m. Find the energy resolution AT/T of that selector as
a function of neutron energy T, eV. Assuming At/L = 1.0 ps/m,
find AT/T for T = 5.0 eV, and the highest value of T’ at which AT/T
is better than 10%.

14.4. Is a mechanical neutron selector with time-of-flight resolu-
tion of 0.50 us/m acceptable to study the shape of a resonance curve
in silver for an energy of 5.0 eV and half-width of 0.20 eV?
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14.5. In a pulsed cyclotron installation the total width of a neu-
tron pulse and a channel of a time analyze? is equal to 1.0 us. Evalu—
ate the distance from a moderator to the time gnalyzer of tl}lg 1pstal-
lation sufficient to resolve two resonances }ymg in the vicinity of
50 eV and separated by the interval of 0.50 eV.

14.6. Calculate the energy of neutrons reflected from a set of

planes of NaCl crystal with d = 3.25 A through a glancing angle of
4.0°. The incident beam consists of neutrons with energies below
3.0 eV.

14.7. In a beryllium crystal monochromator, the neutl;on reflec-
H tion of the first order from a set of planes with d = 0.75 A is used.
" Evaluate the energy resolution (AT/T) of this mqnoghromator for
neutrons with energy about 7 = 0.30 eV, if the incident neutron
beam has an angular spread of A% = 0.5°

14.8. A LiF crystal monochromator that employs neutron reflec-
tion of the first order from a set of planes with 'd = 2.32.A is usgd
s to resolve two groups of resonant neutrons with kinetic energies
3 of 0.49 and 0.51 eV. At what angular divergence of the incident neu-
tron beam can it be done? .

14.9. When a thermal neutron beam passes through a thick chunk
of pressed erystalline powder, the neutrons of sufficiently long wave-
length penetrate the whole length of the chunk without reflections
: from crystalline planes. Find the kinetic energy of neutrons passing
: through a thick chunk of graphite. The maximum interplanar dis-
:; tance of graphite is d = 3.35 A.

14.10. lgiglll)re 40 illustrates a scintillation spectrometer of fast
neutrons. A neutron beam to be investigated falls on a stylbene

\n
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. Fig. 40

i scintillator of a photomultiplier A. After elastic collision with
: protons of stylbene, the neutrons scatt.ered throu_gh the angle &
are registered by a photomultiplier B while the recoil protons b_y phe
photomultiplier A. The output pulses from either photoml}ltl.pher
are fed to coincidence circuit, the pulses from the photomultiplier 4
being delayed to account for the time taken by .the scattered neutron
to travel the distance L. Find: (a) the kinetic energy of primary
neutrons, if the delay time required to observe the highest numb_%r
of pulse coincidences is 2.20.10-% s, L = 50 cm, .and 1‘}.= 45
(b) the accuracy of determination of neutron energy, if the diameter
of the crystal of the photomultiplier /3 is equal to 3.0 em.
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INTERACTION OF NEUTRONS WITH NUCLEI

14.11. On the basis of quasiclassical concepts derive the expres-
sion for the aiming parameter b of a striking neutron. Calculate the
first three allowed values of & for neutrons with a kinetic energy of
1.00 MeV.

14.12. Find the maximum value of aiming parameter for neutrons
with a kinetic energy of 5.0 MeV interacting with Ag nuclei.

14.13. Demonstrate that for neutrons with the wavelength *
theJgeometric nuclear cross-section S =~ n (R + %)%, where R is
the radius of the nucleus. Estimate this value for the case of a neu-
iron with a kinetic energy of 10 MeV interacting with an Au nucleus.

14.14. Evaluate the maximum centrifugal barrier height for
neutrons with a kinetic energy of 7.0 MeV interacting with Sn nuclei.

14.15. Evaluate the angle & within which the neutrons are scat-
tered after elastic diffraction by lead nuclei. The neutron energy is
50 MeV.

14.16. Find the probability that after interaction of slow neu-
trons (! = 0) with nuclei whose spin I = 1, the compound nuclei
are formed in the state with spin J = 3/2. The spins of neutrons
and nuclei are assumed to be randomly oriented relative to one
another.

14.17. On the basis of the Breit-Wigner formula for the cross-
section of formation of a compound nucleus o,, derive the expres-
sions for the cross-sections of elastic scattering and radiative capture
of a neutron.

14.18. Using the Breit-Wigner formula, derive the radiative neu-
tron capture cross-section o,y as a function of the kinetic energy of
a neutron T, if the cross-section of this process ds known for 7' = T;
values of To and I' are also known.

14.19. Calculate the cross-section of the réaction BIn(n, y)In
for a neutron energy of 0.50 eV, if under the conditions of resonance
o, = 2.76:10* b, T, = 1.44 eV and T' = 0.085 eV. The neutron
width T',, is known to be much smaller than the radiation width I',,.

14.20. When thermal neutrons with an energy of 0.025 eV mteract
with 113Cd nuclei, the scattering cross-section amounts to 0.22%
of the radiative capture cross-section. Determine the ratio of prob-
ability of a compound nucleus decaying with emission of neutrons
to that with emission of y-quanta, if the resonant value of neutron
energy Iy = 0.178 eV,

14.21. Using the Breit-Wigner formula, find: (a) the values of the
kinetic energy of a neutron (7,4 and 7Tp;,) at which the radiative
capture cross-section ¢,y reaches its maximum and minimum (7, and
I’ are assumed to be known); find under what conditions Ty, =~ Ty;
(b) by how many percents the cross-section o, of the process (n, 7y)
at T =T, differs from the resonant value oy, of that process,
if I' = T,; (c) the values of the ratio I'/T, at which radiative capture
of neutrons does not exhibit its selective nature.
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14.22. Applying the Breit-Wigner formula for radiative capture
of neutrons, find the ratio 6y,,/0,, where 0y, is the minimum cross-
section of the process (n, y) in the region 7' << T'y; @, is the cross-
section of this process at 7 = T, if ' « T,.

14.23. Using the Breit-Wigner formula, determine the width T’
of a level in a compound nucleus appearing after the capture of a neu-
tron by a 3Cd nucleus, if the radiative capture cross-section for
neutron energy T = 2T, is 1/15 of that for T = T,, where T, =
= (.178 eV. I" is supposed to be independent of the neutron energy.

14.24. Using the Breit-Wigner formula, show that if the half-width
AT of a resonant peak of the curve o,y (T) is small (AT <« T,),
then AT =~ T.

14.25. The resonance energy of neutrons interacting with %Co
nuclei is T, = 132 eV, the corresponding neutron width I, =
= 09T, and I « T,. Using the Breit-Wigner formula, find: (a) the
resonance cross-section of elastic scattering of neutrons; (b) the
spin of the state of the compound nucleus through which the process
proceeds, if the total resonance cross-section g, = 1.0-10% b.

14.26. Find the ratio of the resonance cross-section of elastic
scattering of neutrons by **Mn nuclei to the geometric cross-section
of these nuclei, if Ty = 337 eV, I',, ~ ' « T, and the spin of the
transitional nucleus, through which the process proceeds, is J = 2.

14.27. The crogé-section of radiative capture of neutrons by
45Sm nuclei under conditions of resonance (7, = 0.097 eV) is
0o = 1.2.10% b. Find the neutron width T,, for the resonance energy
of neu/trons, if o < T'= 0.064 eV and the spin of °Sm nucleus
I =17/2.

14.28. Evaluate the lifetime of a compound nucleus appearing
on capture of a neutron by a 1%Rh nucleus, if at the resonance energy
of neutrons 7T, = 1.26 eV the cross-section of the process (n, y)
is 09 = 2700 b, 'y, > I'yy = 7.8-107* eV, and g = 1/4.

14.29. Using the Breit-Wigner formula, find the cross-section of
radiative capture of slow neutrons as a function of their kinetic
energy, when the compound nucleus has a “negative” energy level,
Ty << 0 (the level E, in Fig. 39). Find out how o, behaves as T varies
in the regions 7 | Ty land 7 » | T, |

14.30. Using the Breit-Wigner formula, identify the conditions
under which the cross-section of radiative capture of neutrons obeys
the 1/v law.

14.31. On irradiation of a magnesium target with neutrons
(2.5 MeV), it was observed that in addition to elastically scattered
neutrons there is a group of inelastically scattered neutrons whose
energy corresponds to a certain excited level of transitional nuclei
(1.3 MeV). Determine the relative width of the given level for inelas-
tic scattering, if it is known that the total cross-section of the process
Otor = 2.2 b and the elastic scattering cross-section de = 1.6 b,
44% of which represents potential scattering.
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PROPAGATION OF NEUTRONS THROUGH MATTER

14.32. What must the thickness of cadmium plate be to reduce
the flux of thermal neutrons 100-fold after passing through it?

14.33. How many times will a narrow beam of thermal neutrons
be attenuated after passing through a layer of heavy water 1.0 cm
in thickness?

14.34. Evaluate in what proportion a narrow beam of fast neu-
trons with an energy of 10 MeV attenuates on passing through a lead
plate 4.0 ¢cm in thickness. The effective nuclear cross-section is
assumed to be ¢ = 2x (R -+ *)?%; R is the radius of the nucleus;
X is the neutron wavelength.

14.35. In the centre of a spherical graphite layer whose inside
and outside radii are r; = 1.0 cm and r, = 10.0 em a point source
of monochromatic neutrons is located, emitting 7, = 2.0-10* neu-
trons/s with an energy of 2.0 MeV. The interaction of neutrons of
such an energy with carbon nuclei is characterized by a cross-section
o = 1.6 b. Determine the neutron flux density at the outside surface
of the layer, counting only neutrons that penetrated the layer with-
out collisions.

14.36. The intensity of a narrow beam of slow monochromatic
neutrons diminishes 20-fold on passing through a plate of natural
boron with a mass thickness of 1.0 g/cm?. Determine the energy of
neutrons, taking into account that the 1/v law is valid in this case.

14.37. A narrow beam of neutrons with an energy of 10.0 eV passes
a distance [ = 15.0 cm along the axis of a counter filled up with
BF; at NTP (natural boron is used). Determine the counter efficiency
provided that the cross-section of the reaction (n, @) is known to
obey the 1/v law.

14.38. In a neutron counter with Lil crystal sensor the reaction
(rn, o) in ®Li nuclei is used. Determine the efficiency of the counter
for a thermal neutron beam, if the thickness of the crystal is known
to be 2.0 cm and density 4.0 g/cm® (natural lithium is used). The
scattering of neutrons is to be neglected.

14.39. Find the decrease in efficiency (%) of a neutron detector,
a thin '°B layer, that was irradiated for a week by a plane flux of
thermal neutrons with a density J = 1.00.10'® neutrons/(cm?-s).

14.40. A non-monochromatic beam of slow neutrons falls on a thin
target activating a nuclear reaction whose cross-section is o oc 1/v.
Demonstrate that in this case the mean cross-section of the reaction
(averaged over all neutron velocities) (o (v)) = o ({v)).

14.41. A beam of neutrons with energies falling within the inter-
val, in which the cross-section of the reaction (n, a) is proportional
to 1/v, passes through a thin °Li foil 10 mg/cm? in thickness. What
is the mean velocity of the neutrons, if the yield of the reaction
(n, &) is known to be 0.40 in this case?

14.42. A neutron counter with a volume of 100 cm? filled up with
BF, gas at NTP is placed in the uniform field of slow neutrons (boron
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of natural isotopic composition is used). Assuming that the reaction
cross-section 0,, oc 1/v, determine: (a) the volume density of neu-
trons if 1.0-10'® reactions occur in the counter per one second;
.(b) the number of reactions occurring in the counter per one secon(i
Ll%fOO(DK: 1.1-10" neutrons/(cm?-s) and the neutron temperature is

14.43. Demonstrate that in a thin target exposed to an isotropic
field of neutrons the reaction rate is twice that in the case when a par.
allel flux of neutrons with the same energy spectrum falls normally
on the target’s surface. The number of neutrons hitting the target
is the same in both cases.

14‘.44. How long does it take to irradiate a thin layer of 9B
nuclide in a field of thermal neutrons with a volume density n =
= 4.0-10° neutrons/cm? to decrease the number of B nuclei by
90 percent? It is known that the reaction cross-section Onye o< 1/v,

14.45. A thin sample of metallic sodium of 0.40 g mass was
placed in an isotropic field of thermal neutrons with @ — 1.0 x
X 101 neutrons/(cm?-s). Assuming the 2*Na radionuclide production
rate constant, determine: (a) the activity of the saturated sample
and the 'fraction of #*Na nuclei accumulated in such a sample; (b) the
1rra.dlat10n time required to raise the sample’s activity up to 75%
of its saturation activity.

14.46. The specific activity of a neutron-activated golden foil
equals 4 = 1.1.10% dis/(s-g) = 3.0 mCi/g. For how long has this
foil to be additionally exposed to the field of thermal neutrons with
O 2110.(3-1010 neutrons/(cm?-s) to increase its activity by a factor of
1 = 107

14.47. A thin copper plate is exposed to the isotropic field of
thermalineutrons with @ = 0.9.10' neutrons/(cm?-s). Determine
the specific activity of the plate ¢ = 2.0 h after the beginning of the
exposure.

14.48. A thin 5[n foil of mass 0.20 g was exposed to an isotropic

thermfal neutron flux for t = 2.0 h. In ¢ = 0.50 h after the exposure
was discontinued, the foil activity turned out to be 4 — 0.07 mCi.
Determine the neutron flux density ®@.
) 14.49. A 5V sample of mass 0.50 g is activated up to saturation
in a thermal neutron field. During t = 5.0 min immediately after:
completion_of irradiation, N = 0.8-10° pulses were registered, the-
count efficiency being B = 0.010. Determine the volume density-
of neutrons, assuming the activation cross-section to obey the 1/w
law in this case.

14.50._ An ™*In foil whose both sides are covered with thin layers
of cadmium was exposed to an isotropic neutron field. Taking into
account that the cross-section of indium activation obeys the 1/v
law in the case of thermal neutrons, determine the specific saturation
activity of the foil, if the volume density of thermal neutrons n —
= 3.1-10* ¢cm~® and a cadmium ratio of Req = 20. Cadmium is
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supposed to absorb all thermal neutrons and let through above-
thermal ones. Note. Rcy is the ratio of saturation activities of the
naked foil and cadmium-coated one.

MODERATION AND DIFFUSION OF NEUTRONS

14.51. What fraction of its kinetic energy does a neutron lose in:
(a) an elastic head-on collision with initially stationary nuclei *H,
12C, and 28U, (b) an elastic scattering through the angle ¥ by an
initially stationary deuteron, if the angle ¥ is equal to 30, 90, and
150°?

14.52. Neutrons with the kinetic energy T, are elastically scat-
tered by nuclei with the mass number A. Determine: (a) the energy of

neutrons scattered through the angle ¢ in the C frame; (b) the frac-
tion of neutrons that after single scattering possess a kinetic energy
whose value falls within the interval (7', T 4 dT) provided the
scattering in the C frame is isotropic. Plot the distribution of scat-
tered neutrons in terms of energy.

14.53. Neutrons with a kinetic energy of T, = 1.00 MeV are
elastically scattered by initially stationary *He nuclei. Determine
the mean energy value of singly scattered neutrons, assuming the
scattering in the C frame to be isotropic.

14.54. Determine the probability that after a single elastic scat-

tering of a neutron by a deuteron the neutron energy becomes less .

than half the initial value; the scattering in the C frame is isotropic.

14.55. Neutrons are scattered by initially stationary protons.
Assuming this scattering to be isotropic in the C frame, find, using
the vector diagram of momenta: (a) the probability of a neutron
scattering into the angular interval (&, ¥ -+ d0); (b) the fraction
of neutrons scattered through angles & > 60°; (c) the mean value
of neutron scattering angle in the L frame.

14.56. A neutron is scattered by a nucleus with mass number A4
through the angle defined by the expression

1—|—A0057‘}
—_—,
V 14+ A424-2Acos &

cos U=

where U is the corresponding scattering angle in the C frame.

(a) Derive this expression.

(b) Determine the fraction of neutrons elastically scattered
through angles ¥ > ¥, = 90° due to single collisions with °Be
nuclei; the scattering in the C frame is isotropic.

(¢) Demonstrate that the mean value of cosine (cos &) = 2/34
for the isotropic scattering in the C frame.

14.57. Calculate (cos ¥) for neutrons elastically scattered in
beryllium oxide provided the scattering in the C frame is isotropic.

14.58. Supposing that the elastic scattering of neutrons by nuclei
is isotropic in the C frame, (a) derive formula (14.5); simplify this
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formula for the case of sufficiently large values of A4; (b) calculate &
for a neutron in graphite and heavy water.

14.;’)9. Determine the hmean number of elastic collisions that
a neutron experiences in the process of its moderation f
of 2.00 MeV down to 0.025 eV in uranium, graphitre(:n[lafid1 ?e?g;r
water.

14.60. Find the mean time of neutron moderation from energy
Ty =20 MeV to T, = 0.025 eV in beryllium, assuming the mean
free path of a neutron between two collisions to be independent of
energy and equal to A, = 1.15 cm.

' 14.61. Neutrons with a kinetic energy of 2.0 MeV are thermalized
in graphite down to energy 0.025 eV. Calculate the age T of thermal
neutrons and moderation length L.

14.62. Using the expression for moderation density gz in the case
of a point source of fast monochromatic neutrons, demonstrate that
the mean squared distance (along the straight line) travelled by a
neutron during its thermalization to the energy E is (r*) = 6%
where 7T is the age of the given neutrons. '

14.63. To determine the neutron age, a point source of fast neu-
trons is placed in a large bulk of moderator and thin indium strips
cadmium-plated are activated at various distances from that source.
The degree of indium activation is primarily effected by its reso-
nance level with an energy of about 1.5 eV. Find the age of resonance
indium neutrons in graphite, if the foil activity A (in relative units)
at distances r from the source, equal to 90, 100, and 150 mm, is
known to be equal to 100, 94, and 85 respectively. ’

14.64. Demonstrate that for nuclei whose cross-section obeys the
1/v law the resonance integral for above-cadmium neutrons (whose
energy exceeds 0.40 eV) is equal to 0,/2, where 0Oy is the absorption
cross-section for a meutron energy of 0.025 eV.

14.65. Thermal neutrons diffuse in a uniform medium whose
macyosc_opic scattering cross-section is X, and absorption cross-
section is negligible. Find: (a) the probability that a neutron passes
in that medium the distance between z and z —+ dx without colli-
sions; the mean free path A, between two successive collisions;
(b) the mean squared free path (z%) of a neutron in graphite, ’
' 14.66. A thermal neutron with an energy of 0.025 eV diffuses
in graphite. Determine the mean diffusion time (lifetime) of the
given neutron and the mean number of collisions it experiences
during that time.

14.67. Calculate for thermal neutrons in graphite: (a) the trans-
port length; (b) the diffusion length and the mean distance covered
by the neutron till its absorption.

14..68.. Neutrons diffuse in a medium whose absorption cross-
section is negligible. Assuming the neutron scattering to be isotropic
in the L frame, determine: (a) the number of neutrons crossing 1 ¢cm?
area from one side per 1 s, if the neutron fluy is the same throughout
the medium and equal to ®; (b) the resultan* density rate of neu-
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trons crossing an element of area oriented normally to V@, if @ =
= @, + (dD/dn), z, where the values subindexed with O refer to
the points of the considered element of area (z = 0).

14.69. A thermal neutron source is located in the infinite uniform
medium without multiplication, whose macroscopic absorption
cross-section is ¥, and diffusion coefficient D. Assuming the neutron
scattering to be isotropic in the L frame, find the expression de-
scribing the steady-state distribution of the neutron flux ® in the
medium, if the neutron source: (a) is an infinite plane emitting
n neutrons/(cm?-s); (b) is a point with activity n neutrons/s; (e) is
a sphere of radius R emitting » neutrons/(cm?.s), with all neutrons
getting inside the sphere being absorbed.

14.70. A point source of thermal neutrons is surrounded with
a large bulk of heavy water. Calculate the neutron diffusion length
in this medium, if the ratio of neutron fluxes at distances r;, = 15 cm
and r, = 30 cm from the source is ®,/®, = n = 2.2

14.71. Demonstrate that the mean squared displacement of a
thermal neutron in a medium from the point at which it became
thermal to the point at which it was absorbed is related to the diffu-
sion length as (r*) = 6L3j;.

14.72. A neutron diffuses in a medium with albedo f. Determine
the probability that the given neutron crosses an imaginary plane
in the medium 7n times exactly, as well as the mean number of times
that the neutron crosses the plane.

14.73. An indium foil of thickness 0.13 g/cm? is activated in
a field of thermal neutrons realized in a water tank. The foil activity
turned out to be 6.9 times that of the foil plated by cadmium on one
side. Find the thermal neutron albedo in water.

14.74. Making use of the solution of Problem 14.68, find the albedo
of a reflector, if a medium producing thermal neutrons: (a) is sepa-
rated by a plane boundary from an infinite graphite reflector having
the neutron flux distribution ® = ®e~*/L, where x is the distance
from the boundary, L is the diffusion length; (b) has the shape of
a sphere of radius R surrounded by an infinite reflector; known are
the diffusion coefficient D, diffusion length L, and neutron flux

distribution in the reflector @ oc —i— e~r/L, where r is the distance from
the centre of the sphere.

15
NUCLEAR FISSION AND FUSION

@ Energy liberated in a single uranium fission is adopted equal to 200 MeV.
@ Multiplication constant for neutrons in infinite medium:

kao = epin, (15.1)

where ¢ is the fast neutron multiplication, p is the probability of avoiding
a resonance capture, / is the thermal neutron utilization coefficient (the proba-
bility of absorption of a thermal neutron by a fissionable substance), 1 is the
mean number of fission neutrons per one thermal neutron absorbed by a fission-
able substance.

@ Energies of the dd and dt reactions (d for deuterium and ¢ for tritium):
t-+p-+4.0 MeV,

d--d d+t — a-t+nt+17.6 MeV,

He - n 3.3 MeV,

Both branches of the dd reactiop are practically equiprobable.
@ Effective cross-section of the dd reaction:

3

640=1.2-102 —— exp (— 31 )b, (15.2)
T T1/2

where 7’ is the kinetic energy of a relative motion of deuterons, i.e. their total

kinetic energy in the C frame, keV.

® In this chapter the plasma particles are supposed to be distributed in accord-
ance with Maxwell's law; the plasma temperature is expressed in energy units
0 =kT.

® Mean values of the quantity ov for deuterium and tritium plasma are:

, 1 19
(Ov)gq=23-10"13 s oXP (—m-) cm3/s,
(15.3)

{ov)gs=3.10"12 eTl/s, exp ( _621%) cm3/s,

where 0 is the plasma temperature, keV. The graphs of these functions are pre-
sented in Appendix 13.
@ Hydrogen plasma bremsstrahlung intensity

w=4.8-10"31non; ¥ 0, W/cm3, (15.4)
where n,,; is the concentration of electrons and ions, cm=3, 0, is the electronic

temperature, keV.
@ Conductivity of totally ionized hydrogen plasma

0 = 4.0.10%0%2 Q-l.cm™1, (15.5)
where © is the plasma temperature, keV.
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@ Basic equation of magnetohydrodynamics for quasisteady state and plasma

boundary condition:
Vp:i[jB]' p—{—iz——:const (15.6)
c ’ 8n ’
where p is the kinetic pressure of plasma, j is the electric current density, 5 is
the magnetic induction.
@ Relation between the temperature 0 and longitudinal current / in an equi-
librium cylindrical pinch of totally ionized hydrogen plasma:

0 = I2/4e2N, (15.7)

where N is the number of electrons per unit length of the pinch.

FISSION OF NUCLEIL CHAIN REACTION

15.1. Determine: (a) the energy liberated in fission of 1.0 kg
of 285U nuclide; what amount of oil with a calorific value of 42 kJ/g
liberates such an energy on combustion? (b) the electric power of
an atomic power plant if its annual consumption of **°U nuclide
comes 1o 192 kg with an efficiency of 20%; (c) the mass of *°U
nuclide fissioned in the explosion of an atomic bomb with a trotyl
equivalent of 30 kt, if the thermal equivalent of trotyl equals
4.1 kl/g.

15.2.gFind the total neutrino flux and power being lost due to
that flux in the case of a reactor with 20 MW thermal power. Each
fission is assumed to be accompanied with five p-decays of fission
fragments for which the total neutrino energy amounts to about
11 MeV.

15.3. Using the semi-empirical formula for binding energy (10.3),
find the ratio Z2/4 at which the fission of an even-even nucleus into
two equal fragments becomes feasible in terms of energy.

15.4. A nucleus becomes quite unstable to fission into two equal
fragments when the ratio of its electrostatic energy to surface energy
equals two. Using formula (10.3), find the value Z%/4 of such nucleus.
Compare this value with that of nuclei located at the end of the
Periodic Table; explain why these nuclei fission.

15.5. Find the half-life of 23*U with respect to spontaneous fission,
if it is known that the number of such fissions per one gram of pure
288(J equals 25 per hour. How many a-decays occur in this sample
during the same interval?

15.6. A 23U nucleus captured a thermal neutron. The unstable
nucleus thus formed fissioned to produce three neutrons and two
radioactive fragments that transformed into stable ®#Y and '*Nd
nuclei. Find the energy liberated in this process, if: (a) the excess
of mass of a neutron and nuclei 23U, Y (—0.09415 amu), **Nd
(—0.09010 amu) are known; (b) the binding energy per one nucleon
in nuclei 2%U (7.59 MeV), %Y (8.71 MeV), #Nd (8.32 MeV) and
binding energy of a neutron in #¢U (6.40 MeV) are known.
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15.7. The nucleus, appearing afler a neutron is captured by a 238U
nucleus, fissions provided the neutron energy is not less than 1.4 MeV.
Find the activation energy of the fissionable nucleus.

15.8. Determine the most probable and mean kinetic energy of
235U fission neutrons whose energy spectrum is n (I) oc |/ Te=0-7T,
where 7T is the neutron’s kinetic energy, MeV.

15.9. Calculate the fission cross-section of a nucleus in uranium
of natural isotopic abundance for thermal neutrons.

15.10. Calculate the fraction of thermal neutrons whose capture
by nuclei 233U, 35U, and 2*°Pu induces their fission.

15.11. Find the mean number of instantaneous fission neutrons
per one absorbed thermal neutron in 233U, #5U, and 239Pu.

15.12. Compare the mean number of instantaneous fission neutrons
per one absorbed thermal neutron in natural and enriched (1.50%
235J) uranium.

15.13. A 235U plate is exposed to thermal neutrons falling nor-
mally on its surface. At what thickness of the plate will each inci-
dent thermal neutron produce on the average one fast fission neutron?

15.14. A parallel thermal neutron flux of density J, = 1.2 X
X 101° neutrons/(cm?.s) falls normally on a plate of natural ura-
nium 8.0 g/em? in thickness. Find the power generated from 1 cm?
of the plate due 4o 233U fission.

15.15. Into a constant power reactor a small amount of *°Pu
(m; = 0.90 g) was added. To keep the reactor’s power constant,
some boron of natural isotopic abundance (m, = 0.060 g) was also
added. Assuming the absorption cross-sections of plutonium and
boron to be known, find the mean number of 2°Pu fission neutrons
per one absorbed thermal neutron.

15.16. A reactor with fissionable isotope 23%U operates at a con-
stant power level. Find the fraction of neutrons escaping from the
fissile core, if half of fission neutrons are captured by uranium nuclei
and impurity nuclei without subsequent fission.

15.17. What is the physical meaning of the multiplication con-
stant £? How many neutrons will there be in the hundredth genera-
tion, if the fission process starts from 1000 neutrons and & = 1.05?

15.18. Evaluate the time interval during which 1.0 kg of sub-
stance fissions in the infinite medium of *°U, if the mean energy of
fission neutrons equals 1.6 MeV, the fission cross-section of *°U
nucleus for such energy is about 2 b, and the multiplication constant
k = 1.0010. Suppose that one nucleus fissioned at the initial moment.
How will the result change, if & = 1.010?

15.19. Each fission of a 28U nucleus releases about 2.6 fission
neutrons on the average. The fission cross-section of *3¥U is equal
to about 0.5 b (for fission neutron energies), the inelastic scattering
cross-section amounts to a few barns. Taking into account that at
least half of fission neutrons possess the energy below 28U fission
threshold, demonstrate that a self-sustaining chain reaction is
impossible in the medium consisting of these nuclei.
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15.20. Explain why a self-sustaining chain reaction is impossible
in a medium consisting of natural uranium.

15.21. A homogeneous mixture contains z = 500 mol of carbon
per each mole of uranium. Calculate: (a) the coefficient f, if the
uranium of natural isotopic abundance is used; (b) the degree of
2351] enrichment for which f = 0.95.

15.22. In a homogeneous uranium-graphite mixture the proba-
bility of avoiding a resonance capture

p = exp [—24.7 (V /2 ;)%5%],

where NV, is the number of 23U atoms in 1 ¢cm3; 2 ; is the macroscopic
scattering cross-section of the medium, b. Calculate the value of p
for the mixture containing 400 mol of graphite per each mole of
natural uranium.

15.23. Making use of the formula of the foregoing problem and
assuming & = 1, calculate the multiplication constant % in a homo-
geneous mixture containing z = 400 mol of graphite per each mole
of natural uranium.

15.24. The active section of heterogeneous thermal-neutron reactor
is a tank filled with moderator into which 200 rods of natural ura-
nium are inserted. The length of each rod is 1.50 m, the diameter
2.0 cm. Neglecting the self-absorption of neutrons in uranium, evalu-
ate the mean flux density @ and thermal neutron concentration, if
the reactor’s power is 0.60 MW.

15.25. A thin 23U foil of a mass of 0.10 g was exposed for T = 60 s
to a flux of thermal neutrons falling normally on its surface. The
flux is I = 1.1-10° neutrons/(cm?.s). Following © = 10 s after the
end of the exposure, the activity of one of the delayed neutron groups
with a half-life of 55 s turned out to be 4 = 4.0.10° neutrons/s.
Find the yield of delayed neutrons of that group per one fission.

15.26. Evaluate the mean lifetime of a single generation of fission
neutrons in a homogeneous medium containing 100 moles of graphite
per each mole of natural uranium. Take into account that the neu-
tron thermalization time is much less than the diffusion time.

15.27. The fission of 23U exposed to thermal neutrons produces
six groups of delayed neutrons:

Tin 8 o v v 0 v 0w . 55.7 22.7 6.20 2.30 0.61 0.23
wg, 1078 . oL L. . 0.52 3.46 3.10 6.24 1.82 0.66

Here T; is the hali-life of the fragments emitting the ith group of
delayed neutrons, w; is the yield of these neutrons per one fission.
Find the increase in the mean effective lifetime of a single generation
of neutrons, in a medium consisting of 23°U and moderator, caused
by delayed neutrons. The mean lifetime 7 of a single generation of
fission neutrons is known to be equal to about 1 ms.

15.28. Find the reactor period 7 (the time interval during which
its power increases e-fold), if the multiplication constant & = 1.010
and mean lifetime of a single generation of neutrons v = 0.10 s.
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THERMONUCLEAR REACTIONS

15.29. What amount of energy is liberated in fusion of 1 g of
nuclear fuel in the following thermonuclear reactions: (a) dt; (b) dd;
(c) °Li(d, a)‘He?

Compare the obtained results with the energy liberated in fission
of one gram of uranium.

15.30. How long would the thermonuclear energy liberated in
the dd reaction have held out, if 1% of deuterium contained in the
Ocean had been used and the world energy consumption rate had
been equal to 10Q per year (the volume of the Ocean is 10'® m3,
1Q = 10" kJ)? Note. The present energy consumption rate amounts
to about 0.1Q per year. Still, the above-mentioned rate of 10Q per
year would not change the Earth climate appreciably, as this value
totals 1% of the solar radiation absorbed and emitted by the Earth
annually.

15.31. A carbon cycle of thermonuclear reactions, proposed by
Bethe as a possible source of stellar energy, comprises the following
transformations:

p+1C— 13N 49, p4 N0 4y,
B3N > 130, f- o+ - v, 130 — 18N - et L vy,
P“L"‘d3C_>MN+Yv p-- 15N—>12C+-4H6.

Calculate the energy liberated in this cycle in the process of pro-
duction of one mole of helfum.

15.32. What fraction of liberated energy is carried from a thermo-
nuclear reaction core by neutrons released as a result of the reaction:
(a) dt; (b) dad?

15.33. The energy of neutrons produced in the thermonuclear
reaction dt can be utilized by surrounding the reaction core by an
envelope which absorbs the neutrons with positive thermal energy
yield, e.g. by the envelope containing °Li (» 4- °Li — ¢ + «). By
what factor will the utilized energy increase on the introduction
of such an envelope?

15.34. Evaluate the lowest temperature of deuterium plasma in
which the deuterons possessing the most probable value of relative
velocity are capable of overcoming the Coulomb barrier. The radius
of deuteron R =& 2.0-1071® m.

15.35. When the kinetic energy T of the relative motion of charged
particles is considerably less than the Coulomb barrier height, the
coefficient of transparency of the barrier

D =~ exp (—oa/V?’); o = 1g,q, V2_!_L/ﬁ,

where g, and g, are the charges of the particles, u is the reduced mass.
(a) Derive this formula from the general expression (3.5).
(b) Calculate the values of D for deuterons possessing the most

probable value of relative velocity at plasma temperatures of 1.0
and 10.0 keV. '
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15.36. Calculate the cross-section of the dd reaction for the most
probable value of relative velocity of deuterons in a plasma with
temperatures of 1.0 and 10.0 keV.

15.37. In a deuterium plasma with a concentration of nuclei of
n = 1.0-10* ¢m-3, the deuterons react with frequency f = 1.0 X
% 1073 s71, Find the volume density of the released thermonuclear
energy and plasma temperature 0.

15.38. Determine the kinetic energy of the relative motion of
deuterons corresponding to the maximum velocity of the dd reaction
in deuterium plasma with a temperature of 6 = 2.0 keV.

15.39. A deuterium plasma with a concentration of nuclei of
n = 1.0-10"® em-? is heated to the temperature 6. For 6 = 1.0
and 10 keV calculate: (a) the mean lifetime of a deuteron in terms
of the dd reaction; (b) the number of dd reactions per unit time
(cm~3.s71) and volume density of the released power.

15.40. In a deuterium-tritium plasma with the temperature 6
and concentration of nuclei n = 1.00-10" cm~%, the concentration
of tritium nuclei equals n/100. For 6 = 1.00 and 10.0 keV calculate:
(a) the number of thermonuclear reactions (dd -~ dt) per 1 s per
1 cm3; (b) the volume density of released power.

15.41. A deuterium-tritium plasma with a concentration of nuclei
of n = 1.00-10" ¢m~® has the temperature 6. For 6 = 1.00 and
10.0 keV find the ratios of nuclear concentrations of tritium and
deuterium at which the released thermonuclear power is the highest,
as well as the values of this power in W/cm®. What inference can be
made on the relative contributions of the dd and dt reactions into
the power released under the given conditions?

15.42. Find the temperature 0 of deuterium-tritium plasma with
a concentration of nuclei of n = 1.0-10*® ecm -2 (ny; = n;) at which
the volume density of released power is w = 1.0 W/em3. Assume
this power to be released primarily due to dt reactions.

15.43. What would be the radius of a spherical thermonuclear
reactor filled with deuterium plasma with deuteron concentration n
at the temperature 0, if the heat was removed from the active section
only in the form of thermal radiation in accordance with the Stefan-
Boltzmann law? Calculate 9,, at which the reactor’s radius is the
smallest. What is its value, if n = 1.0-1020 ¢m~3? Think over the
result obtained.

15.44. Find the deuterium plasma temperature 8 at which the
released thermonuclear power is equal to the power of bremsstrah-
lung radiation of electrons.

15.45. A deuterium-tritium plasma is maintained at a tem-
perature of 10.0 keV and constant deuterium concentration ng; =
= 1.00-10'® c¢m 3 is replenished from an outside source. The latter
provides deuterons at the rate g nuclei/(cm3.s). Considering only
the dd and dt reactions, find: (a) the steady-state concentration of
tritium nuclei and the value of ¢; (b) the volume density of released
power w. What is the value of n,; for which w = 100 W/ecm?3?
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PLASMA PHYSICS

15.46. A plasma sample is shaped as a plane-parallel layer. Sup-
pose that due to a certain cause all electrons shifted with respect
to ions by the distance z in the direction perpendicular to the layer’s
surface. Using this model, find the frequency of electronic oscilla-
tions set in the plasma.

15.47. The dielectric permittivity of plasma in electric field £ =
= E,cos ot is ¢ (0) = 1 — (w,/0)% (@, is the Langmuir frequency
of electrons) under the conditions that collisions between particles
and ionic motion can be neglected.

(a) Derive this expression.

(b) Demonstrate that an electromagnetic wave with the frequency
o << o, goes through total internal reflection in the plasma.

(c) Calculate the electronic concentration in the plasma at which
the electromagnetic radiation with wavelengths exceeding A, =
= 1.7 em is suppressed.

15.48. Calculate the flux of thermonuclear neutrons from a deute-
rium plasma of volume V = 1.0 litre at temperature 6 = 10.0 keV,
if the suppression of sounding radio waves is known to be observed
for wavelengths longer than A, = 5.0 mm.

15.49. Using Poisson’s equation, demonstrate that the mean poten-
tial of electrostatie‘field in the vicinity of an ion in hydrogen plasma

is o< -:-e"/d, where r is the distance from the ion, d is the Debye

length. Find the expression for d provided the concentration of elec-
trons (and ions) is equal to » and plasma temperature to 0 (8, = 0;).

Assume the spatial distribution of particles to obey the Boltzmann
law, and, specifically, |e¢ | 6.

15.50. A hydrogen plasma with concentration of nuclei n =
= 1.0-10"® cm~3 is kept at temperature 8 = 10 keV. Calculate the
Debye length and number of nuclei contained in the sphere whose
radius is equal to the Debye length.

15.51. Calculate the cross-section corresponding to scattering of
electrons with the kinetic energy 7 = 1.00 keV through the angles
¥ > 90° due to collisions with ions of hydrogen plasma.

15.52. A hydrogen plasma with concentration of nuclei n =
= 1,0.10"® ¢cm -2 is kept at the temperature 8 = 1.0 keV. Evaluate the
minimum angle ¥y,,, through which the electrons with the most
probable velocity are scattered, and also the magnitude of the
Coulomb logarithm In (2/9yi,). The Coulomb field of nuclei is
supposed to reach over the Debye length and then vanish abruptly.

15.53. The effective cross-section for transfer of electronic momen-
tum (when an electron is scattered by plasma ions) is defined by the

following expression: ¢ = \ (1 — cos 9) o(¥) d¥, where o (¥) =

= do/d® is the differential cross-section given by the Rutherford
formula. Using this formula, calculate for the electrons with the
most probable velocity (if 6 = 1.0 keV and the concentration of
nuclei n = 1.0-10 c¢cm~3%): (a) the magnitude of the given effective
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cross-section; (b) the mean “free path”, mean time interval between
“collisions”, and the number of collisions per one second.

Assume the electrons to be scattered due to the Coulomb field of
nuclei, which reaches over the Debye length and vanishes abruptly
at longer distances.

15.54. An electron in a hydrogen plasma emits a power of dw =

= 4.5-1031 n; ' T W, where n; is the concentration of nuclei, cm=3;
T is the kinetic energy of the electron, keV. Find the volume density
of bremsstrahlung radiation of electrons in the plasma, if their tem-
perature is equal to 8 keV and concentration to n., em~3,

15.55. The power transferred from electrons to ions in unit volume
of the deuterium plasma

W, = 1.7-1072852 (ee—ei) 6;3/2 W/ems,

where n is the concentration of electrons (ions), cm~2; 8, and 6, are
the electronic and ionic temperatures, keV. Using this expression
for deuterium plasma with » = 1.0-10% ¢m =3, find the time interval
during which 0; rises to 20 /3, if the initial ionic temperature is neg-
ligible and the electronic temperature: (a) is maintained at a con-
stant value 8, = 1.0 keV; (b) is0,, = 1.0 keV at the initial moment
and there is no heat exchange with the environment.

15.56. The current I, flows along a thin skin layer of a cylindri-
cal plasma filament of pradiusr,. Find the magnetic pressure p, that is,
the Lorentz force acting on unit area of the filament’s surface. Demon-
strate that p = B:/8n, where B, is the magnetic induction at the
filament’s surface.

15.57. Suppose that the gas-kinetic pressure p of deuterium plas-
ma at a temperature of 8 = 10.0 keV is counterbalanced by the mag-
netic pressure developed by a magnetic field B = 50 kG. Calculate
the concentration of deuterons, pressure p, and volume density of
power released in thermonuclear dd reactions.

15.58. A current flows along a thin skin layer of a stable cylindri-
cal filament of hydrogen plasma of radius r;, and in the opposite
direction, along an external coaxial eylinder of radius r,. Find the
ratio of the magnetic energy to gas-kinetic energy of the plasma
filament. The plasma is assumed fully ionized.

15.59. A plasma has the shape of a thin cylindrical layer carrying
the current /,. Along the axis of this layer there is a conductor carry-
ing the current I, in the opposite direction. Ignoring the magnetic
field inside the plasma, determine: (a) the current ratio I,//, at which
the plasma layer is at equilibrium; (b) the value of 7, at which the
hydrogen plasma temperature 6 = 1.00 keV, if the equilibrium
radius of the plasma filament r, = 6.0 cm and concentration of nuclei
~n = 1.00-10% cm™3.

15.60. The current I, flows along a hydrogen plasma filament of
cylindrical form with equilibrium radius r,. Ignoring the external
gas-kinetic pressure, determine: (a) the mean value of gas-kinetic
pressure inside the filament; (b) the plasma temperature, if 7, =
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= 300 kA and the number of nuclei per unit length of the pinch
N = 0.7-10 em™L.

15.61. The current I flows along a cylindrical fully ionized hydro-
gen plasma filament possessing /V electrons per unit length. Assum-
ing the plasma temperature and current density to be copstant
over the cross-section: (a) demonstrate that the concentration of

2
electrons is distributed over the cross-section as n (r) = i—ivg( — rr—%),
where r, is the equilibrium radius of the filament; find also the value
n? (r) averaged over the cross-section; (b) find the current yvhpse
Joule heat power is equal to the plasma bremsstrahlung radiation
power. What is the plasma temperature under this condition, if
N = 5-10"" em™1? .

15.62. A glass tube of radius r, = 2.5 cm is filled with deuterium
with concentration n, = 4.0-10" molecules/cm® and placed inside
a one-turn “coil” of length I = 10 cm made of flat copper bus. After
preliminary ionization of deuterium a capacitor bank is discharge_d
through the coil. The current flowing in the coil generates a magnetic
field that pinches the plasma filament to radius r = 0.50 cm, with
the current in the coil reaching a value 7 = 1.0-10% A at that mo-
ment. Evaluate the plasma temperature neglecting the magnetic
field inside the plasma. Explain the mechanism of plasma compres-
sion in this case.”

15.63. Due to a sharp increase of current to I, = 50 kA, a cylin-
drical filament of fully ionized hydrogen plasma is pinched to equi-
librium radius 7, = 1.0 cm; while increasing, the current flows along
a thin skin layer. Evaluate the time interval during which the mag-
netic field settles over the filament’s cross-section, if the number of
nuclei per unit of its length N = 1.00-10' e¢cm~'. Instruction. The
time during which magnetic field diffuses over the length [ is equal
to about 12/D, where D = c?/4mno is the diffusion coefficient, o is the
electric conductivity. '

15.64. A hydrogen plasma with a concentration of nuclei of
2.0-10' c¢m-2 filling a glass tube of radius of 2.5 cm is placed in an
external longitudinal magnetic field B,, = 4.0 kG. On passing
through the plasma of a current I, = 5.0-10° A flowing in a thin sl;m
layer, the plasma gets compressed to a radius of 0.50 cm carrying
along the magnetic field B, confined in the plasma. Evaluate the time
interval during which the field gets trapped in the plasma.

15.65. Show that the condition for suppression of sausage-type
instabilities in a cylindrical plasma filament carrying the current I
in the presence of the longitudinal magnetic field B, trapped in the:

plasma takes the following' form: B; <C V2 B,, where B; is t}}e
magnetic field of the current I. The current is supposed to flow in
a thin skin layer. Find the value of B, at which the sausage-type
instabilities will be quelled in the plasma filament of radius r =
= 1.0 ¢m carrying the current I = 100 kA.
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15.66. Make sure that a doughnut-shaped plasma turn located in
the external circular magnetic field B, induced by a toroidal sole-
noid cannot be stable irrespective of whether or not there is a current
in the turn.

15.67. A circular turn of hydrogen plasma carrying the current
I = 10 kA and having a concentration of nuclei n = 1.0-10% ¢cm~3
is formed in a toroidal quartz chamber with a cross-sectional radius
a = 5.0 cm and mean great radius R = 50 cm. Suppose that at the
initial moment the mean great radius of the turn is also equal to R.
Evaluate the time interval required to get the turn thrown off to the
chamber’s walls. Assume that while stretching the turn keeps its
cross-sectional radius, equal to r = 1.0 ¢m, and the current / con-
stant, with the gas-kinetic pressure of the plasma turn being counter-
balanced by the magnetic pressure of the current /. Also assume that
the current I flows along the surface of the turn, so that the induc-

tance of the turn can be adopted to be equal to L=4nR (ln 8—1: —2 )

15.68. A plasma turn with the current 7/ = 10 kA is located in
the external uniform magnetic field B, directed normally to the
turn’s plane. Assuming that the current flows along the surface of
the turn, find the value of B, at which the turn will be at equilibri-
um, if its great and cross-sectional radii are equal to 2 = 50 ¢m and
r = 1.0 cm. The expression for the inductance of the turn is to be
taken from the foregoing problem.

15.69. A circular plasma filament is formed in a toroidal chamber
over which a winding is contrived to produce the longitudinal magnet-
ic field By. When the filament carries the current 7, the magnetic
lines of force take, under these conditions, the helical form, so that
the plasma filament can develop instabilities of the helical type.
Such instabilities do not occur though, if the filament length is less
than the lead of the helical lines of force on the filament’s surface. Find
the limiting value of the current I, if B, = 20 kG and the great
and cross-sectional radii of the filament are R = 50 cm and r =
= 1.0 em.
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16
ELEMENTARY PARTICLES

® In all formulas of this chapter, energy, momentum, and mass are expressed
in energy units: p and m being an abbreviation of pc and mc?. Whenever the
term “mass” is used, the rest mass is meant.

@ Kinctic energy of relative motion is the total kinetic energy of particles
in the C frame.
® Lorentz invariant:

E? — p? = inv, (16.1)

where E and p are the total energy and total momentum of a system of particles.
On transition from one inertial frame of reference into another this quantity
remains constant.

@® Velocity of the ¢ frame relative to laboratory one (the L frame):

B = vle = p/E, (16.2)
where p and E are the jotal momentum and total energy of a system of particles.

@ Lorentz equations transforming the momentum, total energy, and angles
on transition from the L to C frame (Fig. 41):

; A_ pA“'EB E"_‘pjxﬁ .
VTR Vi-p
where B is the velocity of the C frame relative to the L frame.

@ Threshold kinetic energy of a particle m striking a stationary particle M
and activating the reaction m -+ M — Zm;

_ Gm)P—(m+M)*
- 2M )

When a particle of mass M decays into two particles, the momenta of the
generated particles are equal (in the C frame) to

b = o= V(BTG T P D — (i — )

V' 1—p2 sin®

tan § =—5 8—(E/P)B

E=

(16.3)

T tn (16.4)

(16.5)

where m; and m, are their masses.

@ Vector diagram of momenta for the decay of a relativistic particle of mass M
into two particles with masses m; and m, (Fig. 42). The locus of possible loca-
tions of the tip of the momentum vector p, of particle m, is an ellipse for which

a=p/ VYV 1=p2; j=pBIVI—P% (16.6)

where b and « are the semi-minor and semi-major axes, f is the focal distance,

;is the momentum of generated particles in the € frame, f is the velocity of the
decaying particle (in units of ¢). ) )

The centre of the ellipse divides the section AB into two parts o and ag
in the ratio oy : &, = Elz E,, where E; and E, are the total energies of the
generated particles in the C frame.

b=p;
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Maximum angle at which the particle m, is ejected is defined by the formula

) M P
sin © =
1max my Dar
where p,, is the momentum of the decaying particle.

@ In particle interactions the conservation laws for lepton and baryon charges
hold. In strong interactions also hold the conservation laws for strangeness S,

isotopic spin T, and its projection T,.
|
-~ !
‘ |

. (16.7)

| 2r
A —5 i >
{ A P | A
e — ‘ |
Fig. 41 Fig. 42

® It follows from the generalized Pauli exclusion principle that for a system
of two particles with identical isotopic spins

(— f)lFe+T —1 for hali-integer spin particles
—{ 1 for zero-spin particles,

where ! is the orbital moment, s is the spin of the system, T istheisotopic’spin.

INTERACTION OF RELATIVISTIC PARTICLES

16.1. Calculate the momenta (GeV/e) of a proton, muon, and
electron whose kinetic energies are equal to 1.0 GeV.

16.2. A relativistic particle with mass m and kinetic energy T
strikes a stationary particle of the same mass. Find the kinetic ener-
gy of their relative motion, momentum of either particle in the C
frame, and velocity of this system.

16.3. What amount of kinetic energy should be provided to a pro-
ton striking a stationary proton to make the kinetic energy of their
relative motion equal to that effected in a collision of two protons
moving toward each other with kinetic energies T = 30 GeV?

16.4. A relativistic particle with mass m, and kinetic energy T
strikes a stationary particle with mass m,. Find: (a) the kinetic
energy of their relative motion; (b) the momentum and total energy
of either particle in the C frame.

16.5. Determine the kinetic energies of particles with masses m,
and m., in the C frame, if the kinetic energy of their relative motion

is known to be equal to T.
16.6. One of the particles of a system moves with momentum p
and total energy E at the angle ¥ (in the L frame) relative to the

velocity vector B, of the C frame. Find the corresponding angle ¥ in
the C frame.
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16.7. A relativistic proton with the kinetic energy T is scattered
through the angle #; by a stationary proton. As a result of the colli-
sion, the initially stationary proton is ejected at the angle ,.

(a) Demonstrate that cot ¥; cot 9, =1 -+ T/2m.

(b) Calculate the minimum possible angle of divergence of the
two particles.

(¢) Determine 7 and kinetic energies of either particle after colli-
sion, if ¥; = 30° and ¥, = 45°

16.8. Demonstrate that when a relativistic particle with mass m,
is elastically scattered by a stationary particle with mass m, < m,,
the maximum scattering angle of the incoming particle is given by
the expression sin Gy, = m,/m,.

16.9. A negative muon with the kinetic energy 7 = 100 MeV
sustains a head-on collision with a stationary electron. Find the
kinetic energy of the recoil electron.

16.10. Relativistic protons with the kinetic energy 7' are elastical-

ly scattered by stationary nuclei of hydrogen atoms. Let ¥ be the
proton scattering angle in the C frame corresponding to the angle &
in the L frame. Prove that

(a) tan (8/2) = V1 + T/2m tan 9, m is the mass of the proton;

(b) the differential cross-sections of this process in the € and L
frames are related as

~ A~ in2 2
o (9) = %&"—%0 (9) cm?/sr; a=T/2m;

(¢) the scattering in the C frame is anisotropic, if the differential
cross-sections o, and o, corresponding to angles 9; = 15° and &, =
= 30° are equal to 26.8 and 12.5 mb/sr respectively at 7 = 590 MeV.

16.11. Relativistic protons with the kinetic energy T, are elasti-
cally scattered by nuclei of hydrogen atoms.

(a) Demonstrate that the differential cross-section o (T') corre-
sponding to the energy T of the scattered proton in the L frame is defined
by the expression

o(T) =0 (5) -47,10 cm?/MeV,

where & (5) is the differential cross-section in the C frame in which

the angle ¥ corresponds to the kinetic energy 7.

(b) Find the energy distribution of the scattered protons in the L
frame, if their angular distribution in the C frame is isotropic.

16.12. A positron whose kinetic energy is equal to its rest energy
and a stationary free electron annihilate. As a result, two y-quanta
emerge, the energy of one being n = 2 times that of the other. Cal-
culate the divergence angle between the motion directions of the
Y-quanta.

16.13. Demonstrate that when relativistic positrons with momen-
tum p and free electrons annihilate, the differential cross-section of
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y-guanta production with energy £, varies inversely with the posi-
trons’ momentum, if the angular distribution of y-quanta in the C
frame is isotropic.

16.14. Calculate the threshold energy of a y-quantum required for
st*n~ pair production in the field of stationary proton.

16.15. Derive formula (16.4).

16.16. Calculate the threshold kinetic energies of incoming par-
ticles in the following reactions (the incoming particles are indicated
in the first position):

(1) p + H—> 3He 1% (5) n~ + p— n + K°® -- K°
@ p+"B— B+ (6)p+p—>p+ 30+ K-
() 0 +p—> A+ A; Mp+p—>p-+p+p—+p;
@) a~+p—~2"+K% @) p+p>p+p+ 343

16.17. Find the kinetic energies of mesons produced in a hydrogen
target when a striking particle possesses the threshold energy:

@y+p>n—+at (b) p-+-p—>p+ 2°+ K

16.18. Let a relativistic particle a strike a stationary particle 4
in the direct process, and a particle b strike a stationary particle B
in the reverse one (¢ +- A == B + b). Assuming the total energy of
interacting particles to be equal for both processes in the C frame,

ie. by + E, = E, + E, find: (a) how the kinetic energies of the
striking particles 7', and 7', in the L frame are related in both direct
and reverse processes, if the masses of particles 4 and B and the
threshold kinetic energy of particle a are known; (b) the kinetic
energy of a pion in the reaction y + p == n -+ nt for the reverse
process, if the y-quantum energy in the direct process is Ao =
= 200 MeV; the masses of a proton and a neutron are assumed to
be equal.

16.19. Protons with the kinetic energy 7 = 500 MeV strike
a hydrogen target activating the reaction p + p— d -+ n*. Find
the maximum possible angle at which the deuterons are ejected.

16.20. The cross-section of interaction of ;t~-mesons with the pro-
ton target measured as a function of the pion kinetic energy exhibits
maximum values at 198, 600, and 900 MeV. These maxima corre-
spond to the unstable particles called resonances. Determine their
rest masses.

DECAY OF PARTICLES

16.21. A stopped X --particle decayed into a neutron and a pion.
Find the kinetic energy and momentum of the neutron.

16.22. Calculate the highest values of the kinetic energy and mo-
mentum of an electron produced in the decay of a stopped muon.
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16.23. A hypernucleus *He, undergoes the decay ®He,— *He -
+ p + n~. Calculate the binding energy of A-hyperon in the given
hypernucleus, if its decay energy Q = 34.9 MeV.

16.24. A moving pion with a kinetic energy of 7'; = 50 MeV disin-
tegrated into a muon and a neutrino. At what angle was the muon
ejected, if the angle of emission of the neutrino is 90°?

16.25. A n’-meson whose kinetic energy is equal to its rest ener-
gy decays during its flight into two y-quanta. Find: (a) the smallest
possible divergence angle between the directions of motion of
y-quanta; (b) in what limits the energy of either quantum is confined.

16.26. A relativistic A% meson with the kinetic energy I' decays
during its flight into two m‘-mesons. Find: (a) at what magnitude
of 7 one of the emerging pions can be produced as stationary; (b) the
angle between symmetrically diverging pions, if 7' = 100 MeV.

16.27. A Z+hyperon with a momentum of ps = 900 MeV/c
decays during its flight into a positive pion and a neutral particle.
The meson is ejected with a momentum of p, = 200 MeV/c at an
angle ® = 60° to the initial direction of the hyperon’s motion. Find
the mass of the neutral particle and energy of the given decay.

16.28. A neutral particle decays to produce a proton and a nega-
tive pion with the divergence angle between the directions of out-
coming particles being equal to 8 = 60°. The momenta of the produced
particles are equal to 450 and 135 MeV/c. Assuming that there are no
other decay products, find the mass of the decaying particle.

16.29. Derive formula (16.5) for the C frame.

16.30. Substantiate the plotting of the vector diagram of momenta
for the case of a relativistic particle decaying into two particles
(see Fig. 42).

16.31. Calculate the parameters for the ellipse of momenta and
draw the appropriate vector diagram for the following cases:

(a) a neutral pion with ' = m, decays as n°— 2y;

(b) a positive pion with 7 = my/2 decays as m— p T Vi

(c) a proton with 7 = m, is elastically scattered by a proton;

(d) a deuteron with 7' = my/2 is elastically scattered by a proton;

(e) a proton with 7 = m,, activates thereaction p + p— ™ + d.
Here T is the kinetic energy. .

16.32. A moving positive pion with the kinetic energy I disinte-
grates into a muon and neutrino. Find in the L frame: (a) the
maximum possible angle of emission of the muon if 7' = 50 MeV;
(b) the limiting value of T at which the muons are ejected at the
limiting angle.

16.33. A relativistic pion moving with the velocity P = v/c
disintegrates into a muon and a neutrino. ] )

(a) Demonstrate that the angles of emission of the neutrino in

the C frame (9) and L frame (9) are related as

~  cosO—B
s V=T peosv -
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(b) Ass'un.ling that in the C frame the angular distribution of decay
prodycts is isotropic, demonstrate that the differential decay cross-
?ectlon 'correspondmg to the neutrino outgoing at the angle ¥ in the L
rame is

o (9) oc H:%—-—Oﬁ—:-ﬁ—)z cm?/sr.

(¢) Calculate the probability of the neutrino being emitted i
' ) ed int
the front hemisphere in the L frame if the pion’s kinetgic energy ]l’n=0

f= m- and the neutrino’s angular distribution is isotropic in the C
rame.

16.34. Due to interaction of slow m~—-mesons with nuclei of a hy-
drogen target, the following reactions are observed:

n"—i—p/n—i—y O
N0, 70— 2y, (2)

The energy spectrum of produced y-quanta is shown in Fi
. 43,
where £, = 54 MeV, E, = 84 MeV, and E3 = 130 MeV. N

Ny k
0§ & E; by

T

Fig. 43

~ (a) To what reaction branch does each maximum belong?

(b) Assuming the masses of a proton and a neutron to be known
determine the mass of a nm~-meson. ,

(c) Find the mass of a n%meson.

16.35. In studies of the interaction of fast pions with protons, an
unstable quasiparticle p was observed, whose lifetime is so S},IOI‘t
that its production and decay occur at practically the same point.
How.can one establish, having considered many outcomes of that
reaction, that the process m~ -+ p— n~ + n* + r branches partial-
ly via the bound state (nm*), ie. n-+ p—p -+ n, p—> n~ +
+ m*? The total energies £; and momenta p; of emerging pions are
assumed to be known in each case in the L frame.

16.36. In studies of the reaction K+ -+ p— A + n* 4 s~ acti-
vated by K—-mesons with a kinetic energy of Ty = 790 MeV, it was
observed that the reaction branches partially via the boun,d state
(n:A) proceeding in two stages as follows: K~ -+ p— (n~A) 4+ nt,
(-A)— - + A, with the emerging n*-mesons possessing a kinetic
energy of T, = 300 MeV in the C frame. Calculate the rest mass of
the (st~A) resonance and its decay energy.
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16.37. Determine the mean proper lifetime of: (a) muons, if,
when possessing a kinetic energy T = Tm,, their mean lifetime
equals T = 17.6 us; (b) m*-mesons, if, possessing momentum p =
— 55 \MeV/ec, they survive over a distance [ = 3.0 m on the average.

16.38. Find the probability of a positive pion decaying during its
flight from the point at which it was produced to a target (over the
distance of 6.00 m), if the pion’s kinetic energy is equal to 100 MeV.

16.39. Suppose that a proton remains for some time in the “ideal
proton” state with the magnetic moment Ly and the rest of the time
in the “ideal neutron” state (u = 0) plus a pion (p=n+ n’).
What is the fraction of time during which the proton remains in the
ideal proton state?

16.40. Using the detailed balancing principle (see the introduc-
tion to Chapter 13), determine the spin of a positive pion, if the total
cross-section g, for protons with the kinetic energy 7, = 500 MeV
(in the L frame) in the reaction p -+ p— d + n* for the direct pro-
cess is known to be one ninth of the total cross-section o.q for the
reverse process with the corresponding energy. The spins of a proton
and a deuteron are known.

16.41. The interaction of y-quanta with a hydrogen target acti-
vates the reaction y - p— n® + p. The total cross-section of this
reaction is g,, = 0.20 mb when the energy of y-quanta is E, =
— 250 MeV. Using the detailed balancing principle, determine the
cross-section of the reverse process (n’-mesons striking the hydrogen
target) with the corresponding kinetic energy of the meson. Find
the value of this energy.

16.42. Using the conservation laws for lepton and baryon charges,
find out whether the following processes are possible:

(1) n—>p-t+e + Vg (4) K+— p* + v, + %
(2) W+ p—> o uh (5) &= + n— K-+ K%
(3) pr— et - Ve v (6) K-+ p—> Z* +a.

16.43. Which of the reactions written below are forbidden by the
strangeness conservation law:

A) n- + p— A + K% 4) p+n>A+ 35
@ n-+p—> K--+-K*% () 2 +p>A+n
G) p-p> S04+ K +n; 6) am+n—> E-4 K* + K77

16.44. What branches of the following reactions are forbidden
and why?

/n+ﬂ— (1)
NALn (2

_ /,p+2n‘ (1)
(b) .‘:."\A L -

-, A“*P“*‘”- (2)
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16.45. Find possible values of the isotopic spin 7 and its projec-
tion T', for the systems: nucleon-nucleon; pion-nucleon.

16.46. Using the generalized Pauli principle, find the isotopic
spin 7' of the system:

(a) np in the states *P and 3D;

(b) n*n® in the states P and 1D;

(¢) st~ in the states P and 1D,

16.47. Using the Shmushkevich method*, prove that isotopic
invariance leads to the following relations between the total cross-
sections ¢ and probabilities w of the processes:

(a) the reactions of the type N+ Nsax + m (N designates
a nucleon):

;+p_*ﬂ++n_-(01)
;+p—>n0—5—n° (05) 20, = 40, -+ 03;
;+n—>ﬂ_+ﬂ°(03)
(b) the reactions of the type m + N— A -+ K:
at+n—>A+K*(0y)
a0 -+ p— A+ K+ (0,)
(c) the reactions of the type = +IN—> X + K:
At p—> 3t K (o)
A p—> 20K (03) |
70 p—>Z+ - K0(0;) | O3=0;, 04+ 0,20, 0j;
"+ p—>3I 4K (a,) |
v p—> 204 K0 (o) )
(d) the decay of t-particles (1%, 1% t-) into three pions:
Th >t +nf 4 nl (wy)

| 0, = 20,;

Tt T (W) W= Wy - wy;

T — 70+ 710 - 0 (w,)

(e) the decay of w’-particle into three; pions: show that the
decay ©”— 3n® is impossible (w’-isotopic singlet).

16.48. Find the change of isotopic spin 7 and its projection T, in
the following processes:

(@) i+ p— K* 4 25} (b) n~ + p—>FK* - K0+ E-;

(¢) K*— a® -+ a*;  (d) Ko~ 2a°.

* In this method both a target and a beam arc treated as isotopicallv -
polarized and all possible reactions of the studied process are taken iIIl)tO ac}co?l(x)lrz;

besides, the produced particles of each type are s i .
non-polarized as Well.p yp upposed to be isotopically
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16.49. The exposure of a deuterium target to slow (I = 0) n—-
mesons activates the reaction m~ -~ d— 2n. Recalling that the
parity of a deuteron is positive, demonstrate using the laws of con-
servation of momentum and parity that m~—-meson has the negative
parity.

16.50. It is found experimentally that the isotopic spin of the
p-particle, representing the bound state of two pions, is equal to 1.

(a) Taking into account that the decay p-— 2m belongs to the
class of strong interactions, predict the spin and parity of a p-parti-
cle, using the angular momentum conservation law; the internal
parities of pions are identical.

(b) Write the possible decays of p*-, p%, and p~-particles into
two pions.

16.51. Below are given the values of quantum numbers of three
hypothetical basic particles called quarks:

quarks z B S
@ +2/3 +13 0
7 —13 /3 0
ds ~-1/3  +1/3 -

Here z is the electric charge (in units of ¢), B is the baryon number, S
is the strangeness. The quark’s spin is equal to 1/2.

(a) From the thtee quarks construct the following baryons: p, n,
X+ X-, B E-,

(b) Taking into account that the antiquarkszh, g., and gz possess
the values of z, B, and S that are opposite in sign to those for the
corresponding quarks, construct from the two particles (a quark and
an antiquark) the following mesons: «t*, =, K*, K-, and K°

(¢) Find the ratio of the magnetic moments of a neutron and
a proton, assuming the magnetic moment of a quark to be proportion-
al to its electric charge. Take into account that for a particle formed
of three quarks the probability of the state in which the spins of
two identical quarks are parallel is twice that of the state in which
two identical quarks have the antiparallel spins.
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MOTION OF CHARGED PARTICLES
IN EXTERNAL FIELDS

e

® Equations of motion of a particle with the charge ¢ in axisymmetric electric
and magnetic fields (in cylindrical coordinates): v

r—rot=—L (£ 428, );

ES

1 . q
- 200) —
r dt (r*@)= me

(v Br—vpB.);

[

q v,
P=t (B2 5.

LAWS OF MOTION. ANALYSERS

17.1. An electron moves in a uniform electric field whose strength

grows at a constant rate £ = 20 MV/(cm-s). What amount of ener-
gy will the electron gain after it passes a distance ! = 10.0 cm, pro-
vided that at the initial moment its velocity and the electric field
are equal to zero?

17.2. An electron starts moving under the action of uniform elec-
tric field £ =10.0 kV/ecm. Determine the energy that the electron
acquires and the distance it covers during a time interval © =
= 1.00-10-% s after the beginning of motion.

Fig. 44

Fig. 45

Rk toris s AR

17.3. A proton outgoing from the point O (Fig. 44) with the
kinetic energy I' = 6.0 keV gets to the point 4 with coordinates
2 = 10.0 cm and y = 7.5 cm due to uniform electric field of strength
E. Determine: (a) the strength E if the angle «, is equal to 60°;
(b) the values of a, and E at which the velocity vector of the proton
makes an angle o = 30° with the vector E at the point A4; (c) the
time it takes for the proton to reach the point 4, if £ = 1.00 kV/cm
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of the proton and its displacement

17.4. Having passed through the uniform transverse electric
field E, an electron with the kinetic energy T’ gets onto the screen S

(Fig. 45, where ¢ = 10 cm, b = 20 cm). Determine the deflection

angle a of the electron and its displacement & on the screen, if:
(a) £E = 20 V/em and T = 1.00 keV; (b) E grows at a constant rate

E = 1.00 MV/(cm-s) and the electron with 7 = 40 eV enters the
electric field at the moment when E = 0; (c¢) £ oscillates harmonical-
ly with a frequency v = 10.0 MHz and amplitude £, = 5.0 V/em,
and the electron with 7 = 100 eV enters the field at the moment
when £ = 0.

17.5. A beam of electrons accelerated by a potential difference
V =1.0 kV passes through two small capacitors separated by
a distance I = 20 cm. A variable electric field is applied to the
capacitors in equiphase from an oscillator. By varying the oscilla-
tor frequency, the beam is adjusted to pass this system without deflec-
tion. Determine the ratio e/m for an electron, if the two consecutive
values of frequency satisfying that condition are equal to 141 and
188 MHz.

17.6. Determine the kinetic energies of a proton and a relativistic
electron for which Bp = 5.0 kG-cm.

17.7. A proton with the kinetic energy 7 = 50 keV passes a trans-
verse magnetic field'B = 400 G and gets onto the screen S (Fig. 46,
where ¢ = 10 cm and b = 20 cm).
Determine the deflection angle o

d on the screen.

17.8. From the point A located
on the axis of a straight solenoid
an electron with a kinetic energy
of 500 eV is emitted at an angle
o = 30° to its axis. The magnetic
induction of the field is equal to
B = 50 G. Calculate: (a) the lead of the helical trajectory of the
electron; (b) the distance from the axis to the point on a screen to
which the electron gets, if the screen is placed at right angles to
the axis at a distance = 20 cm from the point 4.

17.9. A slightly diverging beam of electrons accelerated by
a potential difference ¥V = 500 V emerges from a certain point at the
axis of a straight solenoid and comes to the focus at a distance
! = 15.0 cm with two consecutive values of B: 158.0 and 189.6 G.
Determine: (a) the specific charge of an electron; (b) the minimum
magnetic induction capable of focussing the beam at that distance.

17.10. A source of monochromatic f-particles is located at the
axis of a solenoid. The f-particles emitted at an angle & = 30° to the
solenoid’s axis are known to be focussed at a point removed from the
source by a distance I = 50 ¢m at a minimum value of B = 200 G.
Find their kinetic energy.

Fig. 46
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17.11. A source of B-particles is located at the point O on the
axis of a straight solenoid, and the inlet of a counter at the point O,
The OO’ distance is! = 50 cm. At the midpoint between O and O’
there is a diaphragm with a narrow ring opening of radius R = 7.5 cm.
Find: (a) the kinetic energy of the B-particles focussed at the point O’
at the lowest value B = 250 G; (b) the first two values of magnetic
induction at which B-particles with the kinetic energy equal to
their rest energy come to focus at the point O’. Find also the corre-
sponding angles « of emission of such B-particles.

17.12. In a mass spectrometer with semicircle focussing by
a uniform transverse magnetic field a source and a focus point are
separated by a distance x = 40.0 cm. Find the instrument’s disper-
sion: (a) with respect to mass 8z/64 for monochromatic uranium
ions; (b) with respect to energy 8z/87T for B-particles with kine-
tic energies of about 7 = 1.0 MeV.

17.13. A narrow beam of monochromatic ions passes a sector of
a circle in a uniform transverse magnetic field as shown in Fig. 47
(the beam enters and leaves the sector at right angles to the bounda-
ry of the field). Find the instrument’s angular dispersion with re-
spect to mass 8a/84 (deg/amu) for Ar isotopes, if ¢ = 60°.

17.14. A slightly diverging plane beam of ions enters the electric
field of a cylindrical capacitor (Fig. 48) at the point A. The potential

Fig. 47

Fig. 48

difference of the capacitor plates is so adjusted that the particles
whose velocity vector at the point 4 is perpendicular to the radius
vector of that point continue moving along the circular trajectory of
radius ro. Prove that: (a) the sector angle sufficient for focussing the
beam is equal to ¥ = n/}/ 2; (b) the instrument’s dispersion with
respect to velocity is equal to Ar/Av = 2r,/v at the focal point.
17.15. A slightly diverging beam of ions enters the transverse
axisymmetric magnetic field diminishing with the distance as r—" (see
Fig. 48). The magnetic induction is such that the ions whose velocities
are directed at right angles to the radius vector at the point A con-
tinue moving along the circular trajectory of radius ro. Show that:
(a) the angle at which the beam is focussed in the horizontal plane is
¥ = n/) 1 — n; (b) when n = 1/2, the double focussing takes place
(both in the horizontal and vertical directions); (¢) when n = 1/2,

140

i,

the dispersion with respect to ions’ velocity is equal to Ar/Av =

11.’t7r01/g A beam of deuterons passes through the u.niform electric
and magnetic fields produced in the same spatial region aqd crossed
at right angles. Find the kinetic energy of the deuterons, if at E =
= 1.00 kV/ecm and B = 500 G beam’s trajectory remains rectlllnea}'.

17.17. Demonstrate that, using the arrangements sketchc.ad in
Fig. 49, one can simultaneously determine e/m and the velocity of

Fig. 49

charged particles. (a) In arrangement I a particle passes success.ively
through the electric field £ of a cylindrical capacitor and the unlfqrm
magnetic field B. The potential difference V across the capacitor
plates is known, as"well as the plates’ radii R, and R,, the magnetic
field B, and the curvature radii r, and r, of the particle’s trajectory.
(b) In arrangement I/ a parficle passes through the electric field of
a plane capacitor and falls on the screen S. Thg whole arrangement
(the capacitor and the space between the capacitor and the screen) is
placed in the uniform magnetic field B (BLE). The values of £
and B, at which the trajectory of the particle in the capacitor is
rectilinear, are known, as well as the distance ! and displacement 8.

17.18. The cylindrical cathode and anode of a magnetron haye
radii r; = 1.0 mm and r, = 20 cm respectively. The potential
difference applied between the anode and cathode is‘ V. = 200 V.
Neglecting the initial velocity of thermions, find the limiting value
of the longitudinal uniform magnetic field in the magnetron at which
the anode current ceases. ) ‘

17.19. A cylindrical diode consists of a long straight heating
filament and coaxial cathode and anode whose radii are equal to
0.10 and 1.0 cm. A current of 14.5 A flowing through the filament
generates a magnetic field in the surrounding space. Nf_aglec.tmg the
initial velocity of thermions, find the limiting potential difference
between the anode and the cathode at which the anode current
ceases.

17.20. A proton with the initial velocity v is ejected in the direc-
tion of the x axis from the point O of the region in which the umfo'rm
electric and magnetic fields £ and B are produced in the direction
of the y axis (Fig. 50). Find the equation of its trajectory z (¢), y (¢).
z (t). What is the shape of the trajectory?
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17.21. A narrow beam of identical ions with different velocities:

enters the region with uniform parallel electric and magnetic fields £
and B at the point O (see Fig. 50). The beam’s direction coincides
with the x axis at the entrance point. At the distance [ from the point

O there is a screen located at right angles to the z axis. Find the

equation of the trace that the ions leave on the screen. Prove that
this equation is a parabola when z<« [

17.22. A charged particle moves in the region where the uniform
electric and magnetic fields £ and B cross at right angles (see Fig. 51).

Fig. 50 Fig. 51

Assuming that the particle leaves the point O without any initial
velocity, find: (a) the equation of the particle’s trajectory, z (f),
y (t); (b) the length of the trajectory between the points at which the
particle’s velocity is equal to zero; (e) the mean velocity of the
particle in the direction of the x axis.

17.23. A charged particle moves in the region where the uniform
electric and magnetic fields £ and B cross at right angles. Suppose
the particle leaves the point O (see Fig. 51) with an initial velocity

whose vector lies in the plane z, y and has the components z, and y,.
Find the equation of the particle’s trajectory z (¢), y (t) and draw its
approximate plot, if

(8) zy=0/2, yo=0;

(b) Lo= —VU, yO:O;
Here v = ¢E/B.

17.24. Demonstrate that under conditions of the foregoing problem
all particles with equal magnitude of e/m will get at the point z; =
= 2nmc2E/eB? of the z axis irrespective of the value and direction
of their initial velocity.

17.25. A proton starts moving in the region where the uniform
electric and magneticifields are produced. The fields cross at right
angles, with the magnetic field of induction 5B being constant and
the electric field varying as £ = E, cos ot with the frequency o =

= eB/mc. Find the equation of the proton’s trajectory z (), y (¢),

if at the initial moment # = 0 the proton was at the point O (see
Fig. 51).
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(¢) 7,=0, yo=v;

(d) ‘:‘ozl./o-: v.
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17.26. A charged particle moves i_n a longitudinal axisymmeyric
electric field described by the potential V (r, z). When the particle
leaves the source with the zero initial velocity and then moves in
the vicinity of the axis of symmetry of the field, the differential
equation of its trajectory takes the form:

r”V0+—rzl—V(;+-Z—Vg=0,

where V, (z) is the potential at the axis (relative to the _potent_iaI
of the source, V, (0) = 0; the primes mark the derivatives with
respect to z. ) . )

(a) Derive this expression, using the equation of motion.

(b) How does the magnitude of the particle’s specific qharge aﬂect
the characteristics of the trajectory? How does_thq particle’s trajec-
tory change when the whole system is increased in size r-fold and the
potentials at the plates are kept c_onstant? .

17.27. Figure 52 illustrates a trajectory qf a c.harged particle for
a thin collecting electrostatic lens whose field is conﬁned practi-
cally within a very narrow region between z, and z, (points 7 and 2),

17
— S
P///// 7 Agra\\\\ q
5,<0 4 §>0
Fig. 52

Making use of the equation of the foregoing problem, demon-
strate that:

(=]

Ny ny 1 S Vs dz:
a) 21— |\ 2L 7
(a) Sg 5 4 A Yve,
oo
1 1t 7 Vo
(b) 72_8_"'2 3 V%I3 dz.
- 00

Here n,, , = V'V, (21, 2); fo is the image-side focal distance. .

17.28. ‘A charged particle moves in a longitudinal axisymmetric
magnetic field in the vicinity of its axis of symmetry. Using the
equations of motion, show that the diﬁerex}tlal _equations of the
particle’s trajectory take the following form in this case:

@' = —abB, (z); r"--a?rBy (2)=0,
where o = e/2muve, v is the particle’s velocity, B, (z) is the magnetic

flux density at the axis; the primes designate the differentiation with
respect to z.
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17.29. Figure 52 illustrates a trajectory of a charged particle for
a thin magnetic lens whose field is confined practically within a very
narrow region between z, and z, (points 7 and 2). Using the equations
of the foregoing problem, demonstrate that the focal length f of such
a lens is defined by the following expression:

fi:az 5 B} (z) dz.

Find the focal length f of the magnetic lens: (a) whose field varies
along the axis as B, (z) = Ae™** for particles accelerated by the
potential difference V; (b) realized as a wire loop of radius R =
= 2.0 cm carrying a current I = 14 A for electrons accelerated by
potential difference V = 50 V. Also find the angle through which
the image turns in this case.

ACCELERATORS OF CHARGED PARTICLES

17.30. For an electron and a proton moving along circular orbits
in a uniform magnetic field B = 10.0 kG determine: (a) the orbital
periods and radii if the kinetic energy of the particles is T =
= 10.0 MeV; (b) the kinetic energies if their orbital radii are r =
= 10.0 cm.

17.31. Suppose that in a betatron the magnetic flux confined by
anfequilibrium orbit with radius r = 25.0 cm grows from the zero

value at a constant rate @ = 5.0-10° Mx/s. Determine: (a) the
strength of the vortex electric field at the orbit and the energy
acquired by the electron during 5.0-10° revolutions; (b) the distance
travelled by an electron for v = 3.00 ms and the energy acquired
during that interval.

17.32. The magnetic induction at the equilibrium orbit of radius
r=100 cm in a betatron varies from 0 to B,, =5 kG as B =B, x
X sin ot with a frequency v =50 Hz. Find: (a) the kinetic energy of
the electrons at the end of the acceleration cycle; (b) the distance
travelled by the eleciron and the number of revolutions made during
the whole acceleration cycle provided the initial velocity of the
electrons is equal to zero.

17.33. The condition under which an electron moves along a cir-
cular orbit of permanent radius in a betatron requires that at any
moment the magnetic;field at the orbit should change with the rate
equal to half the rate with which the mean magnetic induction within

the equilibrium orbit varies, that is, B = (L;? /2 (the betatron condi-
tion).

(a) Prove this condition to be true.

(b) How does the orbital radius change in the field B‘oc r-n,
where n is the fall-off index (0 << m << 1), when this condition is
not met?
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17.34. Using the betatron condition (see the foregoing problem),
demonstrate that the vortex electric field in a betatron has the
minimum value at the equilibrium orbit. Take into account that
the fall-off index of the magnetic field in the vicinity of the equi-
librium orbit

17.35. In a betatron the magnetic field at the plane of symmetry
varies in the vicinity of the equilibrium orbit as B oc r~», where n is
the fall-off index. Prove that the motion stability of electrons: (a) in
the radial direction is effected at n < 1; (b) in the vertical direction
is effected at n > 0.

17.36. The magnetic field at the betatron’s plane of symmetry
varies in the vicinity of the equilibrium orbit as B oc r—=, where n is
the fall-off index (0 << n << 1). Let the angular velocity of an elec-
tron moving along the equilibrium orbit be equal to w,. For the elec-
trons moving in the vicinity of the equilibrium orbit determine the
frequencies of: (a) radial and (b) axial oscillations.

17.37. The unlimited increase in the energy of charged particles
in orbit accelerators is inhibited by the effect caused by radiation
losses. The amount of energy lost by a particle per one revolution is
4i1e? ( E-

equal to ——37‘ Yl

energy of the particle, m is-its rest mass. Calculate the energy E
that the electrons can be accelerated to in a betatron, if the equi-
librium orbital radius is r = 100 c¢m and the magnetic field at the

orbit increases at a rate B = 1000 kG/s.

17.38. For protons, deuterons, and o-particles accelerated in
a cyclotron up to a maximum radius of curvature p = 50 ¢cm, deter-
mine: (a) the kinetic energy at the end of acceleration, if the magnetic
induction is B = 10.0 kG; (b) the lowest oscillator frequency suffici-
ent to reach the kinetic energy 7' = 20 MeV at the end of acceleration.

17.39. An oscillator drives a cyclotron at a frequency of v =
= 10 MHz. Determine the effective accelerating voltage applied to
the dees, if the distance between neighbouring trajectories of deuter-
ons is Ap = 1.0 cm for a radius of curvature of p ~ 50 cm.

17.40. In a cyclotron driven at a frequency of v = 10 MHz
a-particles are accelerated up to a maximum radius of curvature p =
= 30 cm. The effective voltage applied to the dees is ¥V = 50 kV.
Neglecting the gap between the dees, determine: (a) the total accel-
eration time of the particles; (b) the total distance covered by the
particles during the complete cycle of acceleration.

17.41. At what values of the kinetic energy does the period of
revolution of electrons, protons, and o-particles in a uniform magnetic
field exceed that at non-relativistic velocities by 1.00% ?

17.42. A cyclotron is known to be inapplicable for acceleration of
electrons since their orbital period 7t increases rapidly with energy

4
) , where r is the orbital radius, £ is the total
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and they get out of step with the alternating electric field. This situ-
ation can be rectified, however, by making the orbital period incre-
ment At of an electron equal to a multiple of the accelerating field
period T,. An accelerator employing such a principle is called
a microtrorn. How many times has the electron to cross the accelerating
gap of the microtron to acquire an energy AE = 4.6 MeV, if At = 1,
the magnetic induction is B = 1.07 kG, and the frequency of the
accelerating field is f = 3.0-10% MHz?

17.43. To counteract dephasing emerging in the process of accel-
eration of a particle and caused by variation of its orbital period
with increase in its energy, the frequency of accelerating field is
slowly decreased. Such an accelerator is called a synchrocyclotron.

(a) By how many percents should the frequency of the accelerat-
ing field of a synchrocyclotron be changed to accelerate protons and
a-particles up to an energy 7 = 500 MeV?

(b) What is the time variation function ® (f) of the frequency
of a synchrocyclotron, if the magnetic flux density of the field is B
and mean energy acquired by a particle per one revolution is &?

17.44. In a cyclotron-type accelerator the resonance acceleration
of particles can be accomplished, if the magnetic field is changed
slowly so that the orbital period of the particle remains constant
and equal to the period of the accelerating field. Such an accelerator
is called a synchrotron. Assuming that the magnetic field of a synchro-
tron is uniform and changing as B = B,, sin ot and that the frequen-
cy of the accelerating field is equal to ®,, find: (a) the particle’s
orbital radius as a function of time; (b) in what limits varies the
orbital radius of an electron accelerated from 2.00 to 100.0 MeV, if
w, = 7.00-108 s and w = 314 s~!. What distance does the electron
cover during the complete acceleration cycle?

17.45. The accelerator, in which both the frequency of the accel-
erating electric field o (£) and magnetic field B (¢} vary simultaneous-
ly, is referred to as a proton synchrotron. What is the relation be-
tween o () and B (¢) allowing the particles to be accelerated along
the fixed orbit of radius r? The influence of the vortex electric field
is to be ignored.

17.46. In a cyclic proton synchrotron accelerating protons from
0.500 to 1000 MeV, the orbital radius is r = 4.50 m. Assuming the
magnetic field to grow in the acceleration process with constant rate

B = 15.0 kG/s, determine: (a) the limits, within which the frequen-
cy of accelerating electric field varies, and the total acceleration time;
(b) the energy acquired by a proton per one revolution; (c) the dis-
tance covered and number of revolutions made during the whole ac-
celeration cycle.
The influence of the rotational electric field is to be ignored.

17.47. In the proton synchrotron of the Joint Nuclear Research
Institute in Dubna, protons are accelerated from 9.0 to 10,000 MeV.
The perimeter of the stable orbit, with rectilinear sections taken into
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account, is IT = 208 m. The orbital radii at the rounded i
2 . -off sections of
the orbit are r = 28.0 m. At these sections the magnetic field increases

ig the acceleration process with constant rate B =
sider the same questions as in the foregoing Iﬁoble!-r&r.l(.)o Kfs. Con-

17.48. The most powerful modern accelerators (e.g. the Serpukhov
ong) employ the strong focussing principle. What is the essential of
th1is’7 Izgmcliple?lWhat are its advantages?

-4J. In a linear accelerator, charged particles

a system gf drift tubes connected alternﬁtelypto the opIII)lgsviie tt}g'grllllil}
als of a high-frequency oscillator G (see Fig. 53). The acceleration of

1 ]
Lé_ [ ]
LT_T'—T‘“'I—)
i
Fig. 53

the particles is effected in the gaps between the tubes
protons are injected into an accelerator with an energy T§u£p§ S(‘)3 I:;/I}:;%
to l?e accelerated up to an energy 7 = 20 MeV. The protons ir.lcrease
the}r energy by Ak = 0.50 MeV over each gap; the frequency of the
oscillator is f = 100 MHz. Ignoring the distance taken up by the
gaps betweeq the tubes, determine the length: (a) of the nth drift
tube, in particular, of the first and the last one; (b) of all drift tub
(th{; 1590ngtsh of the accelerator). *

-00. Suppose that all drift tubes in a linear accel
the same length [ = 6.00 cm. Within what limits should :}fg tf(l)';qllll:g:
¢y of the oscillator be varied to accelerate the protons and electrons
from 5.00 to 50.0 MeV in such an accelerator?
_ 17.51. A travelling wave linac employs a cylindrical diaphragmat-
lc waveguide along which an electromagnetic wave propagates, whose
elec@nc axial component is equal to E,. The application of pérforat-
ed ring diaphragms increases the phase velocity of the wave travel-
ling along the waveguide, with the accelerated particle being approx-
1mate}y in the same phase all the time. Find: (a) the value of E
sufﬁmeqt fﬁor acceleration of protons from 4.0 to 1000 MeV over thg
waveguide’s length L = 67.0 m; (b) how the phase velocity of the
wave depends on the distance from the entrance opening of the
waveguide. By what factor does the phase velocity of the wave change
in the case of protons and by how many percents in the case of ele%-
trolr’175502n ’ileir acgeleration from 4.0 to 1000 MeV ?

-94. A considerable increase in the energy of collidi i
can be attained by using the colliding begzls of th(g;:gpgiﬁ::(l)}azs
Wha‘g amount of kinetic energy should be transferred to a protor;
strlkmg‘ another (stationary) proton to make their total kinetic
energy in the C frame equal to the kinetic energy of two protons
moving toward each other with kinetic energies of 50 GeV?
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ANSWERS AND SOLUTIONS

1.1. The ordinate of the curve u, (w) corresponding to the frequency
o, relates to the ordinate of the curve u; (w) corresponding to the
frequency o, such that ,/T; = @,/T, as u; {0;) = (T1/T5)° Uy (0,).

1.2. (a) From the condition du,/do=0, we obtain 3f (2) +
+zf. () =0, where z=w/T. The root of this equation is z,
and, hence, wyrocT. (b) According to Eq. (1.1), M cxu=

00 [es)

= g 03f (0/T) dow =T* \ 23f (x) dx oc T*, where z=o/T.

0 0

1.3. (a) Transform Wien’s formula (1.2) from the variable u, to
uy: uy = AF (AT). From the condition du,/dh =0, we obtain
5F (z) + zF% (r) = 0, where £ = AT. The root of this equatlgn is zo,
and therefore Apr oc 1/T. (b) (Ua)max = AptF (AprT) o App o< T

1.4. Decreases by 3.0-10* K.

2.9 pm.
4.6-102° MW (5-10° kg/s); 10! years.
To=T,V r/R=3.8-10% K.
.8. (a) ~ 1.6-10* GPa; (b) ~ 19-10° K. .
1.9. t = cor (n® —1)/9073 = 1.6 hours, p is the dezlzglty of copper.
1.10. (8) wpy=3T/a=7.85-10t* s71; (b) (@)= —-.

1.41. (a) Ay = 2meal5T = 1.44 pm; (b) A) = 2neal/3T =
= 2.40 pm. . _

1.12. ucy/uraa = 3RpclsMoT? = 1.8-101, wheI_‘e R is thg uni-
versal gas constant, p is the density of copper, ¢ is the velocity of
light, M is the mass of a mole of copper, ¢ is the Stefan-Boltzmann
constant. ]

1.13. (a) e=kT, u,do=(kT/n%?) 0®do is the Rayleigh-Jeans
formula;

(b) (&)=

the summation is carried over n from 0 to co. The latter expres-
sion can be obtained as follows:

e e e
BN >

znhme—nhw/kT Enhme‘“"h"’

v, —nho/RT
e

where a=1/kT. Here

Ee—omhm ?

J - 4 1 . ho
(&)= — 5o In (Temomh®) = — o I oG = onr
3
u, do = I ©3do ;¢ Planck’s formula.

23 eh(n/kT —_
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1.44. u, = (kT/n%c%) w? and u, = (Aw3/n2c3) e~ ho/iT,
16727 v3
1.45. (@) uy=—"F— L2ARVIRT

A5
Glmhe/RTA 4 *

(b) u, =16n2ck

1.16. Au,/u, = e< 0.01, where o = 2n/ic/kTA, whence a>>
> 4.6; A< 7.2 pm.
1.17. (a) by the factor of 4.75; (b) 0.60 W/cm?.

2 1
1.18. (a) I=%s Ug dmz%%ﬂ; (b) from the condition

du,/dh =0, we obtain the equation 5—z = de™, where = = 2nthic/kb.
The root of this equation is found by inspection or from the
graph: r,=4.965. Whence b ~ 0.29 cm.K.

1.19. (a) (@)=3.84kT/h=1.0-10% s7t; (b) T =2.33%c/k(A)=
=2.00-103 K.

1.20. (a) n,do =

1 ®? do .
a3 /AT g

(b) n=0.243 (kT /kc)3=5.5-10% ¢m™3,

1.21. (a) from the condition dn,/de = 0, we get 2 — 2 = 2¢-=,
where z = Aw/kT. The root of this equation is found by inspection
or from the graph: z, = 1.6. Whence
fAwp, = 1.6 kT = 0.14 eV; (b) 2.7 kT =
= 0.23 eV. .

1.22. Of n photons confined within
a unit volume, the number of photons
that move within the elementary solid
angle dQ is dn = n-dQ/4n. Then we
single out those photons that move within
the solid angle dQ that makes the angle
¥ with the normal of the area AS. These
photons move practically parallel to
one another, so that the number of pho-
tons reaching the area AS per unit time
At can be found from the volume of the oblique cylinder with base
AS and height ¢ At cos & (Fig. 54):

dN = dn AS cos O.c At.

At dh )
2The/RTA __ 4 7

ny dA == 8n

Integrate this expression with respect to ¥ going from 0 to n/2 and
with respect to ¢ going from 0 to 2z, taking into account that dQ =
= sin O d¥ d¢. Finally we obtain

AN = (1/4)nc At AS.

It follows that the number of photons falling on unit area per unit
time is equal to (1/4)nc. Multiplying the latter expression by the mean
energy of a photon (fiw), we get (1/4)n{fimyc = (1/4)uc = M.
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1.23. 2-10¥ cm~2-s~! in both cases.
1.24. 2.5 eV/s; 5 keV/s and 0.6 MeV/s. o g
w O

1.25. %’:5 ﬁ—?dN(,):—(?—, where dN, =—2—
flux within the frequency interval (e, © + do).
1.26. (p) = 4E (1 + p)/nd*ct = 5-10° kPa.

1.27. Having drawn the triangle of momenta (at the bottom of
Fig. 55, where p,, p,, and p are the momenta of the incident beam,
reflected beam, and the momentum trans-
ferred to the plate), we obtain

is the photon

|
|
p:%}/1+p2+2p0052ﬁ =3.5.10"3 g.cm/s. ol
|

3
1.28. (a) 2 JS cos? 8; (b) 5= JS; (€) 5 JS.

1.29. F = N/2¢ (1 + B/r®) = 5-107% dyne. )

1.30. The solution is similar to that of Prob- 20
lem 1.22. The normal component of the total <
momentum transferred to the area dS of the p
wall during the time interval Af is

Ap,=2 S 6pcosﬁ=%dSAt;

6p=£co-)—nmdde _d(i_

Figs 55

Here the figure ‘two’ in front of the integral allows for the fact that
at thermal equilibrium each incident photon is accompanied with
a photon emitted by the wall in the opposite direction.

mo

Fig. 56

1.31. From the laws of conservation of energy and momentum
(Fig. 56), we obtain

2 /2
S+ AE = T+ ho';

o

Here AE = fw is the decrement of the internal energy of the atom.
Eliminating v’ from these equations, we get

k(0 — o)=ho' (—Z— cos U — jﬂl—) .

2me?
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For visible light, when the angle ¥ does not approach m:/2, the last
term in parentheses can be neglected. Then

m’_,m ~ - cos 9.
w c
1.32. d(ho)= —y"2dr; A2 1 _e-vM/Re where p is the

gravitational constant; m—7%w/c? is the mass of the photon;
(a) AMA =~ yM/Rc2=2.1-1075; (b) 0.09.

1.33. 12.4 A -kV.

1.34. 1.0 A.

1.35. 31 kV.

1.36. v=cV a(a+ 2)/(a+1)=0.50c, o =2n%/mcAmpin.

1.37. (b) N = Jtot/P = 0.8'10—62Vkv ~ 0.5%.

1.38. Ay = 1.5hmin = 3nhic/eV = 0.6 A.

1.39. (a) 0.66 and 0.235 pm; (b) 5.5-10° m/s (Zn);
(Ag); electrons are not emitted (Ni).

1.40. 1.7 V.

1.41. A, = (2nAic/A) (n — n)/(n — 1) = 0.26 um.

1,42, Thax = (0 + 0,) — A = 0.38 eV.

1.43. The upper levels in both metals are located at the same
height (Fig. 57). Therefore, the electrons liberated from the upper

3.4-10°% m/s

Ag

Fig. 57

Fig. 58

level in cesium perform the work 4, + A. = A,, where A, is the
work performed to overcome the external contact potential differ-
ence; (a) 0.28 wum; (b) 6.4-10° m/s.

1.44. From the condition fiw = Azy + e (V. + Vo), we find
Ve = —0.5V, i.e. the polarity of the contact potential is opposite
to the external difference of potentials.

1.45. 0.196, 0.213, and 0.224 pm.

1.46. p =~V (fiw)24-2m.c? (ho — E)/c =96 keV/e.

1.47. From the laws of conservation of energy and momentum
ho + me? = meXV1 — P2 haole = mu/V 1T — B2, where p = v/,
it follows that f is equal either to O or to 1. Both results have no
physical meaning.

1.48. (a) In the general case a recoil electron is relativistic, and
the laws of conservation of energy and momentum have therefore to

151



be written in the form
ho -+ me2 = ko' 4+ p2cd + m2ck;
pe2 = (fiw)2 + (fw')? — 2holko’ cos &,

where @ and o’ are the frequencies of the photon before and after
scattering; p and m are the momentum and rest mass of the electron.
The second relation follows directly from the triangle of momenta
(Fig. 58).

Transfer the term 4w’ of the first equation from the right-hand side
to the left-hand side and then square both sides. From the expression

thus obtained subtract the second equation to get
1 1 2n i)

— — — =——-5in% —;
Y ® me? s .27

(b) cot ¢ = (1+ Aw/mc?) tan (9/2).

7»'—7»=4n—h—-sinzi;
me 2

,_ ko _ .
1.49. (a) ko’ = T2 (70 me®) sin? (072) =0.20 MeV;
2e2 sin? (9/2
(b) T = fzzlgijz (/ﬁjz) me2 = 0.26 MeV, where e = fio/mc?.
1.50. 7'= pe —E, =31 keV.

1 F 2 (p/mo) sin® (9/2)
1.51. A= 2an ) (V T+ 2me?T oy — 1) =0.020 A,

me
1.52. 0.020 A; 0.61 and 0.43 MeV.
1.53. 105°.
1.54. 2mc = 1.02 MeV/e.
1.55. 29°.

1.56. (a) 0.012 A; (b) 0.0030 A.

1.57. ho=(T/2) [1+V 1+ 2mc?/T sin? (9/2) ] =0.94 MeV.

1.58. T = Awn/(1 + 1) = 0.20 MeV.

1.59. (a) A — A’ = (4nti/me) sin? (0/2) = 0.012 A; (b) 0.17 MeV.

1.60. (a) The Compton shift equation is obtained on the assump-
tion that photons are scattered by free electrons. The electrons in
a substance behave as free ones when their binding energy is con-
siderably less than the energy transferred to them by the photons.
Consequently, the hard radiation should be employed.

(b) Due to scattering by free electrons.

(¢) This component is due to scattering of photons by strongly
bound electrons and nuclei.

(d) Due to the increase in the number of electrons becoming free
(see item (a)).

(e) Due to scattering of photons by moving electrons.

2.1. (a) r=3e2/2E=1.6-10"8 cmn; (b) o=} €2/mr3; 3-107° cm.

2.2, (a) 5.9-107 cm; (b) rmin = (/7)1 + melmys) =
= 3.4-10"1 ¢m.
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2.3. From the energy conservation law it follows that the mag-
nitude of the momentum of a scattered particle remains the same as
before scattering. Hence the scattered particle has the increment of
the momentum vector whose modulus is

| Ap | = 2p, sin (9/2).
On the other hand, from Fig. 59 it follows that

’ sy sin (p—8/2) dg
[Ap| = S fndt=S g‘l'g'grr%idt:%% 5 —rch—

where f, is the projection of the interaction force vector on @he
direction of the vector Ap. In accordance with the law of conservation

)

Fig. 59

E

of angular momentum, the integrand’s denominator 1is rig =
= —bv,, where v, is the velocity of the particle far from the nucleus.

After integration we obtain
| Ap | = (29192/bvo) cos (8/2).
Comparing the latter expression with the first one, we get formu-

la (2.1).
2.4. 6-10711 cm.

~ 8ml ‘ .
2.5. (a) I Ap | = I/HT(;);,‘W';iS-lOZ MeV/C,

(b) T =25 =1.3 MeV; m/2.

2.6, rmpn = g—;,z ( 1+ csc —g—) =1.6.10"1 cm; b=6.6-10"12 cm.

~ M == om M
y_ f Mgy \2
2.9. I' = () T

2.10. Opax = arcsin (m,/my) = 30°.

2.11. tan ¢ ———2% . § =36
cos+my/m,
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2.12. 20°.

§ e
2.13. = —° k]
Urey v ]/ 1_}}:3.8-105 m/s, where p is the

reduced mass, n=m,/m,.

e? tan 9’ m
204 b 20T (14 L) =2.4-107* cm,
215, b= e y My \ ~ N
7 tan (6/2) (1+ mgy )‘5'10 ‘' cm, where ﬁ:%.+

+aresin 24
Mg,
2.16. The solution is similar to th
ition at of Problem 2.6, only in thi
case the calculNatmn is performed in the C frame with the subgtitutiolrf

m—p, T—T, and 9— O, where K is the reduced T 9
s an , mass; T G
fﬁe éhfe total kinetic energy of the particles and scattering ang?edin
: g 17rame. Tmin = (3¢*/T) (1 + mq/my;) (1 - csc ¥') = 6.10"1¢m
17. (a) cos (9/2) = b/(R + r); (b) dw = (1/2) sin 0dl; w= 1/2.
2.18. dN/N = ndo, where do = (Ze%/27)2 2250040
2.19. 4-10-4. S re)

2.20. Ad =x (Ze*/2T)? cot? (§/2) = 2.1-10-22 cm?2,
. 27 sin 9
2.21. do/d® = (Ze2/2T)2 Sy = 3010722 cm2/rad.
do/dQ = (do/d9)/2n sin & = 4.8.10-23 cm?/sr.
ggg Ao = n sin? 8,-do/dQ = 5.5-10-2 ¢m?
3 . M _5' == .
_ 5-1O_§.a) 6-10-% (b) w = nn (Ze?/T)? [csc? (6,/2) — csc? (9,/2)]=
2.24. (a) 1.3-10% (b) AN = N1un (Ze?/T)? coi?
; €2 (8,/2) = 1.6-105;
{¢) AN =Nt (1 —nn (Ze*/T)? cot? ((ﬁo/Z)])——-coi.Sf'l(o)/"?) 10105

AN et A 2
2.25, AV _ mel - 0.3 Z il
k ~ = (0.771 + 0.3 A_)p dNjcot? S = 2.7.10°,
where Zy and Z, are the atomic numb f i
e Zy M1C numbers of copper and zinc;
co‘nstant. 2 are the masses of their moles; N, is the Avogadro

do tan2 (4/2
2.26. 2 (8,) = 7 g%ﬁﬁzm.m% cm/sr.

2.27. N'=4aNyn (9192/4T)% [esc? (94/2) — cse? (94/2)].
2.28. 1= m2c3rd/4et ~ 1011 g,

2.29. r, =V (h/mo) n, E, = nho, where n =1, 2, e o=Vx/m

2.30. 2.27.103, .
__ h? n? 2 Z

2.31. T'nA——m?'T,Un:; .T;T:Eb:;n;:“néj-'
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r1 and rg, 1078 cm | vy and vg, 106 m/s | T and Ey, eV| Vi, V| Ap, A

H 0.529 2.12 2.19 1.09 13.6 10.2 1215
He* 0.264 1.06 4.38 2.19 54.4 40.8 304
Lit* 0.176 0.70 6.57 3.28 122.5 91.5 135

2.33. 0.116, 0.540, and 1.014 pm.

2.34. Correspondingly: 0.091 = 0.122, 0.365 = 0.657, 0.821 =
-+ 1.875 pm.

2.35. (a) 0.657, 0.487, and 0.434 pm; (b) from the formula
A/ON = kN, we obtain N = 2.0-103.

2.36. The Brackett series, Ag.4 = 2.63 pm.

2.37. (a) 0.122, 0.103, and 0.097 ym (Lyman series); 0.657 and
0.486 pm (Balmer series); 1.875 pm (Paschen series); (b) n (n —
—1)/2 = 45.

2.38. 1216, 1026, and 973 A.

2.39. (a) 4; (b) 3.

2.40. Z = 3, Li*+,

2.41. 54.4 eV (IJe*).

2.42. E = E, + 4hR* = 79 eV.

2.43, 2.3-10% m/s.

2.44. 3.1.10% m/s.

2,45, vy =V 6nchiR/m =6.25.10m/s, m is the mass of the
atom.

2.46. v =~ 3hR*/4Mc = 3.25 m/s; Ae/e =~ (3/8)AR*/Mc? = 0.55 X
X 10-%%; M is the mass of the atom.

2.47. 7-10° m/s.

2.48. From the formula o’ =} (1+pB)/(1—B), B=v/c, we get
$=0.29.

2.49. Let us write the motion equation and Bohr's quantization
condition: nw’e = ¢*a® pa’w = n#, where . is the reduced mass of
the system; o is the angular velocity; a is the distance between the
electron and the nucleus. From these equations, we find

kS

K2 . per 1 * pet
n = % Bv = o B =g

When the motion of the nucleus is neglected, E; and R* turn out to
be greater by m/M = 0.055%, where m and M are the masses of the
electron and nucleus.

2.50. mym, = (n — n)/n (n — 1) = 1.84-10%.

2.51. (a) Ep — Exg = 3.7-1073 eV; (b) Vp — Vg = 2.8 mV;
(€) Ay — Ap = 0.33 A. .

2.52. (a) 2.85-107 cm; (b) 6.54 A; (¢) 2.53 and 2.67 keV.
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-22[;53. (a) 1.06-10~® cm; (b) 6.8 and 5.1 V; (¢) 1.03-10t¢ g-1.

3 um.

2.54. (a) E, = (a2h2/2ml?) n% (b) E, =lon, o =V %m;

(e) E, = (h2/2mr2) n2; (d) E, = —ma?/2h2n2.
3.1. 0.39 and 0.0091 A; 0.15 keV and 0.082 eV.
3.2. 1.50 A.

3.3. 1.32 A.
3.4. 0.12 MeV.
3.5. 0.38 keV.

3.6. A=AV (nTD)/(n —1)=0.022 A.
3.7, A=1h,(1+m,/mye)==0.7 A, where A =2aRlY 2m,T.
3.8. A=A (14+n)/(1—n)=1.0 A, where N=myg/myge.
3.9. (a) A— 2ah_ { _ 20keV (electron),
VemT VIiFTlome ' (b) ' 37MeV (proton).
3.10. T = me? (V14 4n?— 1) = 2.74 MeV.
3.11. 0.033A.
3.42. f(A) o< A% exp (—2A25/A2), A, — ai/V mkT =0.90 A .
343, f(A) oc A% exp (— 5AZ/242), A, — 2nk/)'5 A
m 1) m — ] ka - 0 r7 A .
314, T = (2/m) (nhl/d Az)? = 24 eV. ’
3.15. Vo= n2/2med? (V 1 —
—1)2sin2® — 0.15 k. W
3.16.  d=akk/Y 2mT cos (oe/2) =
=214,

37, d=nhkl/V 2mT sin ¢ — A
with tan 2ﬁ:r/]l/. o 234,

3.48. (@) n=V11V,/V-1.05
(b) V/V, > 50. VisT. 0
3.19. (a) The maxima are observed

a

Fig. 60
when the optical pathlength difference of beams 7 and 2 (Fig. 60)
A=(ABC)— (4AD) = (2d/sin 9') n — 2d cot 9’ cos O = kX,

where n is the refractive index. Conse
. t —cost ¥ =
=kh. (b) V= (nhk)*/2med2 —V sinzﬁjlieénV%y’ 2V m— oot =
33(1) g’n = (W*B*2mP)n; n =1, 2, ...
| radi'us.. ar=nhn=1,2, ... A= 2nrin; ry is the first Bohr

3.22. (a) In accordance with the

S condition ¥ (z, t)=

= Aet(0i-k) gr | i i i
I xpand the function o (k) into a series of
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?

k—Fky, o=~ oyt (do/dk)y(k—k;) and designate E=%—k;; then
+Ak
P (2, t) = aet @ot-hax) \ et o/} t=x1E 8 — A (z, t) el @ot—hox),
~ak
. sin [(dw/dk)y t—z] Ak
where A (z, f)=2a (dm/dk)oot—x
(b) The maximum of the function 4 (z, t) is at the point z =
= (dw/dk),t; whence the velocity of displacement of the maximum

(group velocity) v = (dw/dk),.
dw dE -

3.25. A scattered photon that passed through an objective lens
has p, << (Ao/c) tan &. The right-hand side of this inequality states at
the same time the uncertainty Ap, for an electron: Ap, o< (fw/c) X

X tan O~ (25A/A) sin . The uncertainty in the electron’s coordi-
nate Ar o< d = Afsin 9. Whence, Az-Ap, o« 2nh.

3.26. To determine through which slit a particle has passed its
y coordinate has to be determined (by means of an indicator /) with
uncertainty Ay << d/2; d is the distance between the slits. In accor-
dance with the uncertainty principle this means that the indicator
must introduce the uncertainty in the y projection of the particle’s
momentum Ap, =% 24/d.

On the other hand, the condition for the diffraction pattern not
being disturbed is Ap, < p®;, where p = 2na/A; & ~ AMd; M\ is
the particle’s wavelength, i.e. Ap, < 2n#/d.

Thus, the uncertainty in the momentum Ap, introduced by the
indicator turns out to be much greater than the uncertainty Ap,
at which the diffraction pattern would remain unblurred.

3.27. Assuming Az = (0.5 um, we obtain 2-10% 1-10, and 5 X
X 1072 cm/s.

3.28. Av ~ 10% m/s; vy, = 2.2-10° m/s.

3.29. (a) Tyin o< 2A%/ml* =15 eV, here Az = 1/2 and p «
oc Ap; (b) Avfv oc 28/1V 2mT = 1.2-107%; here Az — I/2.

3.30. To compress the well by the value 8/, the work 64 = F§l
should be performed that transforms into the increment dE of the
particle’s energy. Whence F = dE/dl o< 4h*/miI® = 2Ey /1. 1t is
taken into account here that Az = /2 and p o< Ap.

3.31. Assuming that Az o< z and v o< Ay, we obtain the total
energy of the particle £ = T + U ~ A%2ma® -+ »a?/2. From the
condition dE/dx = 0, we obtain Ein = Aw. The strict solution
yields Aw/2.

3.32. Assuming Ar oc r and v o< Av, we obtain

, o2 B2
Eb:lU l—[%T_ 2mr? °
From the condition dEn/dr = 0 we find r =~ A%/me? = 0.5-10-% cm
and Ey ~ me!/2h? = 13.6 eV.
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3.33. Assuming for both electr
) ons A i
expression for the total energy 7ocrand v s A, write the

E%2(p—2_2e2)+92,\,ﬁ2 7e2

2m r Y2r T mrz T Tar

where the term e2/2r accounts for the en i i

/ar ergy of inte
electrons. The minimum of X correspongg to r 2022%?77?;;}:
=0.3-1078 cm; Epnip & — %-’;—3_ -
= —83 eV. The experi t yi o
e periment yields

3.34. 2.108,

3.35. A train of waves spreads
owing to the velocity spread Av ~
~ /i/m.Ax. After the time dr its
width increment is d (Az) = Avx
X ftd:t }Eﬁ/m Az)dt. Having inte-
grate is equati Pt ’ ' T E
T A T A I A

3.36. The width of the image
ih% (;5_—1—66’, where 8 is the width of

e slit, 8’ is the additional broadening due to the veloci

- » C t -
tﬁuita Avy caused by the slit; §' (2a/m8)lv (it is as(;lfrxf;élnlf:§e
difectl;: ?r(?;/)?)r?ir:)(}latlhet veioci)ty T(ilf spread of the train of waves is

to Av,). e function s (§) i ini
8~ Vohlmo = 10 cm. PO 55 minimal at

ko'f:Ak

Fig. 61

3.37. (a) ¥ (z)= aeihs @l — 2q SN (ZAR) iy o
Ro—AR x '
w(z)= | (2)|2 = 4a? (Ak)2 SR8 . ¢ _ Az

§2

The function w () is shown in Fj i
w (& ig. 61. It is seen from the fi
;hat the probab}llty of the particle being at a certain locationedi%fgg
rom zero practically in the region A% ~ 2. Whence Az =~ 2n/Ak
which agrees with the uncertainty principle. , '

too

(b) ¢ (z)= \ apeth gk — ¢~ *"k§ 5 e~ + (ko ~ix) k ],

Y
— 00

The latter integral is readily transformed to the form

1
7 e

Wheregzak'c:Zka+' i
Y ; o iz/a. To calculate it, supplement th
index of the exponent to make a square and put in the Is)ubstitmtior(l9
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= £ — ¢/2. Then Se-§2+c§ dt = V mec*/% and
VY (z)=(V o) e~ xMhatpikex 1 (x) = (m/a?) e~ 208,
The effective localization region is assumed to be confined between
the points at which w (z) is less than in the centre by a factor of “¢”.

Hence, Az = 2}/ 2a.
3.38. (a) Represent the function 1 (x) by means of the Fourier

integral

+ o0 +oc
" . 1 ¢ i 1 sing
V@)= | aedk, ay= 5z | V(@) do=— ,
sin §

where £ = (k, — k)I. Plotting the function a () « z one can

easily see that the spectrum of the wave numbers corresponding to
the considered train of waves is practically confined within the region
At~ 2n. Hence, Ak =~ 2st/] which agrees with the uncertainty prin-

ciple.
(b) In this case
i +oo = (Rt
ah:.;_ﬂ S Ib(x) Fikx do = zj’iw‘ S e-gc.;_cgdg_: ;ﬁz e 2(1) ,

where &€ = ak, ¢ = i (k, — k)/o.. The latter integral is calculated
the way it was done in Problem 3.37, (b).

The effective interval of wave numbers is assumed to be confined
between the points at which a; is less than in the centre by a factor
of “¢”. Hence, Ak =~ 2a.

3.39. When U depends on time implicitly, the total Schrodinger
equation allows the solutions of the form ¥ (z, t) =1 (z) f (¢). Sub-
stituting this expression into the total Schrédinger equation, we

obtain two equations:
" 2 ‘ . E
W+ S (E—U)p=0; f4i5f=0.

The solution of the first equation gives the eigenfunctions v, (x)
corresponding to the energy eigenvalues F,. The solution of the
second equation: f (t)~ e~i®nt @, = E,/h. Finally, we obtain
W, (z, t) = P (z)eiont,

3.40. Only the time-dependent coefficient of the total wave func-
tion will change. However, the physical meaning can be ascribed
only to the square of the modulus of that function, the change in the
time-dependent coefficient will not manifest itself in any way.

3.41. Assuming U = 0, we look for the solution of the total
Schrédinger equation in the form YW (xz, ¢) = (z) f (¢). As aresult,

W (2, t) = Ae-ii-kv); o = E/h; k = plh.
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3.42. Assuming U = 0 in the Schrddinger equation, we obtain
the solution \ = Aexihx; b = |/ 2mE/h. This solution is seen to be

finite at any values of £ > O.
252p2 R
3.43 (a) E,=300 =1/ 2sin 22,

2mi2 ?
() w=t+ 23 _o0.61;

(¢) dNg=(l/nh)) m/2E dE.

3.44. (a) The solution of the Schrodinger equation in the well can
be readily found in the form of a product of sine functions: ¢ (z, y) =
= A sin kyz-sin k,y, since the wave function must turn to zero at

z = 0 and y = 0. The allowed values of &, and k%, are found from the
boundary conditions:

Yia, y) =0, k =nula, ny=1,2,3,...
Pz, ) =0, ky=n,a/b, ny,=1,2,3,....
As a result,
n2h2 (% | nd 4 . mnz . Angy
Enn, =—— (a-iJr—b%) 3y Wnyn, = ]/E sin —1=.sin =%,

{b) 0.038.

(¢) 2, 5, 8, and 10 units of n%%4%/2mi?. (d) Each pair of numbers n,
and n, has a corresponding state. The number of states within the
interval dn; and dr, in the vicinity of the values n, and n, is dV =
= dn, dn,.

Let us mark the values &, = n,n/a and &k, = ny,n/b on the coor-
dinate axes. Then we draw the circle & -+ k) = £ in this k-space.
All points of the circle correspond to the same magnitude of ener-
gy E. Since the values &, and k%, are positive, we shall consider only
one quadrant of the circle. The number of points (states) enclosed

within one quarter of the ring, formed by two circles with radii %
and k& + dk, is

SN = Sdn, dny = Y Lk, dky= 4 o 20k dk; S =ab.
Taking into account that £ = (5%/2m)k?, we get SN = (Sm/2nk?) dE.
n2n2 2 ng 2 8
3.45. (a) Enmgn,: S (ZT - %‘ -+ %‘) ’ '(an,naz 2he X

. Tngx . Tngy . Tingz .
X sin—==-sin—==.sin — , where ny, n,, ng are integers not equal

to zero; (b) AE =n2h2/mi2; (c) for the sixth level ni4-nl-++ni=
=14. It can be easily found by inspection that this number is
the sum of squares of the single triad of numbers: 1, 2, and 3.
The number of different states corresponding to the given level
is equal in our case to the number of permutations of this triad,
ie. six; (d) dNgz=(Vm32/)/'2 n2h3) )/ EdE. The derivation is
similar to that presented in item (d) of the foregoing problem.
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3.46. Integrate the Schrodinger equation over the narrow interval
enclosing the discontinuity of the potential energy:

+8
¥ (8= (—8) = | T (E—V) vz
s

Since the discontinuity of U is finite, the integral approaches zero
if |8 |» 0. Hence ¥ (+0) = ¢’ (—0). '
3.47. (a) Write the Schridinger equation for two regions:

0<e<<l, ) -+kN,=0, k,=V2mE/R;
x>, g+ kg =0, ko =V 2m(E —Ug)/h.
The solutions are: y; = a sin kyz, P, = b sin _(kzx + o). From t}}e
condition of continuity of ¢y and ¢’ at the point =z = [, we obtain
tan (kyl + &) = (ky/k,) tan k;l. The latter equation holds for any £

because it has an arbitrary constant a. )
(b) Write the Schrédinger equation for two regions:

0<<ae<<l, W, + kg, =0, k=Y 2mE/R;
=1, g, —»*p=0, x=V 2m (Uy— E)/k.

The solutions P, :M!a sin kxz; P, = be ™% satisfy t_he standard allnd
boundary conditions. From the condition of continuity of ¥ and " at
the point z = [, we obtain

tan kl= —k/x%, or sinkl=+ ) h¥2mi2Uykl.

The graphical solution of this equation (Fig. 62) gives the roots corre-
sponding to the eigenvalues of E. The roots are found by means of

Fig. 62

those intersection points for which tan kI <0, i.e. they are in the
even quarters of a circumference. (These sections of the absm§sa axis
are shown in Fig. 62 with heavy lines.) It can be seen that in some
cases the roots do not exist; the dotted line indicate the ultimate
osition of the straight line.
P (c) The nth level appears at BU, = (2n — 1)?h%/8m; four
levels.
(d) 9n242/16m; zp, = 21/3; 0.15.
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(e) The problem reduces to the solution of the equation sin kI =
= =+ (3/5m)kl. Tts roots are kI = Hn/6 and k,I = 5.0. Respectively,
E, = 0.25U, and E, = 0.910U,,.

3.48. (a) Write the solutions of the Schrodinger equation for three
regions:

x <0, P =ae*, x=V| 2m((U,— E)/#;

0<z<l, pp=bsin(kz+a), k=) 2mE/k;

x>1, Py=ce=**,
From the continuity of \ and 1" at the points z = 0 and = = I we

obtain
tan oo = k/%; tan (kl -+ a) = —k/«,

whence sin a=ik/Y 2mU,; sin (kl+a)= —#hk/) 2mU,. Eliminat-
ing a from the two latter equations, we get

kl =nn—2arcsin (7k/Y 2mU,), n=1, 2, ...,

where the values of arcsin function are taken for the first quarter
(from O to m/2). Since the argument of arcsin function cannot exceed
unity, the values of %k cannot exceed
kmax = V 2mU /h.

Let us plot the left-hand and right-hand
sides of the latter equation as a function
of & (Fig. 63, y,, Y2, and y; being the right-
hand side of the equation at n = 1, 2, 3).
The points at which the straight line crosses
the curves y;, ¥, etc. define the roots of this .
equation which, as can be seen from the g,
figure, constitute the discrete spectrum of

eigenvalues E.

With U, diminishing, kpn,x shifts to the
left, and the number of intersection points
decreases (for a given [ the position of the
straight line remains fixed). When kp,y
becomes less than k' (see Fig. 63), the well possesses only one
energy level.

Thus, the given well always possesses at least one energy level.

(b) n®h%/4m; 0.28.

(¢) n?h%/2m. The energy of the ground state is defined by the
equation 2r = n — 2 arcsin z, z = kl/2, whence cos z = 2z/x.
The root of this equation z ~ 0.93, E; = 0.35U,.

(d) At U, = (n%h%/2m)n?; three levels.

3.49. (a) Write the Schrédinger equation for three regions:

%=V 2m (U, — E)/h;
k=Y 2mE/h;
®y=1V 2m (U,— E)/h.

Fig. 63

z <0, Py =ae"x,
0z, Pp="bsin(kx+a),
x> 1, Py=ce %%,
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From the condition of continuity of ’ )
y of ¢y and ¢” at the well ;
we get tan a = k/x; and tan (ki + &) = —k/x,, wheilces boundaries

sino=#kk/Y 2mU, ; sin (kl+a)= — BEk/Y 2mU,,
Eliminating o from the two latter equations, we obtain
hk

e ®

where n =1, 2, 3, . . ., and the values of arcsi i
y 24 3, o sin function are tak
for the first quarter (from 0 to nt/2). Figure 64 illustrates the Ith-}?aI?g

kl = nn— arcsin Rk __ i
arcsin
14 mU,

. 1
o | -
A A 7
O fmiie = — e — l
Ve f p?
T L
d —
Y l "7102
g <! ' /l
bmaz k. X 0 X, X
Fig. 64 ’ Fig. 65

and right-hand sides of Eq. (1) as a function of %: h
is the right—hand' side of the equation at n = 1,er;,y§j yszi’nigdtl!{;
grgEmeI(lt of arcsin function cannot exceed unity, the value of %
in Bq. (1) cannot exceed k., = V 2mU. /% it U : i
: ' ¢ << U,. Th
s(fovtvsh:)(%ht}tl}'le stralght line lcl' crosses the clurves yll, Yas eztc. d:ﬁgglﬁfz
roots of | l;s equation constituting the discrete spectrum of eigen-
(b) It can be seen from Fig. 64 that E
' . 2. 64 q. (1) has at least
Z/g; ‘l/c ; ]gnax its left-hand side is not less than the rights—hggg 2(1')323:
mU, = (n/2) — arc si = .
apge;rs !l 1[]/1(= nghz/:g;(’:nsl?VUJ/UZ. For U, = 2U, the first level
-90. (a) E = hw/2; (b) E = (3/2)ha
3.51. E, = ko (n - 1/2). f2)o.
3.52.  (a) = (a?/m)1/4 e-t/2,
= (a¥/Bha)!/4 (452 — ) o—Ev/2
(b) The values of Zpr for the states n = 0, 1, 2 are equal to 0 |

" e DY ;
;11/702. and =-2.5/a. The distributjon Pn is shown in Fig. 65, z,

3.53. 0.157.

3.54. The Schrodinger e i i i
. > Sch quation for this field in the i
is the same as in the case of a linear oscillator. Consgzg&glrlltlif> v

1131:(0(.2/431)1/4 2§e-—§‘/2; Py =

its
11# )
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solutions will be identical with those for the oscillator at odd values
of n because 9P (0) = 0. The same relates to the energy eigenvalues
which can be given in the form £, = ko 2r’ + 3/2), n" =0, 1,
2, . ... It is obvious that for the same value of w, the energy of the
ground state (n" = 0) triples the energy of the oscillator in the
ground state.

- 3.55. (a) Let us find the solution in the form ¢ (z, y, 2) = X (z) X
XY (y)Z (z). After sgbstitution in the Schrédinger equation, we obtain
Xe+ 2ﬁ—'f— (Ex—— kx; )X =0 and the similar equations for the
functions Y and Z, with £, 4+ E,+4 E, = E. These equations coin-
cide with the equation for a unidimensional oscillator whose eigen-
functions and energy eigenvalues are known. Therefore we can write

directly

Vringng = Png () Yna (¥) Yns (2);
E,=Hho (n+ 3/2), n = n; + ny + nge
{b) The degree of degeneracy of a level with a definite value of n
is essentially equal to the number of different combinations of num-
bers n;, n,, and rn, whose sum is equal to n. To determine the number
of combinations, let us first count the number of possible triads
ny, n,, ng for a fixed value of n,. It is equal to the number of possible

values of n, (or ng), i.e. to n — n, + 1, for n, may vary from O to
n — n,. Then the total number of combinations of n,, n,, ns; (for

a given n) is

n1=0
3.56. (a) Write the solutions of the Schrodinger equation:
z<<0, ¢ =aet*fbe-hx k=Y 2mE/R;
220, Yo=ameits® L bye~thex k=1 2m (E—U,)/h.

Suppose that the incident wave has the real amplitude a,, and the
reflected wave the amplitude b,. Since in the region z > 0 there is
only a transmitted wave, b, = 0. From the condition of continuity
of ¢ and ¢’ at the point z = 0, we find b,/a;:
(N Rk N g p_ 4Rk
R=(2) =(23) s D=1-R=g 5

(b) In this case the solutions of the Schriodinger equation take

. the form

<0, Yy=a,et* 1 b=, k=1 2mE/k;
>0, Pp=ase** +bye=**, x=1V2m (U, — E)/A.

Suppose the incident wave has the real amplitude a,. From the
finiteness of the wave function, it follows that a, = 0. From the

164

condition of Continuity of 4 and ' at the point x = 0, we get

R—|tP= _"_'i|2=1.
ay kE-ix

The probability density of finding the particle below the barrier is

Wy (1') o g 2nx, Hence, Terr = 1/2%. For an electron z... ~ { j\
3.57. (a) Write the solutions of the Schrodi o tic :
three regions: rodinger equation for

<0, yy=a;e** L be > L=V ImE/h;
0<z<<Tl, Wp=ayeihex L hye—ikox, k=1 2m(E +T,)/h;
> 1, 3= auethx,
These expressions are written for the case when the incident wave is
characterized by ek~ Accordingly, the wave function P has only

o?e term corresponding to the transmitted wave. From the condition
of continuity of ¢ and ¢’ at the well’s boundaries, we find

ag 4kkoe‘i ki

@ e R e
D|as |t (3—k?)2 1-1 U3 sin? kgl -1
a [,1+ T Sin kol | :[1+4T0(21LH1°T) ;
Ret1_pD_| 4k2hg -1 4E (E+Uy) -1
[1+(k3—-[g2)2sin2kol —[1+ Ugsinzkolo] .

(b) From the condition D = 1, we obtain sin kol = 0. H
, = (. Hence

ko:l3 = nn,or K = (nzﬁz/Zmlz)n2 — Uy; n are integers atowhich E>0.
. .58. (a) 'I_‘he solution is similar to that of the foregoing problem
(1t¢;n/12(a)). Finally, we obtain the same formulas, in which %, =
=V2m(E — Uy)/h. When E—~ U,, D— (1 + m2U,/2K2)1
b, - (nZkz/:(zmzz);g T Uy = 1055, 16.0, and 255 % Here
n=1,4,9,...(n%*0,since forn=0E =l
1te(m) (?) of this problem). v and D1, see

¢) In this case the solution of the Schrodinger e ti i ff
from the case £ > U, only in the region 0 < xg<1‘ l:qua ton differs

Vo = @oe™ + boe~xx; =7 I (Uy— E)/h.
Thgrefore, the transparency coefficient can be found by substitution
of ix for k, in the expression (see the solution of Problem 3.57, (a)):
8 _ 4inke ikl .
1 (ki) e —(k—ix)2 e °
k2 x2 2 | _q 2 cinh? -
=01 9 . U3 sinh? xl -1
[ +( i ) sinh %Z] = [1 +4——E Te—T) .
D <1 when xI>>1. In this case sinh xl A~ e*!/2 and
16k2%2 16F E P S s
D A e —-2unl = - m -
” 7 (1 = )e 2V ImU,-B/h

) -

D:

L3
ay
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(d) For an electron D =~ 0.27, for a proton D =~ 1077,

3.59. (a) From the solution of the Schrodinger equatmn for the
three regions, we find the ratio of the amplitudes of the transmitted
and incident waves:

a3 bk ke 3

a1 (kytkg) (ky+F) e Fe —(ky — k) (Ry—kg) €2

where ky=1 2mE/l; ky=V 2m (E — Uy)/k; ky=V 2m (E —U,)/k.
The transparency coefficient D= | ajs/a, [2-vs/vy, where vy, and v,
are the velocities of the particle before and after tunnelling
through the barrier; vs/vy = k3/ky. Hence,
Do bk K 3ks ‘
RS (hy+ Feg) 2 (B3 —k3) (k3 —k3) sin® k,l

(b) The same expressions as in the foregoing item in which
the following substitutions are made: k, — ix and sink,l —

— sinhxl, where x=)2m U, — E)/k:
D‘— 4]01%2153
= (b Fa)? - (W — %) (h§—%?) sinh?xl *

81 Vim 3727 .
T T3RU, (Uo— E) ]

(b) D:exp[—%V%(UO—E)].

4. Instruction. Take into account that A%p =4 (4p). ‘
. (a) @ —2)cosz — 4xsinz; (1 — 2%) cosx — 3z sin 3
(b) 2+ 4a+ 22 €5, (1 + 3z 4 2%) e".
.(aA) A =4, (b) A =1; (¢) A = —0c2
4. (a) ¢ (x) = Cet**, A = 2nn/a, n = 0 +1, +2, ...
(b) ¢ (z) = C sin (V?»x ), A = (na/l)%, n = +1, %2,
4.6. (a) A(ZB,)— (3B, A=3 (4B, — B, A)= 2[4, B,];
(b) A(BC) — (BC)A = ABC — BCA+BAC—BAC =4, B1C+
+ B4, C].
4.8. [B, A2)=3[B, A2 =0, for [B, A —=[B, A,] A,+A;(B, 4,]1=0.
4.9. (a) Multiplying the equality AB—BA-=1 by the operator
B first from the left-hand side and then from the rlght hand
side, we obtain ‘ correspondmgly BAB —B2A= B and AB® —
— BAB = B. Summing up these equalities, we get: AB*_B2A—2B.
4.12. The joperators B and € are not commutative in the
general case. For example, the operator p, commutes with the
operators z and f)x which do not commute with each other.

3.60. (a) D:exp[

N
N O o -

166

4.13. (a) If ¢ is the common eigenfunction of the operators
A and B, then AB\ = ABy=BAy=BAy; BAy=BAY= AByp=
— ABY, i.e. AByp=BAy and [4, B]=0.

(b) Let y be the elgenfunctlon of the operator 4 and belong to the
elgenvalue A. Since A and B are commutative, ABq; BAII) =

= BA1p = AB’l]J, i.e. Alb' = Ay’, where ¢’ = Bq;. Thus, the eigen-
value 4 belongs both to the function ¢ and to the function ¢’ that
describe therefore the same state. This can happen only When these
functions differ by a constant factor, for example, B: ¥’ = By.

But ¢’ = BII), and therefore B — Bll), i.e. the function 1 is the com-
mon eigenfunction of the operators 4 and B.
4.14. (a) f(z,z) e®v¥; (b) Ae'BTRTRD (o) f(y, z) ",

Here k; = p;/kh (i = x, y, 2); f is an arbitrary function.
4.15. It does only when the function 9, is at the same time the

eigenfunction of the operator B. It does not in the general case. For
example, in the case of degeneracy (in a unidimensional rectangular
potential well two values of the momentum’s projection, +p, and
— D correspond to each energy level despite the fact that the op-

erators H and p:,c commute)
4.16. Suppose that { is an arbitrary eigenfunction of the oper-

ator z‘i, corresponding to the eigenvalue A. Then from hermi-
city of the operator A it follows that Slp*fixp dx=5 wﬁ*xp* dz
and A4 S V¥ dr = A* \ Yp* dr, whence A= A*. The latter is pos-
sible only if A is real.

4d7. (@) [ Wipabede = —i [ 4 T do — — in[ ()T —
AN
“'ll)z ‘lp ]:Swz(l a_x)'lpldl': Swsz'lpl dx.
4.18. The operator A+ conjugated with the operator 4 is de-
fined as follows: 5¢pi¢z dz = | 9o (A*$)* dz. (a) Pas (B) —ips.

4.19. From the hermicity of the operators Aand B it follows
that

[ wrd Bed av= | Byo(aryd) dv= [ drgs (B) an
= S%é* (A*y*) dt.
Since A and B commute, B*A* — A*B* and
S Yy ABpydt = S Vo A*B* ¢} dr.
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4.20. Every operator commutes with itself. Consequently, if the

operator A is hermitian, the operators A? = A4 and A" are also
hermitian.

4.23. (a) The solution of the equation L,y = L is ) (¢p) =
= Aeil:%/%, From the condition of single-valuedness ¢ (@) =
=1 (¢ + 2n) it follows that L, = m#, where m = 0, 1, 42, .
From normalization, we get A = (2n)~Y2. Finally, ¢ (¢) =
= (2n)-Y2%eimo,

(b) The eigenvalues are L2 = m?i?, where m = 0, +1, +2, ..

The eigenfunctions have the same form as for the operator 132,
i.e. the function ,, (p) = (2m) /2™ is the common{eigenfunction

of the operators L, and L. All states with eigenvalues L2 except for
m = 0 are doubly degenerate (in terms of direction of the rotational
moment, L, = 4|m | k).

4.24, 2h2,

425, (@) [ Wilamde— —in (o) + | v, (02 o~
= [ Lt do.

Here (p%,)a" = 0, because the functions ¢} and 1, satisfy the condi-
tion of single-valuedness.

(b) \ wfizlpz dtv= S (wfx})yxpz—lpfyﬁxmpz) dt. Since the operators
px and py are hermltlan, the mtegrand can bhe transformed as
TPaDVE — YbaPiE = Vo (2pf — YPE) ¥ = bl ]

426, { wrlop, dv— | (WL +WiLiva+ WLip) dv. Since the

operators l:x, ]:y, and 132 are hermitian, the squares of these op-

erators and consequently the operator 1? are also hermitian.

4.29. (a) (L, P2l=I[Ls, Pal Pt PalLlay P21 =0, for [Le, pa)=0.

4,30, The operator T can be represented in the spherical coor-
dinates as the sum fzf, - L?/2mr2, where T, performs the op-
eration only on the variable r. Since the operator 2= — V3, o
operates only on the variables ¥ and ¢, [iz, f’]:[I:Z, f‘,] -+
+[L2, L2/2mr2]=0.

431, (a) [Le Ly)=Laly—L L= (yp,—2p,) (2px—2p;)—
— (2px—2p,) (yﬁz—zpy) = [2, p.](2py—ypx) = ik (2D, — Ypa)=
= ihL,.

4.32. (a) [L2, L, = [L2,
(23, L =0; [LE, L=
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L + (L8 L+1L% L), where
L,L,, LJ+IL,, L)L, = —ik(L,L, +

i FE AT A

4L (L2 Bl = Lylly, LAl 1L, LAL, = ih(L,L,+L,L,).
Whence it follows that [L2, ﬁx]:O. Similarly for L, and L,.
4.33. In the case of r =r,=const, the operator

Therefore,

ﬁmp—

Since the eigenvalues of the operator L2 are equal to A2l (14 1),
then E = n2l (14 1)/2prl.
4.34. (a) Since the operator A is hermitian, S P*Ap dt =
wﬁ*\p* dt. Consequently, (A4)=(A*), which is possible only
for a real (4).
4.36. Ho—af = —2 p_ S P*payp dz =
= —— S (1p*Hx1p tp*xﬂlp) dz. Due to hermicity of the Hamil-

therefore (p,) =

tonian the integrind can be written as mppr*——mp*pr:O, for
Hy* = Ey* and Hy=Ey. ,
4.37. (a) From the normalizing conditions A2=8/31.

mi2

C A h2 d? 2 n2p?
(T)=5q»T¢dx=—WS¢d—;!frdx=:—3—- :

(b) A2=30/1%; (T)=5n*/ml2.

4.38. From the normalizing conditions Az—]/Z/n o; (TYy=
= (U) = ho/4. .

4.39, (a) Here ¥, (z) =V 2/lsin (nnz/l), ((Az)?) = (22) — (2)2=

2 6

=15 (1= 27) § (Ap2)®)=(ph = (nh/l)* n?.

(b) From the normalizing conditions A=Y 2]na; ((Az)%) =
= 1/4a2; ((Ap,)?) = a2h2.

(¢) A2=7V 2/na; (Az)?) = (2%) = 1/4a?; (Apx)? = (P2} —(Px)?=
= q2h2.

Instruction. While calculating the mean value of the momentum
squared, it is helpful to use the following hermitian property of the

operator ;;x: (p2) = Sll)*ﬁi\bdx = S Il;x‘lilzdx-

4.40. From the normalizing conditions A% = 4/3n; (L}) = 4h%3.
4.41. From the normalizing conditions A2 = 1/m; ((A¢)?) =
= (¢?) — (9)® = n¥3 —1/2; ((AL,)?) = (L%) = h%
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4.42. Recalling that inL.—(L,, L.}, we can write (L) =
= g (l,b*LyLzlp——\p*LzLylk) dt. Since according to the condition

L p=L,p and the operator ﬁz is hermitian, the integrand can
be AtransAformed as follows: lp*iyf,zwp——qa*izlij:sz*ﬁyw —
— (L) L;‘_lp*.:(Lyq:) (Lp* — L¥*). The latter expression in pa-
rentheses is equal fto zero because an eigenvalue of a hermitian
operator is real (L,=L¥). Similarly for the operator [A,y.

4.43. (12) = Jf $L%p dQ = 2h2, where dQ — sin & d9 do.

4.44. Since the axes z, y, z are equi 2
v Y, quivalent, (L2)=(L2y 4 (L2)+
+ (L} =3(L?. Allowing for equi i o )
values of L,, we Obtaing quiprobability of various possible
4

o 12R2
2 mt= PR

(L =h(m?) ="~ 1A+ @241
3

and (L* =H2l (I 4-1).
4.45, We haveA Ay = Ay, and /impzz-—Azxpz. Due to hermicity

of the operator A4, its eigenvalues are real and
J wtd, dv= { v, dspy ar,
or *
AZ S 'll]flpz dT:Ai S 'lpz’(pr dT.
Since 417&442, the latter equality is possible only under the con-
dition j Yy P2 dT1=0, i.e. the functions Yy and P, are orthogonal.

4.47. (a) Multiply both sides of the expansion =
by ¢! (z) and then integrate with respect t(l)) z: v =S @

S Y dz = D¢, 5 VP, dz.

The eigenfunctions of the operator 4 a
. [ C re orthonormal, and therefore
all integrals in the right-hand side of the equation, with the excepticfn

of the one for which £ = I, turn to zero. Thus, ¢, = S V()Y (z) dz.

®) ()= § y*dpde= | (3 crvr) (3 cidip) dz = Y che, 4,
k1
X S YRy dx = 2 fck|?2 Ay. Note that Z [er|2=1 which follows
directly from the normalization of the function 1 (z):
5 'lp*'lp dr = 2 C:Cl S '\pz\pl dz= 1.
170

From here it follows that the coefficients | ¢; |? are the probabilities
of observing definite values of the mechanical quantity 4,.

4.48. First, the normalizing coefficient 4 should be calculated.
The probability of the particle being on the nth level is defined by
the squared modulus of the coefficient ¢, of expansion of the function

P () in terms of eigenfunctions v, (x) of the operator B: Cp=
= g P (20 (z) dz, where y, (z) = V 2/1 sin (nnz/l).

(a) A2 = 8/31. The probability sought is w, = ¢} = 256/27a% =
= 0.96.

(b) A2 =30/15; wnzc,zl:—(—f%[l—(—i)”]z, that is, w, differs
from zero only for odd levels (=1, 3, 5, ...); for them w, =
= 960/(nin)®; w, ~ 0.999; w; ~ 0.001. .

4.49. (a) First calculate the normalizing coefficient 4= 2/} 3x.
Then expand the function ¢ (¢) in terms of eigenfunctions of the

operator I:z (they have the form v, (@) = (2r)~1/2%ime);
e AN et (] I T 'R ST Sy
V(@) =Asin? ¢ = e (1 —cos 2¢) = e (1 7 e2io— o w)

2 1 1
<V To e

From here it can be seen that L, = 0, 4-2%, and —2#%. Their proba-
bilities: wy = 2/3; wy, = wfy = 1/6. (b) L, =0, =k, +2% and
Wy = 36/70; w+1 = Ww_, = 16/70; w+2 —_ w..2 = 1/70-

4.50. (a) Find the coefficients of expansion of the wave function
P, ()= 2/1 sin (nnz/l) in terms of eigenfunctions of the operator %e:

— f—(— ) ikl
eh={ V(@) Vi (@) dz=n} ml L0

whence
. 4rtin? { cos? (k1/2), if n is odd,
W= [kl = @n?—k2%? " | sin%(kl1/2), if n is even.

(b) From the normalizing conditions A2=V2/na; wy,=|c,[2=
e—h¥2a?,

o 1/2:m
The corresponding integral can be found by the procedure indicated
in the solution of Problem 3.37, (b). It can be readily shown here that

the total probability Swh dk = 1.

4.51. It can be a solution of the time-dependent Schrédinger

equation.
4.52. Expand the function sought in terms of the eigenfunctions

of stationary states
~io.t
¥ (z, t)= Z ca'Pn (%) € On ’
i



;1;1,; t(i'?lzc })/Ilzlt 1s(irI11 (nnz/l). The coefficients ¢, are found from the
23/3]5
Cp= j ¥ (z, 0) ¢, () dx=A(n—nl)f[1—(-—1)n],

Frorq }}ere it is seen that c, 5= 0 only for odd z. From the normalizing
cond1t1l(t>ns applied to the function ¥ (z, 0), we find A% = 30/5. As
a result,

8 30 . i
WV (x, t)=— ]/—l— D 721; sin n;w e @nt,
0n = E, [k = (n?i/2mi%)n2, where n=1, 3, 5, . . ..
4.53. First, separating the variables and ¢, find th i
solutions of the Schrédinger equation:cp ’ ° stationary

N 2 1 i(me -
th -=HY; ¥, (g, =5 e' "= omd);

Om = Ep/k = (R/2I)m?, where m = 0, =+1, &2, . ... Then expan

the function sought ¥ (p, f) in terms of Y., (o, 2): ¥ (o, It)) =d
= Z?n?‘I’m (p, t), where the coefficients ¢,, are found from the initial
condition ¥ (¢, 0) = Se¢,eime (see the solution of Problem 4.49).
Fmallyz we get W (g, f) = (4/2)(1 + cos 2¢-ei2®/I), From this
expression 1t is in particular seen that the rotator comes back to the
initial state after the time interval At — nl/A.

4.54. (a) Recalling that (A) = S Y Ag dt, we obtain

d [ a¥* » A N
a (D= S—at—“”’d“r 5 W 2= W dr S v A 22 e,

. v S o+ i A
But since 5= —%—H‘P and —@E;_"—'% HY*, then
d i . . : ) 2 A
D=+ (H¥*) AV dv+ | ‘P*%‘;i‘l’dr-—hij U ARV dr.

. Due to hermiclzty of the operator H the first integral of this expres-
sion can be rewritten in the form and then

d 04 | 1 4 A
d—t<A>:jtF* [—H;A,—%(HA—AH)]‘I’LZT.
o dd 94 i s s
Whence it is seen that d—t=7t—+—£—(HA—AH).

4.56. Take into account that the o e . D
( rators z d
depend on time explicitly. g A0 P do not

4.59. The operator ix does not depend on time explicitly, and
_ii_A o i A A i 52 A 7 . A
therefore —-L.=-L[H, L,] =TLI[E;:’ Lx] 41U, L. Since
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%z and ix are commutative (see Problem 4.29), the first term

is equal to zero. Only the second term is to be calculated.
4.60. Differentiating the equation AY¥ = AY with respect to

time and taking into account that "szo, we get A %:‘Z—f ¥

_|-A—ZT‘Ir . After the substitution ¥ _ -——ri— I??‘F, we obtain

ot
%‘F:%(zﬁl-xlﬁ)‘l’. If 4 and A commute, then AHY =

= HAY = AHY and dA/dt=0.
4.61. The solution is reduced to checking whether the operators of
indicated mechanical quantities commute with the Hamiltonian

H= ﬁz/Zm + U = T -+ U, where 7 is the kinetic energy operator.
The operators py, ﬁy, 132, L,, ﬁy, l:z, and L? all commute with the

operator Vi (see Problems 4.29 and 4.30), and, therefore, we have to
investigate if all these operators commute with the operator U.

(a) AH/4t = 0 and U = 0. All quantities retain their values in the
course of time. (b) aﬁ/ﬁt = 0. The values of E, p,, py, and L, do not

vary with time. (c) dH/dt = 0. The operators L., L,, L,, and L?
commute with the operator U (r). (This fact becomes evident as
soon as the operators are writfen in spherical coordinates: they oper-
ate only on ¥ and ¢.) The values of £, L,, L,, L,, L* do not vary

with time. (d) 0K /ot = 0. Only p., py» and L, do not vary with time.
4.62. (a) (=1 S U [, A]¥ dv=0, i.e. (A)— const.

(b) Since the operators/i and H commute, they have common

eigenfunctions v, (z): /iq;n = Ay, and ﬁ\Pn = E,,. Expand the
function ¥ (z, £) in terms of the eigenfunctions 1, which are the func-

tions of the stationary states (I;hpn = E.,), so that ¥ (z, ¢) =
= Sca, () emtont = Zep, ()¢, (2); ©n = E,/R, where ¢ (t) =
= ¢, (0) e~*@nt. The latter summation is an expansion in terms of
eigenfunctions of the operator zi, and therefore the squares of moduli

of the expansion coefficients define the probabilities of various values
of the mechanical quantity 4, at the moment ¢, i.e. w (4,, t). Thus

w (A,, t) = |cn )2 =]cn (0)|> = const.
A 2 2
4.63. T,= — Zﬁ—m(% %air) is the kinetic energy operator

in the case of a radial motion.
4.64. (a) Write the Hamiltonian in the Schrddinger equation

I;hp = Evy in the form A = ff, -+ IA,2/2w2 4+ U, where T. is the
kinetic energy operator in the case of a radial motion (see the answer

173



to the foregoing problem). Substitutin i i
reg em). g the function v = RY int
the Schriodinger equation, we obtain the following e:lcppression e

YT,R+ 51 L YUR=YER.

Taking into account that L2y — %2} (I+1)Y, we get

A h2 (141
(T,+—Wt—)+ U)R=ER.
The latter equation defines the ene i i
reduced to Jho. anorines th rgy eigenvalues E. It can be easily
(b) Substitute the function Y in the form ¥ = @ (8) ® (¢) into
the equation L2Y = AY, where It = _pryy
) ) = — , 9> and separate the
variables & and ¢. Denoting the separati onctant 2
the equation for the functign () ((p)g retion constant by m?, we get
*D/0g? = —m2D; O (p) = Aeime,
From the condition of single-valuedness, it foll
, th =
=40, =1, +2, .. -+ Thus, ¢ = R (r) © (9) eim(P.O ovs atm
.65. The fupctlon I‘Yl,m [* specifies the probability - density
relat};ad to a unit of solid angle of the particle with the quantum’
numbers / and m being in the vicinity of 9: | Y | = dw/dQ 3/4m;
(b) V 1578, " ol (@Y 3w
4.66, (a) After the substitution into the Schrédinger equation,
we obtain y" 4+ x2y = 0; y = V 2mE/h. The solution of this

equation is to be sought in the form % (r) = A sin (ur
: . = a). F
the finiteness of the function Y (r) at the point r = Of it ?(—)llo)ws tr}?;?,

_ Asin
o = 0. Thus, ¢ (r) = —r‘r From the boundary condition
P (ry) = 0, we have ®rg = nn, n =1, 2, ..., whence

_ _2a? . 1 si
Ene= g 75 0 ()= S S0
Ty

The . . .o
I coefficient A is found from the normalizing condition

S Y2anr2 dr =1,

]
(b) r,/2; 50%. (c)ZTransform the equation for the function Ry (r)
to the form R/ +TR;+(”2r2—'2) R =0; w=V2mE/n. Having

written the similar equation for R, (r i i i i
reuon ihe q o(r), differentiate it with

" 2 ”
R; ++ R+ (»r2—2)R! —0.
From the comparison of these two equations, it can be seen that
’ A4 '
Ri(r)=R;(r)= —7 (%r cos xr — sin xr),
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where A is the normalizing coefficient. (d) From the boundary con-
dition, we get tan ur, = xur,. The roots of this equation are found
either by inspection or by graphical means. The least value is xr, =
= 4.5. Consequently, E,, ~ 10h%*/mr? ~ 2E,..

4.67. (a) (r)y=r,/2; (rz):—%%—(i——%i—n;) 3 ((Ar)2) = (r?2) — (r)2=

b) (T}:%hz/mrﬁ; (¢} expand the function Yy (r) in terms.
of eigenfunctions of the operator k:

Pas (7) = 2m) ™% | cye dk,

where ck=(231)'3/2 S Pye (r) e~ gV, The latter integral is to be

computed in spherical coordinates with the polar axis being
directed along the vector k:

1 8in (tr/ry)  _ikr cos .9 .
o= = e r2drsin ¢ dod
=Gy AT ¥

. . V 1 sin kry
“ T k(=K%Y
Therefore the probability density of the given wave vector is

|ck}2=—k2(—;;’:’i_%;—’:;0—;’g—. To find the probability of [the modulus
of the wave vector being between the values %k and k--dk,
integrate the latter expression with respect to all possible

directions of the vector k, i.e. miltiply it by 4mk2dk. Finally
we get .

4nrg sin? k
w (k) dk = %%;0_ dk.
4.68. (a) The solutions of the Schrdodinger equation for the
function y (r) are
r<<ry, Ya=Asin(kr+a), k=) 2mE/R;
r>ro, Ys=BeriCe*, w=1)2m(U,—E)h.
From the finiteness of the function ¢ (r) throughout the space,
it follows that &« = 0 and B = 0. Thus,

—-ur

q\szAsinkr. Py =C e

r r
From the condition of continuity of ¢ and v’ at the point r = ry,.
we obtain tan kro = —k/x, or sin kro = £V A*2mr2Ukr,. This
equation, as it is shown in the solution of Problem 3.47, defines the:
discrete spectrum of energy eigenvalues.
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(b) n2h2/8m << r2U, << 9n2h2/8m. (c¢) In this case there is a single

Lo _3V3, . 2 __2n2 e
level: sin kro= I kro, kro= 5% E = T From the
condition 9 (r2y2)/dr =0, we find rp; = 3ry/4; 34%.
2R | 2 aR L2 104N p_ _ _
4.69. S5+ +(8T x - )R_—O, p=riry, =

=E/E,.

4.70. (a) Neglecting the small values, reduce the Schrodinger
equation to the form " — %%y = 0, x = V' 2m | E |/%. Its solution
is x (r) = Ae*r + Be™. From the finiteness of R (r), it follows that
A =0 and R (r) oc e~*/r. (b) Transform the Schrédinger equation

(l-H)

to the form y” — ¥ = 0. Its solution is to be found in the

form y = Are. After the substitution into the equation, we find
two values of a: 1 + I and —I. The function R (r) is finite only if
o =141 Hence, R (r) 1’

4.71. (a) Substituting this function into the Schrédinger equa-
tion, we obtain B (a, o, E) -+ rC (a, o, E) + %D (@, a) = 0, where
B, C, and D are certain polynomials. This equality holds for any
values of r only when B = C = D = 0, whence

a =a = —1/2r; = —me?/2r% E = —me*/8K>.

(b) A:é—(Z:rtr?)”“Z; ry is the first Bohr radius.

4,72. (a) rpy = ry, where r; is the first Bohr radius; 32.3%;
(b) 23.8%.

4.73. (a) (r)=3ry/2; (r?)=3r}; <(Ar)2>—<r2>—<r>2—-3r 14; ry is
the ﬁrst Bohr radius; (b) (F)=2e%r}; (U)y= —e/ry; (c) (Y =
= S YT dt = meb/2h2; V (02 = e2/h = 2.2.108 m/s.

4.74. (a) 4ry and 9ry; (b) S5r2 and 15.75r%; ry is the first Bohr
radius.

475, gp= | £ 4mrzar — = o(r)=eV(r) is the

1
volume density of charge; ry is the first Bohr radius.
4.76. Write Poisson’s equation in spherical coordinates:

’1 02
— 5z (r9e) = 4meql; (r), >0,

where

Integrating this equation twice, we get
e e B
Qe (r) = (r—1+7) e~2rin4 A+,

where r; is the first Bohr radius, A and B are the integration con-
stants. Choose these constants so that ¢, (co)=0 and ¢, (0) be finite.
Hence, A = 0, B = —e. Adding the potential induced by the nuc-
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y
¥
%

R LA R

PRt

e

leus to the expression obtained, we get

o ()= (T +%) e,

r

4.77. See the solution of Problem 4.67, (c), w(k)dk=

3.2 Als

= %, where r; is the first Bohr radius.

5.1, 5.14 and 2.1 V.

5.2, 0.41, 0.04, and 0.00.

5.3. Havmg calculated the quantum defect of S terms, we find
E, = 5.4 eV.

5.4. (a) 6; (b) 12.

5.5. 0.27 and 0.05; 0.178 pm.

5.6. a = 1.74; n = 2.

5.7. 7.2-103 eV; 1.62 eV.

5.8. 555 cm-

5.10. (a) AT = a?RZ* (n — 1)/n* = 5.85. 2.31 and 1.10 cm™1;
(b) 1.73 and 0.58 cm™ (three sublevels). .

5.41. AL = a2/9R =5.4-10-3 A (equal J
for H and He*). 52

5.12. 7 = 3, i.e. Lit*. g J/2

5.13. (a) See Fig, 66; Avy, = v;—v;— 2
=7.58 em~!, Ah;=0.204 A; (b) Av = 7z |5 |4 |5
— 2.46 em™1, AA = 0.54 A’

5.14. A/SA = V/(V3 — v, = 4.2-10° ‘ 3/2
(see Fig. 66).

5.45. In units of &: V352, V152, "7
and V3/2(:P); 2V'5, 2V3, V6, V2, -2
and 0 (DD) Fig. 66

5.6, (a) P, and 3P, ., (b) Py,
Dy, 'Fy, 3Po, 1, 2y Di, 2, 31 3F2, 3, 4 (c) 2P1/2, 3/2» 2D3/2, 5/2

2Fspa, 12, “Pusz, 312,52, “Dijo, 372,572, 1720 “Fa2, 502, 172, 9/2-
17. 20 (5 singlet and 15 trlplet types)
5.18. 1S,, 1P1, D2, 38,, 8
5.19. (a) 2,
5.20. V' 30 5. _
5.21. Respectively, ps>=>) 2% and pg=V 2 4.
5.22. (a) 35.2°% (b) 34.4°.
5.23. 10 (the number of states with different values of m,).
5.24. V 30 %; *H,.
5.25. 125°15’.
5.26. (a) » (2] +1) = (28 +1)- QL +1); (b) 2 (21, --1) X

J

X 2 (2l + 1) = 60; (c) the number of states with identical quan-

0,1,29

8; (b) respectlvely, 2 1 3; 2, 4; 1, 3,
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tum numbers n and [ is N = 2 (2] + 1). While distributing &
electrons over these states, the Pauli exclusion principle should be
taken into account. Consequently, the problem reduces to finding
the number of combinations of V elements taken & at a time:
k NWN—1)(N=2)...(N—Fk41) __
Cry= 7 = 120.

5.27. (a) 15; (b) 46.

5.28. (a) 2 (27 + 1); (b) 2n2

5.29. (a) C: 1s22s22p%(3P,); N: 1522s22p2(1S,,,);

(b) S: 1s22522p53s23p*(3P,); Cl: 1s22522p03s23p>(2P 4;,).

5.30. (a) 3F,; (b) *Fy,.

5.31. 8S;,.

5.32. The basic term 3D,. The degeneracy 2J - 1 = 9.

5.33. Let us compile the table of possible distributions of elec-
trons over quantum states (numbers) with the Pauli exclusion
principle taken into account (Tables 1 and 2). While doing this,
we can leave out those distributions that provide the negative values
of the sum of projections M; and M g; such distributions do not
submit anything new, which can be proved directly.

To illustrate, let us denote the spin projection m, of each electron

by the arrow pointing either up (if m, = +1/2) or down (if
m, = —1/2).
Table 1 Table 2
ml mS ml ms
-1 t t t 0 N - +1 t t t Vit os
N Rl e e Ot [t vt ]t ]|—=n
e T e T T T e A I (N N A S I B I
Mg 1 0 0] 0 Mg|3/214/2{1/211/2|1/211/2[1/2
My, 1 0 1 0 210 Mgl O 0101012 1 1

(a) See Table 1. The presence of the state with M; = 2 and
M g = 0 indicates that there is a term 1D; consequently, there must
also be two other states: M, = 1 and M, = 0 (for both M ¢ = 0).
From other distributions the state with M; =1 and Mg=1
points to the existence of the 3P term; therefore, there must be still
another state with M; = 0 and M g = 1. The last remaining state
© with My =0 and M ¢ = 0 belongs to the 1§ term. Consequently,
three types of terms correspond to the given configuration: 1S, 1D,
and 3P.

(b) See Table 2. Via similar reasoning, we get 2D, 2P, and *S.

(¢) 1S, D, 1G, 3P, and °F.
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5.34. Both configurations have the following identical types
of terms: (a) 2P; (b) 1S, 1D, and ®*P; (¢) 2D. This follows from the fact
that the absence of an electron in a subshell can be treated as “a hole”
whose state is determined by the same quantum numbers as those
of the absent electron.

5.35. Let us compile the table of possible distributions of elec-
trons over quantum states, taking into account that the Pauli
exclusion principle imposes limitations only on equivalent elec-
trons.

(a) See Table 3 in which the thin arrows indicate spin projections
of a p-electron and heavy arrows those of an s-electron.

Table 3
771[ mS
+1 t 4 + 4 4 t t —

0 4 + 1 ¥ it 1 1 it
-1 — — t : — ' — —
Mg 3/2 |« 172 3/2 1.2 172 1/2 1/2 1/2
My, 1 1 0 0 1 0 2 0

The possible types of terms: 2D, 2P, 2§, and *P.

(b) S, 2P (three terms), 2D, 2F, %S, +P, and *D.

5.36. NV,/N, = (g,/g,) e-1o/hT = 2.4.10%, where g, = 2, g, =
=4 4 2.

5.37. 31017,

5.38. From the condition —dN = AN dt, where A is a constant,

we find ¥ = Nye~4t On the other hand, © = g tdN = 1/A4, where

the integration is performed with respect to ¢ going from 0 to oo.
The rest of the proof is obvious.
539. v =1I/vlnm =1.2.10"¢ 5; T a~ 5.5-10710 V.
5.40. N = tAl/2nhc = 7-10°.
Nmo g _ - _ ] ’

541, t = i FO/RT = 7.10-8 s, where g’ =4 -2, g = 2.
It is taken into account here that the concentration of atoms on the
ground level practically coincides with the total concentration
since o > kT.

5.42. (a) The number of direct and reverse transitions per unit
time Z, = (A, + Bau,) Ny Zy, = BouN,. Taking into ac-
count the Boltzmann distribution and the fact that Z,, = Z,,,
we obtain

Ay
(g1/¢5) Blzehm/kT_le
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When 7" — oo, u, — oo, and therefore g,B,, = g,B,,; besides, from
the comparison with Planck’s formula, it follows that

B, = (n%?hw®) A,.

Ay By —ho/kT _ hO®  —ho/kT
B wvo=g, ¢ T wa
5.43. (a) wiza/wgp is of the order of 10734 (b) T = 3nAicR/2k1n 2=
= 1.7-10° K.
5.44, Let I , be the intensity of the transmitted light. On passing
through the layer of gas of thickness dz this quantity diminishes as

—dl, =%yl dz=(NBy;— NyBy) —I% ho dz,

(Wien's formula).

where NV, and NV, are the concentrations of atoms on the lower and
upper levels, B,, and B,, are the Einstein coefficients. Hence,
I0) g N,
Ho=—7— N1312(1—‘m)-
Then take into account the Boltzmann distribution and the fact that
hw > kT (in this case N; =~ N,, the total concentration of atoms).

5.45. It follows from the solution of the foregoing problem that
light is amplified if », << 0, i.e. gV, > g,/NV,. This is feasible pro-
vided the thermodynamically nonequilibium state is realized.
Np:Np=gp:gp=>5:3.

5.46. In the stationary case the concentrations of atoms on the
upper and lower levels are equal to N, = g/A,, and N, = q/4,,
respectively. As it follows from the solution of Problem 5.44, the
light amplification requires that g,N, > g,/N,. The rest of the proof
is obvious.

5.47. Solving the system of equations N, = ¢ — A,N,; N, =
= A, Ny, — A,,V,, where 4, = 4,, + A,,, we obtain

Ny () 2o (g AT e
A4y Ay— Ay

5.48. 2.10-% A.
5.49. (a) 8o = v; (b) ©v = A*2mcbh = 1.2:107° s.

o0
ado

5.50. (b) /=2 S I, do=-"32T,.
o

5.51. (a) Suppose v, is the projection of the velocity\f vector of a
radiating atom on the direction of observation line. The number of
atoms whose velocity projections fall into the interval vy, v, + dv, is

2
Ny, Avgoc e=™w/ZRT gy,

The frequency of a photon emitted by the atom moving with the
velocity v, is ® = wy (1 4+ v,/c). Using this expression, find the
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frequency distribution of radiating atoms: n, do = n (vg) dv,.
Finally, it remains to take into account that the spectral radiation
intensity I, o< n,.

5.52. SApop/Bhyar ~ 103,

5.03. T ~ 1.25-10%a*mc?k = 39 K, where a is the fine struc-
ture constant, m is the atomic mass.

5.54. About 2'. .

5.55. 8.45 and 1.80 A; 1.47 and 6.9 keV.

5.56. 12.2 A (Na). )

5.57. (a) Fe, Co, Ni, Zn; Cu is omitted (1.54 A); (b) three ele-
ments.

5.58. 0.25, 0.0, and —2.0.

5.59. 15 kV.

5.60. Cu.

5.61. 5.5 and 70 kV.

5.62. In molybdenum, all series; in silver, all series with the
exception of K series.

5.63. (b) Ti: 29 A. .

5.64. (a) 5.47 and 0.52 keV; (b) 2.5 A.
5.65. EL:m/@ﬂXm:O.5 keV, where o= > R* (2 —1)2,

5.66. ax = 2.84; a; = 10.

5.67. 1.54 keV.

5.68. 0.26 keV.

5.69. (a) T'ppoto = oo — Ex = 4.TkeV; Tauger = (Ex — EL) —
— E; = 10.4 keV, where Ex and Ep, are
the binding energies of K and L electrons;

S

(b) 0.5 A. 2N
5.71. (a) *Pyy; (b) Sy and 2Pyyp qy05 S AN
2Sy2; PPya, 12 and 2Dy, g7 é \\
5. K — L, M, two lines each; L — M, /‘/]1 \ \
seven lines. 4 \ \
5.73. (a) 0.215 A{(Ka‘) and 0.209 £ (K,,); P ¢ \ s
(b) 4.9-10-% A. NS
5.74. 115.5, 21.9, 21.0, and 17.2 keV. %
6.1. From the vector model (Fig. 67 in
which ng and pp are drawn, for the sake

of simplicity, coinciding in direction with
S and L), it follows that

p = pny cos (Lv J)+MS cos (Sv J)’ (1)

where pp=L¥5; pg=28%u, L=V L(L+1); S*=) S(S+1);

J¥=VJ (J+1). According to the cosine law
L¥2=J%2 L §*2__2J*8% cos (S, J);
S*2=J*2 L [*¥2__2J*L* cos (L, J).

Fig. 67

(2)
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Eliminating the cosines from Egs. (1) and (2), we obtain the sought
expression.

6.2. (a) 2(S), 2/3 and 4/3(P), 4/5 and 6/5(D); (b) 0/0(P,),
3/2(3P, and 3P,); (¢) g = 2 with the exception of the singlet state
for which ¢ = 0/0; (d) g = 1.

6.3. (a) 2F;,5; (b) 3D,

6.4. (a) 2V 3uz; (b) 2V 3/5pg.

6.5. S = 3; the multiplicity 28 -1 = 7.

6.6. 4/V 3; 13/V 15, and 4V T/5 up.

6.7. Vgpo
6.8. For both terms g=0; nu, _{ J.

6.9. V2% and }6n.
6.10. (a) The ground state 2Py, g=4/3,u=2V 5/3 up;

{b) the groud state “F3j, g==2/5, p=V) 3/5up.
6.11. On the one hand, dJ = [u, H] dt, where u is the magnetic
moment of the atom. On the other hand (Fig. 68), |dJ | =

m
5 v3f2
+1/2
Py -lf2
-5z

+//2
25//2

6 # G /2

Fig. 68 Fig. 69

= J* sin & dt, where J* = k) J (J + 1). Comparing the two
expressions, we obtain the sought formula.
6.12. (a) 0.88-10%°, 1.17-10%, and 0 s7'; (b) 1.32-10'° s-1 (3P,).

6.13. 2V 5% and 5V 5/4ug. Here g=1.25; J=4.
6.14. Here g= —2/3, that is why uttJ(not | as usual).

‘ OB 2:i R2zup o
¥ 6.15. fEHBW:W:411O 27 N,
6.46. B ™™ ayqiem,

9z a(e4-20) up
( 6.17. (a) 0.6, 5, and 6 pp; (b) five components; no splitting for
p=0(g=0).
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SRR

, : 2(a--2b)pp 9B
6.18. 6 = ———ET_—— 'a_z'
6.19. (a) Av = LugB/akc = 0.56 cm=1; (b) F,.
6.20. Three components in both cases.

6.21. AL = A%B/2nme® = 0.35 A.

6.22. AE = mch AMAZ = 5-10-5 eV,

6.23. (a) 2 kG; (b) 4 kG.

onhe  A) | 28 kG for Pjgj term
24, B—=0.122 . 22
6.24. (a) Az {55 kG for Py,» term;

guB
b B —01 thealRZ 0.59 kG for P3/2 term
(b) - " 1.18 kG for Py,s term;

gupn®

(C) 9.4 kG (fOI‘ P3/2) and 19 kG (fOI‘ Pi/z).

6.26. (a) Normal; anomalous; normal; normal (in the latter
case the Landé splitting factor is the same for both terms).

(b) In atoms with an odd number of electrons, the anomalous
Zeeman effect; in the remaining atoms, both normal (for singlet
lines) and anomalous (for lines of other multiplicity) Zeeman effects.

6.27. See Fig. 69. (a) To find the possible shifts, i.e. the values
of m g, — myg,, let us draw the following diagram:

=omm, up=_gJus.

1 38
2, m=+o ty 2 2z
32 5 .z _Z _&
G = *3 J 3 J
2 N7

SI/Z my g,= +] -]

The shifts:
) 3 i 1. 3 5 7. eB o
A(O—Tg, +—3—, +§’ —Fs T —--3—( nz—mc— ullltS).

In the diagram the arrows connect only those values of mg whose
difference (i.e. the corresponding transition) satisfies the selection
rule Am = 0, +1. The vertical arrows denote m components, the
oblique ones, ¢ components.

(b) 0.78 cm™.

6.28. 2.7.-10%.

+4, 48, +

6.29. (a) Ao=
i1v i31 i-15» i171 i"lgv 7.":21,
15 ’

6.30. (a) Ap="EL E2

(b) Ao =

; (b) Ao=ELT2
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the central m component is absent, for the transition AJ =0,
Am =0 is forbidden.

6.31. In the strong magnetic field both vectors, L and S, behave
independently of each other in the first approximation, and the

energy of interaction of the atom with the field is
AE = —(up) B — (ug)sB = (mp + 2mg) usb.

When a transition takes place between two levels, the Zeeman com-
ponent shift is Aw = (Amy + 2Amg) ugB/%. The selection rules
Am; = 0, 4=1 and Amg = 0 result in the normal Zeeman effect.

6.32. B=21 2%, 36 kG,

p AT

6.34. In the constant field B the magnetic moments of atoms are
oriented in a certain way relative to the vector B (spatial quantiza-
tion). The magnetic moment can change its orientation only due to
absorption of a quantum of energy from an ac field. This happens
when this quantum of energy is equal to the difference in energies of
both states (orientations). Thus, Ao = (uz — pp) B, where pp =
= gmpg, m is the magnetic quantum number. Taking into account
the selection rule Am = +1, we obtain Zo = gppB.

6.35. B = 2nhv/gpg = 2.5 kG.

6.36. 5.6pp.

6.37. 3.4-10-¢ and 7.7-10-3pg.

aB 12n2I2R% x| _a6

639 f I.Laz WWI~7°103N.

6.40. The angular frequency of Larmor precession of an electronic
shell of atoms is equivalent to the diamagnetic current I = Zewy./2x.
The magnetic moment of circular current is p = n(p?)/c, where
©?) = {(x?) + (y?) is the mean squared separation of electrons
from the z axis taken in the direction of the field B. For the spherically
symmetric distribution of the charge in an atom (x%) = (y*) = (2%
and (r?) = (2% -+ (y?) + (%) = (3/2)(p?). Whence, y = uN/B =

— (Ze®N[6mc?) (r?).

6.41. (r%)= \ rip2hnre dr = 3r}; 4= —2.37-10" cm3/mol.
v
6.42. 0.58, 0.52, and 1.04 A.
3;—3;2- Vo where Vy=4n g o(r)rdr, p(r)is the vol-

0
- ume density of the electric charge in the atom at the distance

6-43. Bo= -_—

* r from the nucleus.

6.44. (a) The number of molecules, whose vectors p are confined
in the elementary solid angle dQ = 2x sin ¢ d&, is equal to
dN = Cea % sin ¢ d®, a = uB/kT,
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where C is the constant. This is the number of those molecules whose
magnetic moment projections are equal to pp = p cos ¢. Hence,
{ upadN
S aN
The integration with respect to ¥ is performed between the limits

from 0 to .
(b) p2B/3kT and p respectively.

{(up) = :p.(cotha—%).

6.45. 0.45 cm3-K/mol, 1.9pgp.
6.46. 1.6.1077.
6.47. (a) n = tanh a; @ = mgpgB/kT; m is the magnetic quan-

tum number; g is the Landé splitting factor. In thls case N X a =
= 0.0056; (b) n = coth b — cosech b; b =gV J (J + 1) BB/AT.
In this case n ~ b/2 = 0.0049.

6.48. I = Nugtanha; a = pBB/kT I = NugB/kT at a < 1.

2 sinh
6.49. (a) M= Tjrfé‘lc‘-(gﬁ =a=0.0037; a=JgupB/kT;

sinh b4 sinh 30 .

6.50. (up) — 2upe"BAT gup D mem

EeuB/hT Zeocm !

the summation is carried out with respect to m (magnetic
quantum number) from — J to +J. For a weak magnetic field
o & 1 and therefore e*m =1 + am. Then X me* = aZm? =
=aJJ X (J 4+ 1) 2J + 1)/3; Zexm = 2J 4 1. The rest of the
proof is obvious.

6.51. (a) 0.375 cm®-K/mol;

6.52. 6.6-107% cm3/g.

o = gusB/kT. Here

(b) 0.18 erg/G.

7.1. (a) 1.5-102 and 4.2-10* ¢V; (b) 3.3-10'® and 6.4-10% s-L.
7.2. 2 and 3.

7.3. 3.465.

7.4. 117 and 3.8 K.

7.5. N,/N, = (g,/g,) e*hB/ET = 1.9,

7.6, 5.7-10°% and 1.9-10% dyne/cm.

7.7. Uy=D+hw/2=4.75 eV; a=or, ) w2U,=1.43.

7.8. (a) zo=V Rlop=0.124K; (b) V @®) =V #l20p=0.0884A .

7.9. ko (1 — 22) = 0.514 eV; 33.7 times.

7.10. 534 K.

7.41. AE = ho (1 — 2z) — ABJ (J + 1) = 0.37 eV.

7.42. 13 levels.

743, vpax = 1/22; Epgx &~ holdr and D = Lo (1 — 2z)/4z. For
a hydrogen molecule vp,x = 17. Epax = 4.8 €V, D = 4.5 €V.

7.14. z ~ 0.007.

7.45. Dp— Dy = (hwy/2) (1 —V pg/pp) =0.080 V.
7.16. Ny/N, = e-roUi-i0/hT =0,02. At 1545 K.
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7.17. xz _ _2.71__+__1___e—[71m(1—2x)—nBJ(J+1>]/hT _.0.01.
1
N} _ _
7148, (E)— >4Eue Ep/kT _ EEue aEp
N~ Eo/kT N -aBo ’

where £, = hu;_(v 4-1/2), a = 1/kT, with the summation being
carried out with respect to v in the interval from 0 to oc. The cal-
culation is performed as follows

d _ d g~ ®hw/2 ho hw
(By= — grn (Zeab) = — o In o = o o
7.19. (a) T ~ hoe=T40 K;
(b) T = fo> — 630 K.

kIn [1F /BT (J+£1)]

7'2(). Cvibr _ R (hm/kT)geﬁﬁ)/kT ~ { R (hOJ/kT)ZE_hm/kT

(ehOTRT 1) R. .
Here R is the universal gas constant.
7.21. 0.134, 0.56, and 0.77R; R is the universal gas constant.
7.22. 1.93-10-% g.cm? 1.12 A,
7.23. (a) B’ = (A, — A)/2MAy = 11 cm~t; 2.6-107%° g.cm?
(b) 4 - 3 and 3 — 2 respectively.

7.24. Decreases by 1.05 (J =2 —J =1).
7.25. 13 lines.

7.26. © = 20 (3vgy —vop) = 5.0.10% 571, z— > WYz __0 017,
2 3vor—vor
7.27. From the condition 7w = hw, + AE; 5, we get
o =00, B J +1)—-J T+ D
Taking into account the selection rules AJ = 41, we find
JS=J+1, o=w,+2BJ+1), J=0,1,2,...,
J=J —1, o= e, — 2BJ, J=1,2 3, ...
It can be readily noticed that both formulas can be combined into
the one given in the problem.

7.28. B' = 21 em™, [ = AldneB’ = 1.33-10-%° g.cm® The wave
number of the “zero” line which is absent due to exclusion AJ 5= 0
is vy = 3958 cm~!. From the ratio v,, = v (1 — 2z), we obtain
z = 0.022.

7.29. AMA = Ap/u = 1.5-1073; n is the reduced mass of the
molecule.

7.30. |Avyip | =

veib = 28 em™; | Avpot | = Vot =

Ap
20
=0.10 cm™; Avyip/Avyr =280. Here p is the reduced mass of
the molecule.
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7.31. o=nmec ( ; — 73 )=1.37-10”* s~1; 5.0.-10°% dyne/cm.
7.32. ©=2nc V(11_}_—__(§;;/Z);_1 =7.8.101571,

7.33. I,/I, ~ e-1(1-29)/kT ~ (.07. Will increase 3.8 times.

7.34. In the transition E,-—> E, (the first stage of the process)
J. = J, = 1. In the transition to the final state £, — E (the second
stage) J = J, +1 = (J, 1) £ 1,ie AJ =0, £2.

7.35. (a) From the condition Zw = Zw, — AE,;;, we get

=0, — B (J +1)—J + 1L

Thus, taking into account the selection rule AJ = 42 (for shifted
components), we obtain
J =J+2 o=w,—2B2J+3), J=01,2,...
J' =J—2 o=uw,+2BC]—1), J=2,34 ...
Both formulas, as one can easily see, can be combined into one given
in the text of the Problem; (b) 1.9-107% g.cm?, 1.2 A.

7.36. B' = AM/12)% == 2.0 em™!, 1.4-107% g.cm®

8.1. 4.29 and 3.62 A.

8.2. 2.17 and 1.65 g/cm?®.

8.3. The plane {hkl) lying closest to the origin placed at one of
the sites of the lattice cuts off the sections a/k, a/k, and a/l on the
coordinate axes. The distante between that plane and the origin
is equal to the interplanar distance d. Denoting the angles between
the plane’s normal and the coordinate axes z, y, z by «, f, y respec-
tively, we obtain: cos a = hd/a; cos p = kd/a; cos y = ld/a. Now
take into account that the sum of the squares of these cosines is
equal to unity.

8.4. (a) a,

a

a-
ver v

a a a . L
b) 79 1/‘§ 3 2]/3’(0) 3

Q

a
2v2° Y3’
8.5. 10 and 8A.

(1:/2:V3 (simple),

8.6. Iygo:lyp:1yqy == { 1:1/2:1/3/2 (space-centered),

1:¥2/2: V'3 (face-centered).

8.7. Suppose the edge of the lattice cell is a = nd,, where n is
an integer. It can be ecasily found that when n = 1, the cell con-
tains 1/4 of an atom which is impossible. When n = 2, the cell
has two atoms. In our case the crystal belongs to the cubic system
with 4-fold symmetry axes, and therefore the second atom should
be located at the cell’s centre. If it is the case, then d, must be equal
to d, V2, which is indeed so according to the condition of the
problem. Consequently, the lattice is space-centered cubic.
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8.8. The diffraction maxima are located at the intersection points
of two sets of hyperbolas: a (cos oo — cos &) = kA,
b (cos p — cos B,) = k,h, where a,, B, are the angles between the
direction of the incident and the lattice directions along the periods
a and b respectively; o, P are the angles between the diffracted beam
and the same lattice directions.

8.9. a(cosa — 1) = kA; bcosp = kyh; ccosy = kgh. Taking
into account that cos® o + cos? p -~ cos?y = 1, we obtain:

A= — 2 (ki/a)
(k1/@)? + (ko /b)? + (kg/c)* °

8.10. Taking into account Laue’s equations a (cos o — cos a,) =
= kih; a{(cos B — cos Py) = kyh; a (cos y — cos y,) = kgh and the
relations cos® a 4 cos? § 4 cos? y = 1, cos? oty - cos? By + cos?y, =
=1, we get

. kq cos oy 4k, cos By kg cos vy,
A= —2a KT R A3 :

8.11. Find the sum of squares of left-hand and right-hand sides of

the Laue equations:

2a*[1 — (cos ay cos @ + cos By cos B 4 cos y, cos 7)1

= (k2 + B+ k) A
It can be easily seen that the sum of cosine products equals ngn =
= cos 2¢, where n, and n are the unit vectors oriented along the
directions of the incident and diffracted beams forming the angle

29 equal to the doubled Bragg's angle. Then the former expression
takes the following form:

2asin O/ R k2t k2=

Since a/V k* + k¥ + kX = d/n, where n is the greatest common
divisor of the numbers &y, ky, ky (k, = nh, k, = nk, ks = nl; n, k, 1
are the Miller indices), we obtain 2d sin & = nh.

8.12. 5.8 A.

8.13. 1.19 A; 58°.

8.14. (a) 37 and 40 mm respectively.
o sin 9 {0.563/nA for (031);

O = e 10626/ A for (221), n—1,2, . ...
8.45. 7 — a sin (@/2) =1.7 A

V k2 k3— 2k, k, cos (/2)

ki and k, are the reflection orders.
8.16. First find the periods of identity I along the [110] and [111]
directions. According to Laue I cos ¥, = nA, where 9, is the angle
between the rotation axis and the direction to nth layer line; I,,,=

=29 A, I,;, = 7.1 A. Their ratio corresponds to a face-centered
lattice (see the solution of Problem 8.6); a = | 2/I,;, = 4.1 A.
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Lattice type \ 1 (100) ‘ (110) (111)

Space-centered ‘ odd — odd

Face-centered odd odd —

8.18. TFace-centered: (111), (100), (110), (311), (111).
Space-centered: (110), (100), (211), (110), (310).
8.19. (a) 38; 45; 63; 78, and 82°% (b) 42; 61; 77; 92, and 107°.

8.20. From the formula sin 9 = ;"—a V h*2 4- E*2 - 1%2 deter-

mine the values of the sum of the squares of indices 2*, k*, I* and
then find (by inspection) the indices themselves: (111), (311), (511),

(333). Respectively, 2.33, 1.22, 0.78, and 2.33 A.

8.21. The first diffraction ring corresponds to the reflection of the
first order from the set of planes (111): a = 2;”)[’ V2442 =
= 4.1 A.

8.22. Space-centered.

8.23. The energy of interaction of an ion with all other ions of
the chain is

1 1 1 e
U=2e(g—ggtae—ar )

f— . .

where oo =21n2=1.385, a is the ionic separation.
8.24. (a) | U | :Nocz—:(i——}l—), where N is the number of

ionic pairs in the crystal, r, is the equilibrium distance between
neighbouring ions of opposite sign; (b) 8.85 and 11.4.

8.25. (a) p = (AV/V)/K = 0.3 GPa; (b) expand the function
U (V), the binding energy of the crystal, into series in the vicinity
of the equilibrium value Ul:

U= U, + 0UIdV)y AV + (*U/dV§ (AV)?2 + .. ..

Taking into account that at equilibrium (0U/dV), = 0 and 1/K =
= V, (0*U/9V?),. we get the expression for the energy increment
U — U,, whence for the volume density of energy we have

u — u, = (AVIV)}2K = 1.4 J/ecm?®.

8.26. (a) Taking into account that p = —aU/dV, we obtain
1 _y U _ aet(n—1)
K TV TavE T T 18r}
where ry is the equilibrium separation of neighbouring ions, a is
the lattice constant; (b) 0.77-10% kJ/mol.

94
y n=ld =91,
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27at

827. n=1+4+—F——=11.9; U=0.63-10% kJ/mol.
2V 3ae2K
8.28. From the condition of the maximum value of p = —aU/3V
we obtain

rm\*~!_ n—+3 - 9at
()" =" ne g =04,

where r, is the equilibrium separation of neighbouring ions, a is
the lattice constant. As a result, r,/r, = 1.147. The corresponding
pressure is

| P | = [ 1 —(2)"" | =4.2 GPa.

8.29. (a) U-— N 2& (1ﬁ—), 0=0.112r,= 0.3154 ;
Ty

(b) K = 9pa4/4oae32 (a — 4p). Here r, is the equilibrium separation
of neighbouring ions, a is the lattice constant.

8.30. £ 3N (45 + —r— )

ho/RT __

. B N2 gh@/kT 3Nk,
CV:id]Vk (ﬁ) 1)2 {

@OFT 2 — | 3Nk (ho/kT)2 e-to/RT,
8.31. (a) Write the equation of motion of the nth atom
2un + un-l)'

The solution of that equation is to be found in the form of a standing
wave: u, = A sin kx sin o¢, where k is the wave number equal to
2n/\, z = na is the coordinate of the nth atom (n = 0, 1, 2,

., N —1). Such a solution satisfies immediately the boundary
condition u, = 0. The boundary condition for the other end of the
chain u,_, = 0 is satisfied provided sin ka (N — 1) = 0. Thus we
obtain the spectrum of eigenvalues of the wave number:

mii, =« (urrH - un) “+ % (un—-i — un) = X (un+1 —
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(when i = 0, then N — 1 sin kxz = 0, i.e. the solution allows no
motion at all). Thus, the displacement of the nth atom can be repre-
sented as a superposition of standing waves of the form

k= N2

Up; = A; sin k;na-sin ;.

(b) Substituting the expression for u,; into the equation of motion,
we find

o; =2V u/m sin (k;a/2).

It is seen from this equation that the number of different oscillations
is equal to the number of possible values of the wave number £;,
i.e. N — 2, or, in other words, to the number of oscillatory degrees of
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freedom of the given chain. wmay = 2V #/m; Apin = 2a.

; kia/2 J—
(C) Ui __2 l/ H S]Il(v.(l/ ) : L,I::al/%/m - COI]St; -vv—lh:%.
S
@ ‘”m*mdm'
8.32. (a) dz, :————dm (b) 0= —"— m“w ; (¢) taking into account

that E:(j (¢w) dZ,, where (g,) is the mean energy lof the

quantum harmonic oscillator with frequency », we obtain
8/T

1 T U zdr
E=Ro (- + ex_1).
0

To determine C = AE/97T, the integral should be differentiated with
respect to T (see Appendix 14). Finally we get

r % pa 0/T R
xrax v
0—3(2'9‘05 L) "{ (2/3)RT /0.

The value of the irttegral in the case of 6/7 — oo can be taken in the
same Appendix.

8.33. (a) dZ, = (S/mv?) 0 dw; (b) 8= (R/k)V 4nw2N/S;
1 Vi o 2(? 9/"T 2d 0/T
xz X x x
(©) E=4R0(x+g | )5 C= 43(3 | —ex—re*_en_i)’v
°R, °
{ 98 ORT2 /02 < See the solution of the foregoing problem.
8.34. (a) dZ,= (3V/2n23) w2 dw; (b) 0= (A/k)V bn23N/V;
1 74 e 3 d e/’T 3d 8/T
| T x x X ~
(C) E:QRG (E—TF 5 ——ex ) C 9R(4 —ex—i—e—Q/T_1) ~
0
3R,
{ (12/5) n2RT3/69 See the solution of Problem 8.32.

S 13 8N
8.35. (a) dZw:%(T—J- 5 )md(o 0= ]/S(”z2+1’22) ;

v n 3 182N
0) 470 = g (S + ) 0 o 0= |/ ey

8.36. 470 K (see the f01mula for 6 from the solution of the fore-
going problem).

8.37. (a) 1.8; (b) 4.23 kI/mol.

8.38. 20.7 and 23.8 J/(mol-K); 5% less.
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8.39. It can be easily checked that in this temperature range the
heat capacity C o« T3, and therefore one can use the low temperature
formula for heat capacity. 8 ~ 210 K; £, = 1.9 kJ/mol.

8.40. (a) 8 = 2.2.102 K; (b) C = 12.5 J/(mol-K); (€) ®max =
= 4.1-1018 -1,

8.41. Awmax =5.2-1071% erg; pmax = Akmax = nhlry ~1071% g.cm/s.

8.42. (b) From the condition drn/de = 0 we get the equation
e (2 — z) = 2, where z = Aw/kT. Its root is found either from its
graph or by inspection: 2, ~ 1.6. Thus, Awp,, = 0.848; (¢) T =
= (0.6258; (d) n oc T® and n o T respectively.

8.43. Due to the photon-phonon interaction the energy of the
photon changes by the value of the phonon energy: Ao’ = Ao =+ Ao,
On the other hand, from the triangle of momenta it follows that

(hog/v)? = (Aw'lc')? + (Aw/c')?* — 2 (Aw'/c’") (Aw/c') cos O.

Eliminating o’ from these two equations, we obtain
1 1 2 ® \2 g
(_0_2-_.0,_2)@8,2(6—,) (1iT)(1—-cosﬁ).

Taking into account that v < ¢’ and 0y € ®, we can omit the cor-
responding infinitesimals in the latter expression and thus get the
sought formula.

8.44. (a) At thermal equilibrium the ratio of the number of atoms
NN, on the upper level to NV, on the lower one is equal (in accordance
with the Boltzmann distribution)

No/N, = e 8ERT; N, = N/(1 + eAB/rT),

where N = N, 4 N, is the total number of atoms. The internal
energy of the system is £ = N, AF, whence

oE ( AE )2 eAE/RT
(

Co=gr =Nk 3 ) 5y

(b) Designate kT'/AE = z. From the condition 4C;/dx = 0, we
obtain the equation e1/* (1 — 2z) == 1 + 2a. Its root is found either
from its graph or by inspection: z, =~ 0.42.

(©) Cimax __ 0.44

7 =— — ~ 2.103.
lat 2.34-102

9.1. The number of states within the interval of momenta
(p, p -+ dp) is

__ Amptdp OV,
A2 = 55- Apgy Ap,  2mars P dp .

Since each phase element of volume Ap, Ap, Ap, can contain two
electrons with antiparallel spins, the number of electrons in the
given interval of momenta is n (p) dp = 2dZ,. Transforming to
kinetic energies, we obtain

V Y 2m?
n(T)dT =

VTdr.
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9.2, Tmax= 5 (3n2)*/5=5.5 eV.

9.3. (a) (3/5)Tmax; (b) 31.2 kJ/cm?®.

9.4. 0.65.

9.5. 3.24-10* K.

9.6. AE = 2n2A%/mV(3n%n)® = 1.8-1022 V.

9.7. By 0.1%.

9.8. n (v) dv = x (m/mh)®? dv; (a) (3/4)vn; (b) 3/2v.
9.9. 1.6-10% and 1.2-10% m/s.

9.11. n (A) dh = 8nd~* dA.

n? o, kT . Ce _ n® kT _
9.12. (a) CeI:”Z—R E-fo’ Clat —_6"Tf0‘—-7610 3, Here we
took into account that the given temperature exceeds the Debye
temperature, so that Ciy;—=3R (Dulong and Petit’s law).

(b) From the nature of the temperature dependence of lattice heat
capacity, it follows that the indicated heat capacities become equal
at low temperatures. Making use of Eq. (8.6), we obtain 7' =
= (5k03/2472E ;)% = 1.7 K.

9.13. The number of free electrons with velocities (v, v -+ dv)
falling per 1 s per 1 cm? of metallic surface at the angles (8, ¥ + d9)
to the surface’s normal is

i vcos 0.

tv=n(v) dv
Multiplying this expression by the momentum transferred to the
wall of metal on reflection of each electron (2mv cos ¥) and integrat-
ing, we get

h2

e (3n2n)""* = 5 GPa

p= S 2mv cos O dv =

The integration is performed with respect to ¥ in the interval from 0
to m/2 and with respect to v from O to vmax.

g (E) dE
9.14. (a) n(v)dv= ZJ-EZZ dl; = Zmﬂ)dv

dv. The following der-

ivation is obvious.

(b) 7 (vs) dvx =2 (m/2mh)? dvy | dv, dv, = 2 (m/2aR)® (v — v3) X
X dv,. The integration is convenient to perform in polar coordi-
nates dv,dv,=pdp dp, where p:—]/m (with p going from O
to pp =V m).

9.15. Orient the z axis along the normal of the contact surface

and write the conditions which the electrons passing from one metal
into the other must satisfy:

2
muv,y muo,

2
2 .
5 + ¢y = zx + Qa5 Uyt =VUya; Vg1 ="Vsa, (1
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where ¢ is the potential energy of free electrons. The number of
electrons falling per 1 s per 1 cm? of contact surface is

dvy = vgn (V1) Avy;  dvy = Uxen (V) dV,.
At dynamic equilibrium dv, = dv,, and since according to Eq. (1)
Ugy AV) = Uy dV,, then n (v,) = n (v,). Consequently, £, — E;, =
= E; — E;. Since E; + @, = E, + ¢,, we get Efl + ¢ =
= Ejy + s

9. 16 Orient the z axis along the normal of metallic surface and
write the conditions which the electrons leaving the metal must
satisfy:

mv,z mvz

_sz 2x —I—U, UZ;::

Vy; Vz=Ug (1)

where the primes mark the electronic velocity components inside
the metal; Uis the potential barrier at the metal’s boundary (£;+4).
The number of electrons leavmg 1 cm? of the metallic surface per 1 s
with velocities (v, v - dv) is

( )3 U; dv’

orh | |y B -EP/T

dv=ven(v)dv' =2

=2 (%)3e—(A+E)/kTvx av. (2)
Here we took into account that according to Eq. (1) vy, dv' = v, dv
and that £’ — E; = E + A and kT < A. Write Eq. (2) in spherical
coordinates (v, = vcos ¥, dv = v?sin ¢ d0 dv dg) and integrate
with respect to ¢ from O to 2n and with respect to ¥ from 0 to x/2.

9.17. (a) 2kT; (b) j= "”‘2’;3 T2e-AMT; (¢) 4.1 6V.

9.18. Let us count the energy values off the top of the valence
band. Ignoring unity in the denominator of the Fermi-Dirac function,
we obtain the following free electron conceniration

mkT )3/2 (5 =BT
202

n,— S n(E)dE =2 (gos
g
where £, is the level corresponding to the bottom of the conductlon
band. On the other hand, the hole concentration is

?

nh—‘(S fhgh dE = 2( ;nk;; )3/2 ¢ FHAT

-0

where fr=1—f,= T E*T and g, dE =g, dE = ‘/22;'; V =<EdE. ‘
Since n, = ny, E; — E;, = — E; and E; = E, /2, that is !
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B Loy

the Fermi level lies in the middle of the forbidden band. Hence;
Re = ny, = 2 (mkT/2nh?)3/2 e-AE2RT

where AE, is the width of the forbidden band.
9.19. (a) Counting the energy values from the level of donor atoms,
we find the concentration of conduction electrons:

mkT ‘] 3/2 (By—E )hT

no— | n(E)dE =2 (4o

By

where £, is the level corresponding to the bottom of the conduection
band. On the other hand,

ne = ng [1 — f(0)] =~ e-Es/kT, (2)
Multiplying Eqgs. (1) and (2), we obtain
ng = 2ng (MET/20h%)32 e-EgikT,

whence follows the formula given in the problem.
(b) From the comparison of Egs. (1) and (2), we get

By =5 B~ [ L (22,

e 2 ng \ 2mh? j

: (1)

It is seen from here that at 7 — 0 £, = E,/2, i.e. the Fermi level
lies in the middle between the level of donor atoms and the bottom
of the conduction band.

9.20. 2.6-10* s, 3.1-10"% ¢m, 46 cm?/(V.s).
9.21. n=)1+U/T =1.02, where U="Tpnax+ A4, A is the work
function.

9.22. Since mz — —eF, where £ = —4nP = 4nnex, then
wo=V 4nner/m=1.6-101° s7!; g =ho ~ 11 eV.

9.23. Since mz = eE, cos of, then z = —(eE,/mw?) cos wi. Tak-
ing into account that the electric polarization P = nex, we obtain:

_ P 4rnetlm ©n V2
smi+4n7_ 1|——®‘T——1 _(0_)0) ,
where o, is the electronic plasma oscillation frequency.

A metal is transparent to light if its refractive index n = Ve
is real (otherwise the reflection of light is observed). Hencs,

A< 2mc Y mlhnne? =0.21.

9.24. When v electrons (v is considerably less than the total
number of free electrons) are promoted to non-occupied levels, their
kinetic energy increases by v2 AF, where AFE is the interval between
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the neighbouring levels (see the solution of Problem 9.6). On transi-
tion of the next electron, the kinetic energy increases by 2v AE, and
the magnetic energy decreases by 2puB, where p is the magnetic
moment of the electron. From the equation 2v AE = 2uB, we find v,
then the total magnetic moment of unpaired electrons I = 2vp
and parimagnetic susceptibility y:

K= =T (3n) S 61077,

- 1 dp AE, nhe -
9.25. a4—3'ﬁ— T oRTE T T NETE ~ —0.047 K E
where p ~ eAE0/2ET, AF is the width of the forbidden band.
9.26. E-=ile 1y~ 0.34eV.
27 4

9.27. 1.2 and 0.06 eV.
9.28. Ac/lo=1—en(b,+ b,)p=0.15: n =2 (mkT/2nAk)%? e~AE/RT,

— (e—p)pe
9.29. ©—1/In [(p_pz) pl] =0.010 s.

9.30. 0.10 eV.
9.31. (a) 1.0-10% em~3; 3.7-10% cm?/(V-s); (b) from the conduc-
tivity formula o = ne?’t/m, where T = (A)/ (v), we obtain

hy = % V 8mkT7n —=2.3.10- cm.

9.32. R = [pV/dBU = 1.4-10717 CGSE unit; 5-10" ¢m=3; 5 x
x 10% em?/(V.s).

9.33. In the presence of current, both electrons and holes are
deflected by a magnetic field in the same direction. At dynamic equi-
librium their flux densities in the transverse direction are equal:

Rellg = Rplp, (1)
where u are the transverse velocities of directional motion of charge
earriers. As u = bE? :—ch(fL T eE,), where b is the mobility,

f1 is the Lorentz force, and £, is the transverse electric field strength,
Eq. (1) can be rewritten as

Robe [ £ veBB—eE L ) =miby (S viB +eEy ),
where v = bFE, I is the longitudinal electric field strength. Finding
the ratio £, /EB, we obtain

E E, 1

R=—2= =
iB oEB ec  (nebe+npbp)? °

neb?—npb}

9.34. b, — b, = cE,/EB = 2.0-10® cm?/(V-s).
9.35. (a) 1:4.4; (b) 0.32.

10.1. 1.5-10" g/em?; 8.7-10% N/cm?; 7-10.
10.2. 1.2.10'2 ¢cm.
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10.3. 4.5-10-1% cm.

10.4. 1 a.m.u. = 1.00032 of old unit; decreased by a factor of
1.00032.

10.5. The atomic percentage is 1.11%; the mass percentage is
1.2%.

10.6. 1.007825, 2.014102, and 15.994915 a.m.u.

10.7. (a) ®Be, E;, = 56.5 MeV; (b) 5.33, 8.60, 8.55, and 7.87 MeV.

10.8. (a) 6.76 and 7.34 MeV; (b) 14.4 MeV.

10.9. 6.73 MeV.

10.10. 10.56 MeV.

10.11. 7.16 MeV.

10.12. 22.44 MeV.

10.13. AE, = 6.36 MeV; AU, = 6.34 MeV. The coincidence is
due to the approximate equality of nuclear forces between nucleens.

10.15. 4.1-107** m (AEy = 4.84 MeV).

10.16. (a) 341.8 and 904.5 MeV (lable values: 342.05 and 915.36);
(b) 8.65 and 7.81 MeV (table values: 8.70 and 7.91); (e) 44.955 and
69.932 a.m.u. (table values: 44.956 and 69.925).

10.17. From the condition dMy/dZ = 0, we obtain Z, =

A
= 1.9710.0149 425
tain 44.9 (47), 541 (50), and 59.5 (53) respectively, where the
values of Z of the given nuclei are indicated in parentheses. Conse-
quently, the former nucleus possesses the positron activity, and the
remaining nuclei, the electron activity.

10.18. 2; 2; 1; 2 and 4.

10.19. 7/2.

10.20. Four components.

10.21. N is equal to the number of different values of the quan-
tum number F, i.e. 2I + 1 or 2J + 1 respectively for 7 << J and
I > J. If at different values of J of either term (a) Ny = N,, then
N =24 1; (b) N;5= N,, then N, = 2J, -+ 1.

10.22, Here the ratio of component intensities is equal to the
ratio of statistical weights of sublevels of the splitted term:

10/6 = (2F, + 1)/(2F, +1) = (I + 1)/I; I = 3/2.

Calculating Z,, from this formula, we ob-

10.23. The energy of magnetic interaction is £ = u 8B, cos (1, I},
where
cos (I, J)= FELHTUAN TG+ |
2V TTFOT T+

Since the values of I and J are the same for all sublevels, we find
that E o< [F (F +1) — I (I + 1) — J (J + 1)]. Thus, the interval
between neighbouring sublevels 8Fp, piq oc F - 1.

10.24. 1t is easy to notice thai the number of the components of
the given term is determined by the expression 2J -+ 1. It can be
thus concluded that 7 > 3/2. From the rule of intervals, we have
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4:5:6=(F +1):(F +2):(F + 3), where F = I — J. Hence,
I = 9/2. The given line splits into six components.
0.25. 1 +3-+5+7=16.
10.26. 2 and 5/2.
10.27. w = g.B/2mc, g, is the gyromagnetic ratio. 1.76-1010,
2.68-107, and 1.83-107 s-1, respectively.
10.28. g, = 2ahvy/uyB = 0.34; p = g Ipy = 0.85p .
10.29. p = 2n#vI/B, whence pr; = 3.26py, pr = 2.62p 5.
10.30. Ty,.x = (A%/2m) (3n®n)%°® ~ 25 MeV, where m is the mass
of the nucleon; n is the concentration of protons (or neutrons) in the
nucleus.
10.31. 1s§*/21p§/2; Lst 318,101 195 1sf/21p§/21pi*/21dg/2.
10.32. 5/2 (4+); 172 (+); 3/2 (+); 7/2 (=); 3/2 (=).
10.33. From the vector model similar to that shown in Fig. 67,
we have: pw=p,cos(s, §)+u;cos(l, j). Substituting in the latter
equation the following expressions p, = gsuy; W = gilun;
R j2+l2_82 R j2_82_ 2 —_—
cos (8,1) = gy oos {1, j)= 5T , where s =1}/s(s +1);
1= =V T0+1); i=V7G+1), we obtain
gs+8 | G ssHN)—L(I+1)
2 b2 iG+1) :
ow it remains to substitute s = 1/2 and j = [ 4= 1/2 into the last
xpression.
10.34. In nuclear magnetons:

We=g Ny g5 =

=t f=t-g s1/2 Py/2 P32
Wn —1.91 %j —1.91 0.64 | —1.91
]
Mp j+2.29 (1_?_29)]- 2.79 | —0.26 | 3.79
7 +1

10.35. For fy/5 upi=0.86u x; for f7/5 up =0.79u 5, hence j = 7/2.

10.36. (a) 2.79 and —1.91p y; (b) —1.91 and 0.126p , (experimen-
tal values: 2.98, —2.13, —1.89, and 0.39).

10.37. In accordance with the nuclear shell model it is natural to
assume that the unpaired proton of the given nucleus is located on
the 2s,), level. In this case the magnetic moment of the nucleus is
equal to 2.79u 5 (see the solution of Problem 10.34). If one assumes
that this proton is located on the next level 1d,,, the magnetic
moment becomes equal to 0.124p , which drastically differs from the
mz;giniitucie givegyl in the text of the problem.

do 1 — e M,

11.3. (a) 0.78 and 0.084; (b) 6.8-107% 0.31.
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11.4. 9-1077,

11.5. 0.80-10% s, 4.0 and 2.8 years.
11.6. 4.1.10% years.

11.7. 4 Ci.

11.8. 2.10'® nuclei.

11.9. 0.06 Ci/g.

11.10. 0.05 mg.

11.41. V = (4/a) e-* =6 L

11.12. Plot the logarithmic count rate vs. time. Extrapolating
the rectilinear section corresponding to the longer-life component to
t — 0, we find the difference curve (in this case, the straight line).
The latter corresponds to the other component. From the slopes of
the straight lines, we obtain 7; = 10 hours, 7, =1.0 hour;
Nio: Ny =2:1.
11.13. (a) The accumulation rate of radionuclide A4, is defined by
the equation

N, = AN, — ANy, and Ny + AN, = M Ny et
With the initial condition N, (0) = 0, its solution takes the form

I
Ny ()= Nyo

(e~Mt — e~hat),

P

(b) t,, = ll}—t% (¢) The ratio V,;/N, remains constant provided
both N, and ]\172 dépend on time alike. This is possible only when
e-Mt < e-Mt. The latter inequality is satisfied if A, is appreciably
less than A, and the time interval ¢ exceeds considerably the mean
lifetime of the more stable nuclide.

11.14. 4.5-10° years.

As max - Ay

11.15. y PP v

_;lﬂ (}"1/7"2)
R ST P
11.16. (a) The stable nuclide accumulates according to the

(e"‘ltm — ¢~Mim)y = 0.7, where i, =

equation N3 = A,N,. Substituting into this equation the expres-
sion for N, (¢) from the solution of Problem 11.13 and integrating
the obtained relation with respect to ¢, we obtain

Ng _ Mk ( 1—e~ Mt . | —e—hat ) —0.7
Nio ™ ha—Mh M s -
8
(b) ,cli‘:e—ht‘{';v 7»2)» (e~Mt —e-Mt) =0.55, i.e. the activity
0 27 M
decreases 1.8 times.

11.17, N () = Nyhihe (Ah; Ahgg + Algy Ay
Ahjp =h;— Ap.

11.18. About 0.3 kg.

~Agt 8—7\.2t e—?&st
T Aoy Ay

) , Where
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4:5:6=(F +1):(F + 2): (F + 3), where F = I — J. Hence,
I = 9/2. The given line splits into six components.

10.25. 1 +3 + 5 + 7 = 16.

10.26. 2 and 5/2.

10.27. © = gB/2mc, g, is the gyromagnetic ratio. 1.76-10°,
2.68-107, and 1.83-107 s-1, respectively.

10.28. g, = 2nhiv,/pyB = 0.34; p = g, Jpuy = 0.85pu y.

10.29. p = 2a#kvI/B, whence pr; = 3.26py, pp = 2.62u 5.

10.30. T, = (B¥2m) (3n2n)¥*? ~ 25 MeV, where m is the mass
of the nucleon; n is the concentration of protons (or neutrons) in the
nucleus.

10.31. 1s§/21pg/2; 1s§/21p§/21p}/2; 13?/21p§/21pf/21dg/2.
10.32. 5/2 (+); 1/2 (+); 3/2 (+); 7/2 (—); 3/2 (=).
10.33. From the vector model similar to that shown in Fig. 67,

we have: u=p,cos(s, §) +-p;cos(l, j). Substituting in the latter

equation the following expressions p, = gsuy; W = gilun;

. 2412 —s2 . jP—st— —_—
cos (s,j) = e 08 1, j= 517 , where s =1)/s(s+1);
==V 1(0+1); j=V7j(+1), we obtain

. gs+eg | gs—a Dl @+
BByt 8 =g e T

ow it remains to substitute s = 1/2 and j == I 4= 1/2 into the last
xpression.

10.34. In nuclear magnetons:

=1+ e s1/2 Piy2 p3/2
. —1.91 %j —1.91 0.64 | —1.91
j
b j+2.29 (1_ 2.29 )]. 2.79 | —0.26 3.79
i+1

10.35. For fy;, up'=0.86uy; for f7/5 up = 5.79uy, hence j = 7/2.

10.36. (a) 2.79 and —1.91p ; (b) —1.91 and 0.126p , (experimen-
tal values: 2.98, —2.13, —1.89, and 0.39).

10.37. In accordance with the nuclear shell model it is natural to
assume that the unpaired proton of the given nucleus is located on
the 2sy, level. In this case the magnetic moment of the nucleus is
equal to 2.79u y (see the solution of Problem 10.34). If one assumes
that this proton is located on the next level 1dg,, the magnetic
moment becomes equal to 0.124p , which drastically differs from the
magnitude given in the text of the problem.

11.1. 1 —e-M,
11.3. (a) 0.78 and 0.084; (b) 6.8.10-3%; 0.31.
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11.4. 9-107.

11.5. 0.80-10°% s71, 4.0 and 2.8 years.
11.6. 4.1-10% years.

11.7. 4 Ci.

11.8. 2.10" nuclei.

11.9. 0.06 Ci/g.

11.10. 0.05 mg.

11.141. V = (Ad/a)e-™ =6 L

11.12. Plot the logarithmic count rate vs. time. Extrapolating
the rectilinear section corresponding to the longer-life component to
t — 0, we find the difference curve (in this case, the straight line).
The latter corresponds to the other component. From the slopes of
the straight lines, we obtain 7, = 10 hours, 7, = 1.0 hour;
Nip: Ny =2:1.

11.13. (a) The accumulation rate of radionuclide 4, is defined by
the equation

N, = MN, — ANy, and Ny + AN, = AN, e M,

With the initial condition N, (0) = 0, its solution takes the form

A -
ﬁ:{Vz (t) = ]Vm }\'2_1_)‘,1 :(e-klt —e 7~zt).
I M/ . . ded
(b) ¢, = —_ (c) The ratio V,/N, remains constant provide
177 Vg

both N, and N, depend on time alike. This is possible only when
e-tat & e-Mt, The latter inequality is satisfied if A, is appreciably
less than A, and the time interval ¢ exceeds considerably the mean
lifetime of the more stable nuclide.

11.14. 4.5-10° years.

11.15. A;TX - x.ﬁxl (eMim — g~M'm) — 0.7, where i, =
il (A /Ay

11.16. (a) The stable nuclide accumulates according to the

equation ]V3 = AyN,. Substituting into this equation the expres-
sion for NV, () from the solution of Problem 11.13 and integrating
the obtained relation with respect to £, we obtain

Nig— ha—M

(b) —‘4—=e-7‘1t—}— Ay (e"vlf——-e"’“zt):(‘i.55, i.e. the activity
AO 7\42—%1

decreases 1.8 times.

/ o~ Mt
HAT. Ny (5) = Nighihs (AMZ Ahrs + ATy Aoy + ATy Ay
A;\/ik_—-—}\ri'—‘}\/k.

11.18. About 0.3 kg.

Ng Mhy [ L—e Mt g_e=Raty
( - - )_0.7.

e—)vgt e—?&at

) , where
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51.19. (a) The activity of either nuclide equals 10 pCi; (b) 0.05
mCi.

11.20. (a) 4.1-10%3; (b) 2.0-103.

11.21. (a) 40 days; (b) M = Mqe (e™ - At — 1) ¢/A = 1.0 pg.

11.22. N‘ (t):-)\’i (1._.e—7~1t),
1

7 ha —Aqt M -2
Nz(t)’x2(1+x1—xze S wey wlld ),

R W T
Ns(t)ﬁqll:t‘i‘ ;\'21()“1_9»2) + 712(7»2—141) ]

20y —
11.23. A= g (240 oM i et =0.4 Ci.

11.24. (a) 1.6%; (b) 4-103.

11.25. Q =T (1 4+ my/M) = 8.5 MeV; M is the mass of the
daughter nucleus; 1.9%; 3.8-10% m/s.

11.26. ('a)'Q = NoT (1 + mo/M) (1 — e ™) = 1.6-10* kJ, where
N, is the initial number of nuclei; A is the mass of the daughter
nucleus. (b) 0.8 mCi.

11.27. 5.40 and 0.82 MeV.

11.28. The energy values: 0, 0.11, 0.24, and 0.31 MeV.

11.29. The energy values: 0, 0.726, 1.673, and 1.797 MeV.

11.30. 29 MeV; 3.6-1071% cm.

11.31. —dUi/dr=F = m v?/r = p}/m,r3, where p, is the orbital
moment. Integrating this expression and taking into account that
p=aV1I{+1), we get Uyy="5*1(1+1)/2m,r2. The sought ratio

Uet: Rl (1+14

U‘“'Cf = 4(2_(2)—;”)‘(13 =1.6.10"2, R is the nucléar radius.
11.32. (a) Introducing the new variable ¢ in accordance with the
formula cos® ¢ = T/U (r), where U (r) is the energy of the Coulomb
interaction and r the distance between the a-particle and the daugh-
ter nucleus, we obtain after integration: )

is

®
D =exp [_n—ﬁ (290 —sin 2%)] ,

where @, corresponds to the height of the Coulomb barrier The
following derivation is obvious.

(b) 3.4 : 1.
11.33. A, = 1lv (1 + N /Ng) = 2-107 s-1.
11.34. T, = nh N ,/N, = 0.9-10~ eV.

P’V
11.35. 0.78 MeV.
11.36. 0:{ Mp—My in ﬁ“—(.iecay .'flnd K-capture;
Mp—Mp—2m, in positron decay.
11.37. (a) 6.0189; (b) 21.99444 a.m.u.
11.38. (a) impossible; (b) possible; (¢) possible.
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11.39. 1.71 MeV, T = Q (Q + 2mc?)/2Mc? = 18.5 eV, Q is
the decay energy.

11.40. p ==V Q (Q - 2mc?)/c = 0.94 MeV/c; Q is the decay energy.

11.41. (a) 0.97 MeV and 94 eV; (b) 0.32 and 0.65 MeV.

11.42. 9 = n—arccos (p./py) = 110°, pelpy=VY T (T +2mc2)/(Q —
—1).

11.43. 1.78 MeV.

11.44. 0.78.

11.45. Level energies: 0, 0.84, 2.65, and 2.98 MeV.

11.46. T ~ Q%/2Mc? = 9.5 eV; Q is the energy liberated in this
process; M is the mass of the atom; v = 7.0-10% m/s.

11.47. 0.32 MeV.

11.48. T = Q (2ho — Q)/2Mc* = 6.6 eV; Q is the energy liber-
ated in this process; M is the mass of the atom; 56 eV.

11.49. 0.41 and 1.25 km/s.

11.50. 26 keV.

11.51. 279 keV.

11.52. 145 keV.

11.53. 566 and 161 keV.

11.54. 1.2.10° electrons per second.

11.55. Aho/ho~= E/2Mc?* = 3.6-10-%; M is the mass of the
nucleus.

11.56. The probability of such a process will be extremely low
because the decrease in the energy of y-quantum (equal to double
energy of the recoil nucleus) is considerably more than the level
width T.

11.57. vy = fio/Mc = 0.22 km/s; M is the mass of the nucleus.

11.59. T' ~ 2hwv/c = 1-10-% eV; v is the velocity at which the
ordinate of the line’s contour is equal to half the maximum ordinate;
T 0.6-1071° s.

11.60. v = gl/c = 6.5-10"° cm/s.

11.61. The fractional increase in frequency of y-quantum “falling”
from the height I, Aw/e = gl/c® > T/E; whence, lye > 2.8 km,
lZn > 46 m.

11.62. (a) On radiation of y-quantum the atomic mass decreases
by 8M = hw,/c?, so that its mean kinetic energy, I' = (p®2M,
increases by 6T = (p?) SM/2M? = ho, (v*)/2¢%. Consequently, the
energy of emitted y-quantum is Ao = fw,— 87T = ko, (1~ (?)/2c%).

(b) Assuming M (v?) = 3kT, express the frequency of the emitted
v-quantum via the temperature o (7). Then find the fractional
increase in the frequency of y-quantum due to the temperature in-

crement 67 (8w/®)temp= — ziMkc?_aT' The gravitational fre-

quency increment of the y-quantum “falling” from the height [ is
equal to (8w/w,)er = gl/c*. From the latter expressions, we find
8T = 2Mgl/3k = 0.9 °C.

11.63. p’ = —0.15py; B = 3.3-10° G.
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11.64. Ap =~ p (n) An = 0.08.
11.65. 2.5-102 and 0.8-102.
11.66. Using the Gaussian distribution, we find that for gy = 2.0

pulses per minute and o = }/100, the probability pg, = 0.035;

eo/o

sz_n | e=x2 4z —0.62.
0

p8>80=2 :\u [)(8) de=1—

€9

}}gg fa; 32%; (b) 4.6%.
-08. (a) +£6 pulses per minute; (b) 28 minutes.

11.69. 50 + 5 pulses per minute.

11.70. Suppose that the radiation produces N, pulses in the
absence of the background. The corresponding relative standard

_deviation is ny = 1/})/'N,. In the presence of the background
M=V N+ Nyp/(Nppy—Np) =V 8/N 4,

for N,, = 2Ny. From the requirement M = N, We obtain N,, =
= 6N,.

11.71. Write the expression for the square of standard deviation
of the count rate of the source investigated and its differential:

2__ Irp np npy n
Of =—= 2. 9 . _ T _ _L
T T 20, do, 2y Aty t @o-

F'rom the condition for the least error (do, = 0) and the fixed total
time, i.e. di,, + dty = 0, we get ty/t,, = V nyln, ~ 1/2.

10,72, ¢, =PtV o Vo,
T e e T ey

~ 11.73. The counter is incapable of registering for the time wn
in tl}e course of every second. That signifies that tnlV non-registered
particles pass through the counter during that time. Thus, N =

= n + tnN, whence N = 3.3-10* particl :
11.74. 0.010 and 9%. p es per minute.

11.75.

=14 min,

N, =z ny

T—tng — T—wn =09.7.10% particles per minute.

11.76. T=L[1 _l/1 1 (mEny—ngy) ] Pty —n

Ryg ning 2nin,
The latter equation is valid for sufficiently s
mall v whe
does not differ much from n,. v "t

11.77. (a) In this case the recording facilit ill regi
from the counter, and n = N/ —i—gTN). ¥ Wit rogister all pulses

(b) The number of pulses produced in the counter is
n ==
= {V/(i + TN). Out of this number the recording facility \1Nﬂl
register
ng = nl_/(i '+‘ T2n1) = N/[1 + (1:1 + 1:2) N].
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11.78. N = n/l1 — (v, + 7,) n] = 6-10° electrons per second.

11.79. The electromechanical reader registers a pulse from a
Geiger-Miiller counter in the time interval £, ¢ + dt provided no
pulses are fed to the reader in the preceding time interval t — =, &.
The probability of that event is p == e~N*. Hence, the total number
of particles registered by the electromechanical reader isn = Np =
= Ne-Nr,

11.80. From the condition dn/dN = 0, in which the expression
for n (V) is taken from the solution of the foregoing problem, we
find N =1/%; v = 1lenpax = 8 ms.

11.81. The probability that the pulse from one counter is ac-
companied by the pulse from the other with time separation 47 is
equal to 2tn,. Consequently, An = 2tn,n,.

11.82. N =V An/2tq=4-105; v is the registration efficiency.

11.83. We have 0.05 = V (n,, + Any) t/n,t, where n,, =

= n, + Anp; Anp is the number of

coincidences per second caused by ——a

the background; Any = 2tnj. Hence, >

t = (n, + 47n2)/0.05%02 = 20 s. b
11.84. nymo/(ny + Mme) = 0.03%. .

12.1. Op,, = arcsin (m./m,) = 0.5,
12.2. The electron acquires the mo-
mentum p in the direction perpen-
dicular to the motion direction of the a-particle (Fig. 70).

Fig. 70

—-7/2
S ge cos O d¥

p= -\) fL dt= g

—o00 /2
Taking into account the law of conservation of angular momentum
r2} = const = —vb, where the minus sign is due to the fact that
94 < 0, we obtain

p = 2qelvb; T, = mqyq**mb*T, = 6 eV,

12.3. Consider the layer of thickness dz perpendicular to the
trajectory of a-particle. The number of electrons with aiming pa-
rameter in the interval (b, b | db) is 8n = n dx 2ndb db. The energy
transferred by the a-particle to these electrons, 8E = T, 8n, where
T, is the kinetic energy acquired by each electron. After substitution
of the expression for T, (see the answer to the foregoing problem), we
get

dE
Tdr

12.4. 0.17 MeV/cm.

12.5. (a) 23 : 1; (b) 2.4 : 1.

12.6. p > 27 kPa.

4ng2e?n db

T mev? b °
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12.7. (a) 2.8-10%; (b) ~1/3.

12.8. 14 mg/cm?.

12.9. 5.5 MeV.

12.10. 8 pm.

12.11. 75 pm.

12.12. 24 yum.

12.13. Since —dE/dz = ¢*f (v), where f () is a function of par-
ticle’s velocity, the range is

0

_ dE _m
R= Sq2f(v)_qu(v)’

v

where ¥ (v) is the function of the particle’s velocity and properties
of the matter. Hence,

Ry (v)= 2 R, (v); Rq(T)=24 R, (—m—p T).

mp mp mq

The range of the deuteron is equal to 4.6 cm.
12.14. 42 pm (see the solution of the foregoing problem).
12.15. (a) In the C frame, the Rutherford formula takes the form

do - (L2 v2_ dQ ~ (2 )z 27 sin & 4§
wo* ) 4sint (9/2) mev* /4 sint (§/2)

where p is the reduced mass, m, is the electron mass. Transform this

formu'la replacing the angular interval (5, & -+ dﬁ) with the corre-
sponding interval of kinetic energies of §-electron (T, T +dT),
taking into account that & = ; — 20; T = (—4% T, cos®* ¢

} me-tm ’
where ¢ is the angle at which the recoil electron moves in the [
fr:ame, m and 7 are the mass and the kinetic energy of the primary par-
ticle. The first formula follows from the vector diagram of momenta,
the second from the conservation laws of energy and momentum.

As Ty = mv*/2 and m, < m, then do = 28922 4T
mev? T
ot  2mng?e [ 1 .
(b)) N=n 5 do (1) = o ( T T ), where the inte-

gration is performed with respect to 7 from Tin to Thax = 2m 2.

1216, (a) Ty = (mo/dm,) Ty, = 20 MeV; (b) from. the con.
dition dN/dv = 0, we obtain 7T, = (my/2m,) Ty, = 64 MeV and
Nmax = nng?e®/ Ty, = 5.1; (c) qg = e.

12.17. 2.0 MeV/em; 19 times.

12.18. 114, 62, and 9.8 MeV.

12.19. ~20 MeV.

12.20. ~10 MeV/cm.

12.21. From the formula 7 = Toe™/'rad, we obtain —oT/ox —
= T/liae. Comparing this expression with the formula for

137
(0T10) 4y, We find Zrad:4rgnzz T (37757 360 m; 9.8 and 0.52 cm.
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12.22. 1.4 cm.
12.23. Finding out that the energy losses of electrons are pri-
marily of radiation nature, we obtain, using formula (12.6), T, =
= 0.11 GeV. Here [,,4 is determined from the formula given in the
solution of Problem 12.21.

12.24. The probability of y-quanta being emitted in the frequency
interval (o, ® + do) is equal to do = nl do. Whence,
0

. - 2o __~ 40-3
W=7 6‘9 o= 0-1072.

12.25. 0.36 MeV.

12.26. Finding out that these electrons sustain primarily ioniza-
tion losses, we use the formula defining the range in aluminium;
0.28 cm.

12.27. 0.8 m.

12.28. 0.3 g/em?2.

12.29. 0.2.

12.30. 1.6 MeV.

12.31. 50; 2.4.107% and 5.7-10-% cm.

12.32. cosﬁ:%[i —|—Mg%_—1)] z%, E is the total energy
of the particle. «

12.33. 0.14 MeV and 0.26 GeV; for muons.

12.34. 0.23 MeV. .

12.35. 0.2 MeV.

12.36. cm.

12.37. mm; 6 times.

12.38. 10-%; 5.1 and 4.4-10% cm.

12.39. d/d,;, ~ (In n)/In 2 ~ 10.

12.40. See Fig. 71, where Ax is the K band absorption edge.

12.41. (a) Fe; (b) Co.

12.42. About 10 um.

12.43. (a) o = (8xn/3) r¥; (b) 0.3; (e) this number is equal to the
number of photons scattered within the angular interval which is
easily found by means of the formula

cot (8/2) = (1 + hwy/m,c?) tan ,

where & is the scattering angle of the photon and ¢ is the angle at
which the recoil electron moves. In the case of soft X-ray radiation
hw, K mye? and tan v =~ cot (#/2). Now we can find the angles
¥, and ¥, corresponding to ¥ = n/4 and n/2 and obtain
/2
ne=22 == | do(9)=0.50.
$=0
12.44. olp = 0.4Z/A cm?/g, for both cases o/p ~ 0.20 cm?/g; the
linear scattering coefficients are equal to 1.8-10-* and 2.9.10-* cm.
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12.45. 1.17-10~22 ¢cm?2/atom.
12.46. (a) 70 cm?/g; (b) 8.7 : 1.

7
6 | _

- e A
*;/ L 56(1

Lol drp iy
s 7 A 15 2 25 A7

o

()" em %)/
t

N G

Fig. 71

12.‘47. Having calculated the mass attenuation coefficient, we
find in the tables of the Appendix the corresponding energy of -
quanta (0.2 MeV) and then, from its magnitude, the mass absorption
coefficient. Their difference is equal to o/p = 0.095 cm?/g.

12.48. J = Ae »8r/4nr? = 6.103 quanta/(cm?-s).

12.49. 1 : 4.7,

e_”2d—e‘“‘1d

2. . == ———— —_
1250, J == 1, = 0.7,

12.51. 2.75 b/atom.

12.52. 1.2-102% b/atom.

12.53. I = 1/p; 1.2.10% 14 and 6 cm.

12.54. | = d,;,/In 2 = 6.5 cm.

12.55. [ = 1/no, where n is the concentration of nuclei; [y, =
ii.9 om; leomp = 2.5 cm;  Iypote = 1.5 cm; lpair = 1.8 cm;
ltot = lComp -+ lx_)lljoto -+ l{);ir-

12.56. wpygt, = G—ﬁ% (1—e=td) ~ 0.013, where p= NGy ot-

12.57. First calculate the total cross-section: 17 b/atom. According
to the graph,_thls value corresponds to two energy values of y-quanta:
1.75 or 10.25 MeV. Respectively: 0.039 or 0.012 cm?/g.

12.58. (a) o7 (1—2¢) and o7 o (In2e-+1/2); (b) 0.084cmt;
(¢) 0.063 cm?/g.

1260, 55y 70200t = 025

12.61- wpair/wphot +Comp = 1/(7] - 1) = 087.

12.62. Use the in\(z)ariant E? — p*?, where E and p are the total
energy and momentum of the system. Write the invariant in the
L and C frames for the threshold values of energy and momentum of
Y-quantum: (Ao -+ Met)? — (how)? = (M - 2m)%c*,  whence
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fog, = 2me® (1 + m/M). Here m is the mass of either particle in
the pair.

12.63. A pair is produced provided the energy of y-quantum exceed
2me?; m is the particle’s mass. Obviously, one can always find a
frame in which the energy of the y-quantum is less than 2mc? and the
pair production is therefore impossible. But if this process is impos-
sible in one reference frame, it is impossible in any other ones.

12.64. T = 13_2‘1 m.c2=0.6 eV, where a=2m./m,.
12.65. 2.1 MeV.
12.66. P =t Bl ==0.03 R/s, where ¥ is the volume,

2.08-10% VpT,
o and 7T, are the normal pressure and temperature.
12.67. The radiation dose rate is the same in both cases: P =
= dE/dV = tJ = 40 mR/h, where 7 is the linear absorption coef-
ficient, J is the flux density. The absorbed dose rate is

pr_ L 9E _ 1l _ 35 mrad/h, air
T ~ 70 7139 mrad/h, water.

12.68. (a) D = (1 — e-M) Py/A = 1.3p; A is the decay constant;
(b) 1.2 h.

12.69. 1.8 pR/s,

12.70. 2.5 m.

12.71. K, = 192 ¥ w; (v/p); E;, R/h, where w,; is the fraction
of y-quanta with energy E;;7 MeV; <t/p, cm?/g; (a) 18; (b) 1.3;
(¢) 7 R/h.

12.72. P = 5% arctan o —2.5 uRs.

12.73. P=0.25 vAE In [1 + (R/h)?] = 0.18 R/s.

12.74. d =%1n D

Dmp
coefficient.

12.75. Due to spherical symmetry the number of scattered quanta
leaving any elementary solid angle will be counterbalanced by
quanta getting to the given point as a result of scattering from other
solid angles. We can therefore assume that the beam attenuates due

to true absorption only. Thus P = 1’ 2?5 e~ Ar = 1.7 cm.

Here ©° and 7 are the linear attenuation coefficients in air and lead.
12.76. P (sY) = 1.14-10-3 %e-ut = 0.07 s-1. Here v and

1’ are the linear absorption coefficients in lead and air, em~%; p is
the linear attenuation coefficient in lead, p is the density of lead,
g/cm?; P, is the dose rate, R/s.

12.77. 2.0 m.

12.78. D = JN oTft/A = 0.09 rad.

12.79. 7.107 particles.

12.80. 0.3 rad = 3 rem.

= 2 cm; u is the linear attenuation




12.81. D = (w/p)J(I')t = 5 rad, where plp = 22/ATH3 ...
 dmim, .
13.1. T———WTOCOSZG——O.’? MBV,
ep B)?
mec?
(mag—mg)? ~ . .

(b) 7o =Ta[1 + e | = 0.6 MeV

13.3. m = my/(4 cos? & — 1) = m4/2, the nucleus of a hydrogen
atom.

13.4. The function is not single-valued if the mass of striking
particle exceeds the mass of the stationary nucleus (the case (e)).
In the cases (a) and (b) Omax = m, in the case {e) Vmax =
= arcsin (my/my) = 30°.

13.2. (a) T, — "

(2 + Z’ZZ ) — 026. MeV;

AT dmamy o0 (F/9) — 019,
13.5. T = Gnbmyr SR (9/2) =0.
13.6. 0.10 MeV.

13.7. 49°.

o~
sin ¥ .
me/my ;€08 9’

13.8. (a) tan ¥ = 9 ~ 18°; (b) sin ¥ =sin 9 (n

cos ¥ £} 1 —m2sin2 V), where = m,/my;. The minus sign in front
of the radical has no physical meaning: here sin U cannot be nega-
tive; O = 73°.

13.9. T’ = T/3 = 0.10 MeV; Onax = arcsin (mp/mg) = 30°.

13.10. Q = +17.3 MeV.

13.11. (a) -+19.8 MeV; (b) —3.1 MeV; (¢) —13.5 MeV;
(d) +1.8 MeV.

13.12. 17.00845 a.m.u.

13.13. v, = 9.3-10% m/s; vy; = 5.3.10% m/s.

13.14. Ignoring the momentum of y-quaninm, we get T ==
=~ (8/9) (o — | Q |) = 115 keV.

13.15. E = hw — (epB)?*/mc? = 2.23 MeV.

13.16. (a) Q= 2T, —~Ta=4.0 MeV;

(b) Q:% Tp_i_?_ Ta—%‘COSﬁVTpTa: — 1.2 MeV.

13.17. 5.5 MeV.

13.18. (a) 140.8°%; (b) 144.5°. .

13.19. Two methods of solution of this problem are given below.

1. Write the laws of conservation of energy and momentum for the
threshold value of kinetic energy of the striking particle: p, =
= Pm+n; Ttm = Q| + Trsp- Solving these equations, we find
* the sought expression. 2. In the C frame the threshold value of the

total kinetic energy of interacting particles is Ty = | Q |. But

7‘th = E2ﬁ = 7.,. Now the expression for Ty is easily obtained.
m
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13.20. (a) 4.4 MeV; (b) 18.1 MeV; (c) 6.2 MeV; (d) O.

13.21. (a) 1.02 MeV; (b) 3.05 MeV.

13.22. (a) Tpe=-5]Q[=0.21 MeV; (b) To= Q| =1.41 MeV.

13.23. 0.68 MeV.

13.24. Tpin = %1-—(-]—1-1%2— = 2.8 MeV, where R is the sum of radii
of a Li nucleus and an a-particle. This energy is less than the thresh-

old one (T, = 4.4 MeV), i.e. is insufficient to activate the reaction.
13.25. The total energies of the direct and reverse processes are

equal in the C frame (see Fig. 37) under the condition 7 = 7’ +

+1@Q |, ©Q being the reaction energy (here Q << 0). Expressing T, 7,
and |Q | via T. T, and Ty, respectively, we obtainy Ty =
= (mp/mpe) (I — Ty) = 5.7 MeV. ‘

13.26. p = I/Zp,’ (% T, +0), where u and p’ are the reduc-
ed masses of particles before and after the reaction.
13.27. p = 0.566p,; 0.18 or 0.9 MeV.

13.28. ;::1.95p¢. From the vector diagram of momenta, we

i To max = 4.7TMeV .

Meg,
me +ma

find 50; max=;+ Pa

13.29. p = 0.431p,. From the vector diagram of momenta, it
follows that

Pn =P £ Pamnl(m, + my),

where the plus and minus signs refer correspondingly to the maximum
and minimum values of neutrons’ momentum. Thus, T
= 5.0 MeV, T, min = 2.7 MeV.

13.30. (a) 5.7; 2.9 and 1.5 MeV; (b) the vector diagram of momen-
ta shows that it happens if

n max =

~

? < Pa —mﬁ_"TnB_ . Then T, > 4.65 MeV.

13.31. Ignoring the kinetic energy of slow neutrons we find
first the kinetic energy of produced tritium nuclei:

Ty = Qmy/(my -+ my) = 2.75 MeV.
Then we use the vector diagram of momenta.
(a) 77: 1.35p:;5 py max=;+°n;n-%pt: 1.55ps 5
T, max=19.8MeV.
(b) P=1.16p15 Prmax =1.26p:5 T maax — 13.1 MeV.
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13.32. From the vector diagram of momenta for the first reaction
find the maximum and minimum values of momenta of tritium nuclei:
3.07p and 2.21p, where p is the momentum of incoming neutron.
Then from the vector diagrams of momenta for the second reaction
(at maximum and minimum values of triton’s momentum) find the
maximum and minimum values of the momentum of the produced
neutron and corresponding values of kinetic energy: 21.8 and 11.0

MeV. . '
13.33. (a) From the vector diagram of momenta it follows that

sin O max = e = 0.70; ¥p mox = 4457,
The angle of emission of the neutron may have any value (from 0

to m).
(b) 46.5° d; 29° (H®). N .
13.34. (a) First find the angle 9, in the C frame corrgspondmg
to the angle ®, = n/2 in the L frame. From the vector diagram of

momenta it follows that cos &y = (4/13) pn/; = 0.46, where p, is

the neutron’s momentum in the L frame, ; is the !n.omentum of
reaction products in the C frame. The sought probability

1 .~ o~ d—cos®y
w:—ms2ns1nﬁdﬁ:——2———-—0.27.

(b) 137°.
13.35. From the conservation laws of energy and momentum for
the threshold value of energy of y-quantum, we have

howm - Mc2=V M'%c* 4+ (Ao)ih,
where M’ is the sum of rest masses of appearing particles. Hence,
M'—M2 | @1
hmth=T02=(1 +§A—,,c—2) 1Q1.

13.36. T, ~ m,Q%2M??, where m, and M are thp masses of the
neutron and disintegrating nucleus; Q is the reaction energy. (a)

0.68 keV; (b) 0.58 keV. . .
13.37. Using the invariant E* — p?c?, write

(ho + Mc?)? — (ho)* = [(m, + m,) ¢ + T,
where 7" is the total kinetic energy of the reaction products in the
C frame. Thus,
T' = — (my-+my) 2+ V M2t 4 2Mc2ho = Q + ho.

Taking into account that T’ = p*/2u’, we obtain the sought expres-

sion.
13.38. Resorting to the vector diagram of momenta, find the

angle 5,1 in the C frame corresponding to the angle ¥4 = nt/2 in the
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L frame from the formula cos 95 = 2L — ™4 __  where p =

: I mg+mn
=V 2 (Ao + Q). The sought probability is equal to

w:—lj— S 9 sin & 49 = L= % Y4 ==0.34.
£ 2

13.39. Suppose p, and p, are the momenta of a nucleon arising
from its motion within a deuteron and together with a deuteron.
Then the nucleon defects through the maximum angle 6 = A6/2
(from the direction of the primary deuteron beam) under condition
that at the stripping moment p, | p,. Therefore tan 6 = p,/p, =
= V 2T,/T ;. Now we can find T}, the kinetic energy of the internal
motion of nucleon within a deuteron. The emerging neutrons possess
the kinetic energy

IRYS ’
T, = (Pn‘;pn) ’Q"/'Ié_d_;_ pr:npn ,

where m is the mass of the nucleon. Thus the maximum spread of
neutron energies

AT, = =4 pppnim= =4V 2T ,T; ~ =4 27 MeV.

13.40. I ("O) =, J (*%0) + 1, + s, =0 + 2+ 1/2 = 5/2, 3/2.
According to the shell model 7 = 5/2.

13.41. (a) The spin of the ,compound nucleus I = s, + 1 + I,
and parity P = P,Py; (—1)". Hence

i I P States of 8Be*
0 2,1 —1 2=, 1~
1 3,2,1,0 41 3+, 2+, 1+, O

(b) A system of two o-particles has the positive parity since the
system is described by an even wave function; consequently, P,, =
= Py (—1)® = 41, I, = 0,2, 4, .... From the law of conserva—
tion of angular momentum [, = I, whence I = 0 and 2. Thus, the:
reaction can proceed via branch (1) through two states of the com-
pound nucleus: 2* and 0+, provided ! = 1. The emission of a dipole:
y-quantum is accompanied with the change of parity and change of
nuclear spin by unity. But inasmuch as the 8Be nucleus possesses the-
spin and parity equal to O* in the ground state the emission of the:
dipole y-quantum occurs from the compound nucleus in the state I~
when [ = 0. The emission of a quadrupole y-quantum involves no:
change in parity while changing the nuclear spin by 2. That is why
this process proceeds from the state 2+ of the compound nucleus;,
when [ = 1.
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13.42. £ = hio (1 — KEo/2Mc?).

13.43. E=Ey+>T,=21.3 MeV, E, is the binding energy
of a proton in ‘He nucleus.

13.44. Train =~ Eexo = 2.67 MoV.

7
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13.46. T =5 To— 5y Ef = 2.5 and 1.8 MeV.

13.47. T, =1t (Eoxo— Ep) =0.42; 0.99 and 1.30 MeV. Here E,

is the binding energy of a neutron in a 1’0 nucleus.
"~ 13.48. 16.67; 16.93; 17.49 and 17.71 MeV.

13.49. 2.13; 4.45 and 5.03 MeV.

13.50. Jog, : J192 = 1:0.8.

13.51. 04y = o,'B/T.

13.52. 7 = T,1,/(Tn + To) = 0.7-10-% g,
' 13.53. © = 2e¢/0J = 4-10% s,

13.54. 4-10% neutrons/(cm?-s).

13.55. 3-10'? neutrons/s; 1.5-102 kg.

13.56. (a) R = on,VJ = 2-10° s-!, where o is the effective
reaction cross-section, n, is Loschmidt’s number.

(b) 0.9 mW.
- 13.57. 0, = owy/w; = —0.10 b, where w is the yield of the
reaction.

13.58. 0= w/n,d = 0.05 b, where n, is the number of nuclei
in 1 cm?®,

1345, Eexo=-3 To— T =0.48 MeV.

13.59. 1.8 b.

13.60. 2.10* b.

13.61. 0=71— In 2U=9) _ 39.108 b where v is the] expo-
T a,a;

sure time, @, and «, is the fractional content of 1°B nuclide at the
beginning and by the end of the exposure, a, is the fractional con-
tent of B nuclide prior to exposure.

. 13.62. w =1 — e m0d = (.8, where n, is the number of nuclei

in 1 cm?® of the target.

13.63. A=2N = 222 Juv=4Ci.

7 13.64. As a result of the prolonged exposure, the number of
radioactive nuclei produced per unit time becomes equal to the
number of disintegrating nuclei; w = 4e*/J ~ 1.5-1073.

13.65. o = AdeM/Jn (1 — e—*) = 0.02 b, where n is the number
of nuclei per 1 cm? of the target’s surface.

13.66. w = 1.0-107%; (¢) = w/nyL = 0.046 b where n, is the
number of nuclei in 1 cm?® of the target, L is the range of c-particles
with the given energy in aluminium.
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13.67. 0.54 b.
~ 13.68. (o) = w/nyl = 0.10 b, where n, is the number of nuclei
in 1 cm? of the target, I is the thickness of the target within whose
limits the given nuclear reaction is feasible, I — L, — 1, I, and I,
are the ranges of o-particles with an energy of 7 MeV and Ty, =
= 4.39 MoV, respectively.

13.69. 7.5 mb. See the solution of the foregoing problem.

13.70. _d = — (In 0.9)/no = 1.7 em; n is the concentration of
Be nuclei.

13.71. The total yield per one particle:
R T
w(T) = g noa (2) dz — | mo (7)o —.
b [}

Differentiating this expression with respect to 7', we find
1 dw
0 (1) = 7 1(1) 32~

13.72. Make use of the following relations: ;f = Z}LIﬁ; E; =
= 2u,T,, and T, = T, + Q, where Uy and u, are the reduced masses
of tlie systems d -+.d and and n -+ 3He, respectively; p, 71 and

Par Ty are the momenta and total kinetic energies of interacting
partlcles in the C frame in the direct and reverse processes, respect-
ively. Using the detailed balancing principle, we obtain

_ 99 mg T
21He+1.—-2"'"6—;" P . T—I-ZQ =2.0, Whence IHe=1/2'

8 mpmBe T _T
13.73. 0y =+ o T 8 g,=:2.0 ph.

13.75. Taking into account that p, ~ & D2 =
we ot Py o/c and pj=2p (ko4 Q),
3 (hw)? :
2 ot Q) maee — 00 b:

Tn = 2 (ho + Q) = 0.96 MeV.

14.1. T = 2n2n2L2%m/a? = 0.03 eV.
14.2. 1.6-10% s-1; 0.03 ps.

14.3. AT/T = 2.77.102) Ty (AT/L) ps/m; ATIT = 6.2.10°2
T,.c—13eV. ’

14.4. Not acceptable.

14.5. 20 m.

14.6. 0.4 and 1.6 eV.

14.7. AT/T = 2 cot & A® ~ 5%. in 9 = 2mT

148, 80— o5 %. Here sin & = nh/d ) 2mT.

14.9. T << n24%/2md? = 1.8-10-3 oV.

14.10. (a) 5.4 MeV; (b) 6%.

0y —

213



14.11. 0; 6.4 and 11.2-10-1% m.

14,12, 5.0-10-%° m.

14.13. Consider the neutrons with orbital moment [ and aiming
parameter &;. The geometric nuclear cross-section can be represented
for them as a ring with mean radius ;. The area of this ring

ASlf 5 (b[+1—bl 1) (2l+1) k2.

The highest possible value of I is determined from the condition
b max << R, R being the nuclear radius. Hence, l,,x =~ R/k and

R/%
S= Y AS;~n(R+1%)% R,,=29b.
=0

14144, B = #2 (I + 1)/2mR? = 5.3 MeV, where [ = 3, m is the
neutron mass, R is the nuclear radius. See the solution of Problem
11.31.

14.15. Under the condition x <« R, we have ¥ o< /R = 4.5°,
R being the nuclear radius.

14.16. In this case the interaction of a slow neutron (I = 0) with
a nucleus of target may induce (2s 4+ 1) (27 4 1) different ways of
formation of the compound nuecleus (s is the neutron’s spin). Since
the degeneracy (statistical weight) of a state with the given J is equal
to 2J + 1, the probability of formation of this state is

27 -1 2741 2

TsIner+n _2@el+n 3¢

14.17. o,, = o I,/T; 0,, = 0,I',/I' where o, is the cross-section
of formation of the compound nucieus (see the Breit-Wigner for-
mula).

T Iz
14.18. 0,, = 0 ]/ > T —TREITT
14.19. 96 b.
14.20. T/l = 22 1/ L ~0.006.

14.21. (a) From the condition do,,/dT = 0, we get
Tmin = T010.6 4 0.16 —0.05 (T/7)].

Whence it is seen that Thax ~ Ty at ' T,

(b) 0y, << Omax by 1.8%.

(¢) T/T, == 1.8.

14.22. oyya/o, = 0.87 (I'/T,)?% where 0y, corresponds to Iy =
= 0.27,.

14.23. 0.12 eV.

14.25. (a) Oy, = 4nkig ([yo/T)2=8. 103(1 + = )b In this case
only s neutrons interact with nuclei.
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(b) From the formula o, = 4nk2gl, /T, we find the g factor, whence
=4

1_426 Onn/Ogeom = 4K2g/R? = 3.5-10%; R is the nuclear radius.
14.27. T = o,l'/4dnx2g = 5-10~* eV.
14.28. v ~ oymT,/2nhgl, ~ 4.4-1071% s; m is the neutron mass.

_ 2ﬂﬁ2g . anrv
14.29. 0ny (1) = ey @12, 1P TS
where m is the neutron mass; I',, corresponds to the energy T =
= | T, |. In the first case o,, oc T-%2%, in the second case 0,, oc
oc T—5/2.

T-1/2

14.30. Since 0, < T Ty O is practically propor-

tional to 7’-Y2, if T is small as compared to the bigger of two
values 7'y or I', and if I, < 1 (in this case I is practically indepen-
dent of 7). If Ty << 0, then T must be small as compared to | T |.

o Gtot—0el
14.31. T = o0 = oror—0 Zhog, =0.4, where ¢’ is the inelastic

scattering cross-section, o, is the cross-section of formation of
the compound nucleus.

14.32. 0.40 mm.

14.33. About two times.

14.34. Attenuatgs by a factor of 2.3.

14.35. J = [e~on (== /4nr} = 5 neutrons per cm? per second,
where n is the concentratlon of carbon nuclei.

14.36. 5 eV.

14.37. w =1 — e~ 9! = 1.5% where n is the concentration of

nuclei, ¢ is the cross-section for the energy 10 eV (which is defined
through the tabular data: ¢ = o,v,/v).

[0} — 1 .
14.38. w:-ﬁ(i——e 7tot™) = 86%, where 0y, = 0, + Opy; 7 iS

the concentration of Lil molecules.

14.39. The decrease in the number of 1*°B nuclei with time: —dn =
= Jno dt. After integration, we get n = n,e /%, where n, is the
initial number of nuclei. The fractional decrease in efficiency of the
detector is Aw/w = An/n =1 — e™79t ~ Jot = 2.3%.

14.40. From the formula R = JN (o), where J is the neutron
flux and NV the number of nuclei per unit area of the target’s surface,
we obtain

RN _fo@un@mdr gy
(0 (V) =—F—= Tond ) =0 ().

where it is taken into account that ov = o,v,.
14.41. The yield of the reaction is equal to the ratio of the reaction
rate to the neutron flux:

Rog § No ()vn (v) dv _ Nog,

W=7 = n () ="
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where &V is the number of nuclei per sq-cm of the target. Thus
) = 5.10% m/s.

14.42, Taking into account that ov = o, we obtain the expres-
sion giving the number of reactions per 1 s: B = Noywyn, where N
is the number of boron nuclei within the counter’s volume; n—
concentration of neutrons. (a) 2-10% cm~%; (b) R = Nogw,D/(v) =
= 2.101° gL,

14.43. Use the symbols = and || to mark the quantities relating
to isotropic and parallel neutron fluxes. Then the rate of the nuclear
reaction activated by neutrons falling on 1 cm? area of the target’s
surface at the angles (9, & + d®) to its normal, is dR, = dJ,onl/cos 9,
where ¢ is the reaction cross-section, n is the concentration of nuclei
in the target, I is the thickness of the target, d/,, is the number of neu-
trons falling on 1 cm? area of the target in the angular interval (¢, O -
. d®). Since dJ4 = a cos ¥-2n sin ¢ d¢, where ¢ is the constant de-

termined from the condition of the problem: J | = J, = 25 dJy (8) =
= 2na, then R, = | dR, (§) = 2/ onl = 2R.
14,44, 1=V _ o4 days.

Govon
14.45. (a) Apax = DoNy = 1.5 pCi; Npee/No = Do/d=
= 4.1071°, where N, is the number of atoms in the sample;

(b) t:——%ln(i— )=2T=3O hours.
14.46. At:%ln 9=
=

of atoms in 1 g of the foil.

14.47. A = ON [0.690, (1 — e~Mt) 4 0.310, (1 — e~Mt)] =
= (.2 Ci/g, where N is the number of atoms in 1 g of copper, a;, A,,
and 0,, A, are the activation cross-sections and decay constants of
83Cu and %*Cu respectively.

14.48. @ = deM/oN, (1 — e™M) = 3.107 cm~2.s71; where N, is
the number of nuclei in the foil.

14.49. n = AN/BN o0, (1 — e7*%) = 0.7-10° cm 3.

14.50. The saturation activity of the naked foilis 4 = A, + Ay,
where 4 and A, are the saturation activities for thermal and above-
thermal neutrons. Since Rcg = A/A,p, then

Amax

A =1.7 days; ¢— @on; n is the number

1 Nogugn .
ASatzAaT: Fog—1 — chi1 =8 uCi/g,

where N is the number of nuclei in 1 g of the foil.
14.51. (a) 7= 4%/(1—}—,{)2 correspondingly 0.89, 0.284, and

0.0167; (b) n= (1_’_%)2 [14+%sin2 9 —cos®}) 1—x2sin2 9] =0.127;

2/3 and 0.87. Here x—l/A A being the mass number of station-
ary nucleus.
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1+ A24-24 cos O
REFE

scatterend into the angular interval (1~‘}, 1~‘}+d5) is dn=

—1/2sin § d9. These neutrons possess energies lying in the
interval dT that can be found from the formula given in the

14.52. (a) T =

T4 (b) the fraction of neutrons

dl
ra
g aly I, T
Fig. 72
foregoing item (a). Thus, dn=-CEA% a7 (see Fig. 72), where
0

o= (a71) -
14.53. (T) = | B an (3) =
0

L 42 ~
—(11—_‘7_‘:14? T,=0.68 MeV, where T (9}
and dn(ﬁ) are the expressmns cited in the solution of the fore-
going problem.

14.54. 1 = (64 — A% — 1)/84 = 0.44; A is the mass number]of
the nucéleus.

14.55. (a) sin 20 d¥; (b) 0.25; (c) 45°.

14.56. (a) From the vector diagram of momenta (see Fig. 3),
we find for the triangle ABO:

sin(@—9)  pm 1 ~ 4
sn® 5 AL’ where p == Pm

The remaining part of the proof is obvious.
(b) The fraction of neutrons scattered into the angular interval

(51, 32) in the € frame is

nzé S sin 4 4 = %(cos ¢ —cos 1‘)2)
In the considered case 52 = g, and the angle 51 is related to the

angle @, as shown in the condition of the problem. Thus,n = (4 —
—1)/24 ~ 0.45.

(¢) According to the condition (cos¥) = % S cos @ sin 9 d9.
Replacing cos & by the expression from the text of the problem
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and substituting =1+ 424+ 24 cos 5, we obtain the sought re-
sult after integration.

Zs S
14.57. (cos Ope0) = (522 ) (cos Bpe) + 522 ) (cos B5)=0.06.
14.58. (a) According to the definition, & = < ln—z—,— > =

=S In % dn (T), where dn is the probability that the energy

of the neutron after its single scattering falls within the interval

(T, T+dT). Replacing dn with the expression given in the

solution of Problem 14.52 and integrating with respect to T from

al, to Ty, we obtain the sought formula. When A>1, &~ 2/4.
(b) In graphite 0.158: in heavy water

& — 2t g

Zs tot

14.59. z.-?ln ; 2.2.10%; 1.2.10% and 31.

14.60. The neutron moderated down to velocity v experiences
v dt/Ag collisions per time interval dt. If the mean logarithmic

loss of neutron’s energy equals &, then —dln T = nydt ;
8
As V 2m 1 1
=D — =5.1075,
3 ( VT: VT, )

__In@yry Y i
14.61. T_mﬂz.ﬁ-mwma L=} 71=16 cm.

14.62. Consider a thin spherical layer with radii » and r -+ dr
with the point source of neutrons at its centre. The number of neu-

trons crossing the given energy level in that layer is equal to 4mr? drq.
‘Then

(rt) = -i— 5 rqinr? dr = 67.

14.63. Since the activity A is proportional to the moderation
density g, In A must be a linear function of r%. Plotting the graph
of this function, we find from the slope of the straight line (—1/47)
that © = 3.1.10% cm?

14,64 J oy = S o (T) = 0.50,, where o (T) =0, V To/T.

14.65. (a) dw=S.e-3*dz; A, = Sxdw: 1/5,; (b) (a%) =
=2/Z5=13 cm?2.

14.66. T = A Jv = 1S, = 0.015 s; z = a,/o, = 1.3-10%,

14.67. (a) Ay = [23 (1 — (cos 9))]* = 2.8 ¢m; (b) 55 cm and
33 m.
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14.68. (a) Consider the elementary ring layer (see Fig. 54) of
volume dV whose points are located at the distance r from the area
dS. The number of neutrons scattered in this layer and reaching the
area dS is

dJ = (DI, dV) (dS cos $/4nr?) e-Zsr,

where in the first parentheses is the number of scattering collisions
per second in the volume dV; in the second parentheses is the prob-
ability that a neutron after scattering in the volume dV moves
toward the area dS; the exponential function describes the prob-
ability that a neutron covers the distance r without collisions.
Thus,

J— S - OZ,e~2r sin @ cos O do dr — -

(b) Reasoning as in the foregoing item (a) and taking into account
that in this case ® = @, 4 (3®/dn), r cos ¥, we obtain

D, 1 (0D ) @, AL )
_ . . —_—0 4 _* (=
T+ % 63 ( on 1o’ J- 4 ' B3 ( on Jo’

where J and J_ are the number of neutrons crossing the 1 em? area
per second in the positive and negative directions of the z axis.

1 oD !
The resulting neutron flux is j=J,—J_ = — 5 5o (an )0. In

the case of anisotropic scattering in the L frame X; is replaced
by 2[,..

14.69. (a) In the case of steady-state distribution the diffusion
equation takes the form: DD" — X @ =0. Its solution is D (z)=

=aqe*/L + be-*/L where L=V D/Z,. The constants ¢ and b are
found from the boundary conditions: ¢ =0 for @ must be finite
when z-— oco. To determine b, consider the plane parallel to the
plane of the source and located at a small distance z from it.
The neutron flux across this plane (see the solution of the fore-

going problem) is j= —D%—:D%e—x“. When z—0, j=n.
Thus, b=nL/D. Finally, ® (z)=2"2 ¢~+/L,

(b) In this case ®"+%cb'_%2-®:0, where L2=D/3,. After
the substitution y==r®, we obtain the equation ¥"- 7"1—2-)(:0.
Its solution is % (r) = e/t +be=r/E, or ® (r) =--er/L 12 g=r/L, As
in the previous case, a=0. To determine b, surround the source

with a small sphere of radius r and find the neutron flux across
its surface:

f—}—i ) e~r/L,
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When r—0, the total flux 4mr2j—n. Thus, b=n/4nD and

__n ~7/L
(r) = wp ¢
nR2L

(&) @ (r>R) =55 oy e~ ~™/E, where L=V DIZ,.

14.70. Taking into account that in this case @ (r)~ — e~ "/t

(see the solution of the foregoing problem), we get L=
__ Ty—r
T In(nry/ry)
14.71. Consider the point source of thermal neutrons. Separate
a thin spherical layer of radii r and r + dr with the source in the
centre. The number of neutrons absorbed in such a layer per second
is dn = @3 4nr? dr. If the source intensity is », then ()=

=1.6 m.

= S r2 dn/n, where dn/n is the probability that the emitted neutron,

having covered the distance r, gets captured in the layer r, r + dr.
While integrating, the expression for @ (r), given in the solution of
Problem 14.69 (b), should be used.
" Jimwon  dnprt 4
1072 won = (=B B8 ()= =5r, == S = 7p VPO
the summation is carried out over n running from 1 to co. While
finding the sum in the numerator, we used the relation

9 2 _90 (_B
1428436 ... =5 BB+ )= (1= ) -
~ 14.73. If none of » neutrons, falling on the foil from either side per
second penetrated it, 2r neutrons would fall on the foil. However,
owing to the multiple reflections from nuclei of water molecules the
number of neutrons crossing the foil per second must exceed 2n.
Suppose w is the probability of a neutron being absorbed while cross-
ing the foil. Then each of the 2r neutrons falling on the foil pene-
trates it with the probability 1—w and reflects back with the prob-
ability . B; therefore, the probability of the secondary fall of a given
neutron on the foil is (1 — w) and of the third fall B* (1 — w)?,
etc. The total number of impacts with allowance made for reflections
in the medium is found to be
2n

N=2n[1+ﬂ(1~w)+[32(1—w)2 ...]:m.

Taking into account that N/n = 6.9 and w = p do,N 4/A, we obtain
p =08
14.74. From the solution of Problem 14.68, it follows that the
albedo B = J_/J4 = [1 -+ 2D (d In ®/dn),l/[1 — 2D (81n ®/dn)},
D = 32% , where the gradient of In @ corresponds to the points
r
lying at the interface between two media. Using this expression,
we get .
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o~
2
'

p=(1—2D/L)/(1 +2D/L)=0.935, D/L=Y 5./3a, (1 —(cos 0)).
p=—a)ll -+ a), where o = 2D (1/L -+ 1/R).

1. (a) 0.8-10 kJ, 2.10° kg; (b) 1.0-1028 MW; (c) 1.5 kg.
2. 3-10'® s-1; 1.1 MW.

3. 724 > 15.7 — 3674142,

AL 4.
5
6

P

. 1.10%® years; 4.5:10" a-decays.
.6. (a) 196 MeV; (b) 195 MeV.

15.7. E ot = T -~ E, = 6.2 MeV, where T is the kinetic energy
of a neutron; E, is its binding energy in a #*U nucleus.

15.8. 0.65 and 2.0 MeV.

15.9. 4.1 b.

15.10. 90, 84, and 72%.

15.11. 2.28, 2.07, and 2.09.

15.12. 1.33 and 1.65.

15.13. Suppose that the neutron flux of density J, falls on the
plate. The number of fission neutrons emerging per second in a thin
layer of thickness dx and of an area of 1 cm? located at the distance z
from the surface, is vJe™"%* no; dr, where n is the concentration of
nuclei, 6, and ¢; are the absorption and fission cross-sections. Inte-
grating this expression with respect to 2 between 0 and d (the plate’s
thickness), and equating the result to J,, we obtain

g— 1 In (1 — -2 ) =020 mm,

15.14. W=QJO§—Z(1'—e'zad)=O.03 W/em2, where Q=

=200 MeV, Z; and 2, are the macroscopic fission and absorption
cross-sections.

15.15. v=1—i—%3—9}3—-=2.1, where & is the number of nuclei,

PuCpu

¢ is the absorption cross-section.

15.16. 9.5%.
- 15.17. The ratio of the number of neutrons of a certain generation
to that of a previous generation is N = 10%%i-! = 1.3.103, where i
is the number of generations.

15.18. The number of nuclei fissioned by the end of the nth
generation in the process of the chain reaction is1 + & + A% + . ..

kN R .
e K= k__f :im{-, where M is the mass of fissioned

material and m the mass of the nucleus. Taking into account that
n = t/t;, where t is the sought time interval and t; the time of
existence of the neutron from its production till its absorption by
a fissionable nucleus, we obtain ¢ = 0.3 ms. When 2 =1.01, ¢t =
~ 0.03 ms.

15.19. Each fission-triggering neutron produces a certain number

. 2.6 0.5
of secondary neutrons that is equal to T T Tew e < 1,
ie., k<1,

e e i i fas o
N R A ARy
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. o, +(d—mo, : .

15.21. (a) f= 615 (T—) 0,1 70, =0.80, where 1 is the fraction
of 235U nuclei in the natural uranium, o,, 0z, and o; are the
absorption cross-sections of 23U, 28U, and carbon; (b) 4.8%.

15.22. 0.74.

15.23. k = epfn = 1.0.744-0.835-1.335 = 0.83.

15.24. 1.0-10** neutrons/(cm?-s); 4.6-10% cm™2.

15.25. The accumulation rate of n-active nuclei with nr-decay

constant A is N = qw — AN, where ¢ is the number of fissions per
second, w is the yield of n-active nuclei (of interest to us) per fission
(which is the yield of delayed neutrons per fission). Integrating this
equation with respect to time from 0O to T, we get the number of
n-active nuclei by the end of the exposure. After the time interval ¢
following the end of the exposure, the number of these nuclei equals

. » Ae

=2 (=) e w = oy = 610 ‘. Here A = AN,
q = Ino,, where n is the number of nuclei in the foil.

15.26. © = (12,)! ~ 0.7 ms, where v = 2200 m/s, 2, =
= 6.3-10"% ecmL.

15.27. The mean delay time AT:T—?%E- = 0.083 s; 7T; =
=T,/ln2.

15.28. The increase in the number of neutrons during the lifetime
of one generation is equal to n (k — 1). From the equation dn/dt =
= n (k — 1)/t, we obtain n = neet:-D U7, whence T = 10 s.

15.29. (a) 3.4-10° kJ; (b) 0.9-10% kJ; (c) 2.7-10° kJ. For uranium

0.8-108 kJ.

’ 15.30. About 10% years.

15.31. 2.5-10° klJ.

15.32. Recalling that the C frame for interacting nuclei practically
coincides with the L frame and that the kinetic energy of relative

motion T < Q (at 108 K T ~ 10 keV and Q is about 10 to 20 MeV),
we obtain: (a) En/Q ~ my/(m, + my) = 0.8; (b) E/(Qy + @) =
— 0.34

15.33. n = (th + QnLi)/O-Zth = 6.4.

15.34. 0 ~ ¢*/R = 7-10% keV.

15.35. (a) Imstruction. In the general case in the initial formula
for D one should replace m by the reduced mass p of the interacting
particles, and 7 by the kinetic energy of their relative motion T.
Then see the solution of Problem 11.32. (b) D = exp (—31.3/V Brev);
10~ and 5-107°.

. 15.36. 3-107** and 6-10~* b.

15.37. w =+ rfQu=0.3 Wiems; 6 oc 10 keV.

15.38. The reaction rate is proportional to the product nve, where
v is the relative motion velocity of interacting deuterons. In its
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turn, nve oc e —;/9><e'31'3/1/?, where T and 0, keV, 0 being the
plasma temperature. This expression has a maximum at T~m ==
= 6.250%3 = 10 keV.

15.39. (a) t=1/n{ov); 6-10% and 1.10%s; (b) R:%nz(ov);‘
correspondingly, 0.8.10% and 5-10 cm=3.57%; 5.107%and 0.3 W/cm3..

1
15.40. (a) R:7n§ {OV)qq -+ nanty (OV)q;; correspondingly, 1,5.10%
and 1.1.10'2 cm3.s71; (b) 2.2.107% and 2.0 W/cm?.
15.41. ny/ng=1—a, where o =(0V)gq Qua/{0V)a; Qs;. At both

temperatures o < 1, and therefore n; &~ ng; Wmax = nzz(?zv)dt ?dt ~
— %

1
~ 2 (0V)gs Qua;; correspondingly, 4.9-107% and 43 W/cm3. The
contribution of dd reaction is negligible.

15.{128. The problem is reduced to the solution of the equation
0e30/6'/° — 3.065-10%w™2, where 0, keV; w, W/em® Solving by
inspection, we find 6 =~ 3 keV.

15.43. r = 60T*/n? (o6v) 44 Q44, where ¢ in the numerator is the
Stefan-Boltzmann constant. From the condition dr/d6 = 0 where
0 = kT, we get 6, = 2.5 keV; ryj, = 3-10% km.

15.44. 40 << 6 << 45 keV.

15.45. (a) In the steady-state case, we have the system of two

. 1

equations: q = n% (ov)qq -+ Rans OVYgs, T 2 (OV) g4 == Rgny (OV)Y 4. Here
i

ng = — Mg (OV)aa/(O)ar = 4-10'2 cm™; g = %ni (OV)ag = 1 X

x 1012 em=3.571,

1
(b) w= 5 ng (OV)qq (Qdd +—;— th)=24 W/em3; ng=1.0-101%cm™3.

15.46. From the equation me;r= —eFE = —4nne?z, we obtain
wo =V 4nnez/m,.

15.47. (a) See the solution of Problem 9.23.

(b) The equation of the wave is F = E e i(0i-kx) where k =

= 2n/A. When o << ®,, the refractive index n = V & = ix and
. 2
k= 2nn/h, = i % , where A, is the wavelength of the wave in

0

vacuum. In this case £ = Ee~"*/%¢* cos wt, i.e. the standing wave
sets up whose amplitude falls off exponentially.

(¢) n, = nctm /e®A} = 5-10' cm 3.

1
15.48. N = I ng (ovYaa V =5-1011 571, where ng = n, == nm.c2/e?h;.
15.49. Poisson’s equation takes the following form, when writ-
. . . 1 9?2

ten in spherical coordinates T—ar_2(rq)) = —4ne(n; —n,). Since
—e@/0

ne=ne"® ~ n(1+4e9/0); n,=ne ~ n(1—eq/0), the initial
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equation can be written as

i—-:—zz— (re) = o?@; oa?= 8nne?/0.
r r
Introducing the new function f=r¢, we obtain the equation f'=

= o2f, whose solution is foce=%r, i.e. cp~%e-°‘r. Thus, ¢~
~—1—e-’/d, d= 1/05:"/6@?71?2.

1:').50. 1.7-1073 cm; 2-107.

15.51. ¢ = me*/4T2=1.6-10"2° cm?2.

15.52. O — V San €30 = (6-1073)"; 15.8.

T——n3/2.
15.53. (a) 0= In o= 11074 em?, 8o — &3V 8w nl0%%;

(b) l,; =1/n;0 = 10m; T; = 1,;/vpr = 0.0 Ps; Ve; = 1/%q; = 2-» 106 574,

54. w=>5-1073!n n; V0, W/iem™. )
ggg u()a) Integra‘:ing tﬁe equation dE; = We; dt and taking
into account that E; = - 1,0, we get 9; = 0, [1 —exp (—ant/83/2)];

a = 7.09-10~13, where n, cm-3; t, s; 0., keV. Thus, t = 1.6 ms.

(b) The problem is reduced to the integratio? of the equation
dE, = —we dt. It should be noted that E. = & nd. and do; =

= = is the mean plasma
= —dp,, as 8, 4 0; = const = 26, where 0 is : ;
temperaeture eqeual t:) 0.,/2 in our case. Introducing the variable

y = V/ 0./8, we obtain

Y y
§— 03/2 \\ yidy — g3/2 {_1_ 1n_y_i%.——-y _——%- y3] = 0.8 ms,
“an ) yr—1 an {. 2 y— Yo

Yo
where o= 7.09-10713; 6, keV; n, cm™3.

15.56. The Lorentz force acting on 1 cm? of the cylindrical layer
r.r+drisbp = df/dS = —i—f,B, dr. Noting that B, = 2I,/cr, where
, i ing insi i f radius r, and

i lectric current flowing inside the cylinder o s r, an
{}rlalts ;he=e§I 72nr dr, we obtain 6p = I, dI,/nczr2. Integrating this
expresrsion and noting that the variable r can be replaced by ry, we

= I?/2nc¥? = BY/8x.

A 59100 om5; 10 MPa; 2.7 W/em®,

15.58. 5 In-%. o

) . - . e -
' .59. From the condition that the magnetic pressures ev
opig gn th(: )inside and outside surfaces of the plasma layer are Qqual,
we have B, = B, — B, and I, = 2I,. |

(b) I,=4cry)/ anB=5.4-10° A.
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15.60. (a) Proceeding from the basic equation Vp = [jBl/c, we
have —dp/or = jB,lc, where By = 2I,/cr, I, is the current flowing
inside the cylinder of radius r. Taking into account that j =
= dI,/2nr dr, we get: —r? dp = I, dr/nc®. Integrating this equation
(the left side, by parts) and noting that p (r,) = 0, we find (p) =
= [2/2nc?r2.

(b) As p =2n0, then 8 = I2?/4¢3N = 2 keV.

15.61. (a) The problem is reduced to the integration of the
equation —adp/dr = jB/c, where p = 2n0, B = 2arjlc. Besides, it
should be noted that 6 = I%/4c2N. The mean value of n% is (n?) =
— g_ (N /mur2)2,

(b) 1.3-10° A. In calculations one should use the formula w, 4=

= 4.8.1073 (n2) /' Oxey W/cm3, where the value of (n2) is taken
from the solution of the foregoing point (a). The corresponding tem-
perature is equal to 5 keV.

15.62. Noting that B = 4nl/cl, the concentration of nuclei at
the maximum compression n = 2n, (ry/r)?, and B?%8n = 2n0, we
obtain 6 ~ n (rl/elry)?/2n, ~ 10 keV.

15.63. ¢ oc r#4no(0)/c* oc 1073 s, where 8 = I%/4¢*N = 0.39 keV.

15.64. 0.8 ms.

15.65. At the narrowest point of the filament, where its radius
decreases by Ar, thé& magnetic field grows by AB, = —2B, Ar/r,
since the B, field is “frozen” and its magnetic flux does not change.
The intrinsic magnetic field B} induced by the current I also in-
creases by the value of AB; = —B; Ar/r at that location. The gas-
kinetic pressure. however, does not vary because the plasma is free
to flow out of this region in both directions. To counterbalance the
instability, it is necessary that A (B%/8n -+ p) > A (B}/8n), whence
B; < V2B,; B,> V2I/er =14 kG.

15.67. Denote the combined stretching force per unit length of the
turn by f. Then 2aRf AR = A (LI%*/2¢®) + p AV = 2a%? AR, p =
= I?/2nc*? (from the equilibrium condition involving the cross-
sectional radius r). Thus, f = (ln ifi—%) I?*/c2R. In the consi-
dered case one can disregard the changes in f since R varies insig-

nificantly. Therefore, R = const and ¢ = l/2a/R = V 2nriaplf =
= 0.7 us, where p is the_plasma density.

15.68. In the solution of the foregoing problem, the expression is
found for the stretching force f per unit length of the turn. This
force must be counterbalanced by the Ampere force acting on the
current / and developed by the field B,; when reduced to a unit
length of the turn, it becomes equal to f = IB,/c. Thus, B, =

=(1nif-— 1) IleR = 0.11 kG.

15.69. From the condition 2nR < 2nrBy/B;, where B = 2I/er,
we get I < cr?By/2R = 2 kA.

15-0339 295



16.1. p=V T (T +2m); 1.7; 1.1 and 1.0 GeV/c.
16.2. Resorting to the invariance of the expression E? — p2,

write (T + 2m)? — p® = [2 (T + m)]?, where the left-hand side of
the equation refers to the L frame and the right-hand side to the C
frame. Taking into account that p? = T (T + 2m), we obtain T =
=2m (V1T +T2m —1); p=V ml2; . = VTIT + 2m).

16.3. From the expression E? — p% = inv, we have (I’ + 2m)? —
—p2=[2(T 4+ m)l% T' = 2T (T + 2m)/m = 2.0-10® GeV.

16.4. (a) T:V(mi + my)2 + 2maT — (my + my); ) p=
. mif (T+2my) . % /7~ 2
=V wrmypramr Bre= Vi m o

16.5. Ty, = T (T + 2my,)/2 (my + my + T).

16.6. From the formula for ;x and the equality p, = p, (see

Fig. 41) follows Eq. (16.3) for tan 9.
16.7. (a) From the expression for tan @, it follows:

3 1/1—__3'2 sin (ﬂ——~ﬁ)

T—BZsin ¥
VA-Besn® e, -
cos (n—4)+BcE,/p

~

cos §+BeE1/p

tan 'ﬁg =

It remains to take into account that p/E,=p/E,= Bi,2a=Pc =

=V TIT +2m).

(b) From the formula cot ¥, cot 9y= o, where a=1+T/2m, we

obtain 6 =9, 4+ O, =04+ arccot —chT‘ From the condition
— 1 —

80/89, =0, we find cot 9, =V a, and therefore cot 9, =) o as well.

The angle 6 is thus minimal for the symmetric divergence of the

particles provided their masses are equal: ¢, = ¥y = Upy,/2. Thus,

0s (0m1n/2) =V 1+ T/2m; Oy = 53°.

(¢) T = 1.37 GeV; T, = 0.87 GeV; T, = 0.50 GeV.

16.8. From the conservation laws of energy and momentum, we
have: T = T, + T, p} = p? -+ p* — 2pp, cos &,;, where T and p
are the kinetic energy and momentum of the striking particle. Taking
into account that p = V T/(T 4 2m,), express cos ¥, in terms of
T,. From the condition d cos ¥,/dT, = 0, we get the value of T,
corresponding to the maximum value of the angle {#,. Substituting
this value into the expression for cos ¥;, we find the sought relation-
ship.

2meT (T+2
16.9. T, — —mel T +2m)

= T T e omer — 28 MeV.
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16.10. (a) From the ey i 3, i
e pression for tan 9, it follows that tan 9=
cos §—B E/7
take into account that ﬁc:]/T/(T—{—2m)
(b) Since o (9)sin 9 dO = 5 () sin B I3 -
A e o (8) sin 9 d9, then o9 =

dcos ¥

=V1—ﬁ§tan(ﬁ/2), for ;/E~=6¢. It remains to

- Using the formula of the foregoing point (a)

express cos ¥ in terms of cos ¥, find the derivative ¢ cos /d cos 9
and substitute it into the expression for ¢ (5) ,

(c) Calculate o (9) corresponding to the angles 9, and 9,: 5.5 d
1 2; 9.0 an

. 16.11. (a) From the condition o (7) JT — ;(5) aQ where T i

3 . ' e
1e kme.tlc energy of the scattered proton, dQ is the solid lls
ﬁaenrger}t in the C frame, we obtain 6(T) = ¢ (5) dQ/dT. 0 oty
, Irom the Lorentz transformation (16.3), it fo]lov'vs {clht;lte other

ar  SE dE

—_ - — Bc; TQ

42 dQ  fondeos§  2nm Vi—p:

=T

Here we took into account that B, = 1/ 7 /T, 2m)and p =V w73
= m 0

dw dw dQ
(b) 7=

I e
—_—

& 7T _—ﬁ:const. Here we took into account that

16.12. =L [_T '
cosf=-L [—m(1+n)2_1_n2J; 0 = 120°,

~

16.13. 0 (B =2 =90 @ _ o~ =1 9c0sF

- ' o, = = IE =270 () J%jﬁ,, where 90

~s011d~angle element in the ( frame. From th f
. o - F e formula

Vi 1 We obtain ?~ = QJL =L H
| : deos§  VI—p  z - Hlere we

took into account that Be=p/(E +m) and p—fF _F

e e = '\7: ¢ —

Ay o Thus, 6 (E,) = ngi(3)/7
1% 0.82 GeV (see the solyti )
16.15. Using the invarianzg %tflogzof Problem 12.62).

15+

i ; :
P% write this expression
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in the L and C frames for the threshold value of energy of a particle
withmassm: (T vn + m + M)? — ph on = (2 m;)?, where p p, =
= T th (T tn + 2m). From this, we find the sought expression.

16.16. (1) 0.20 GeV; (2) 0.14 GeV; (3) 0.78 GeV; (4) 0.91 GeV;
(5) 1.38 GeV; (6) 1.80 GeV; (7) 6m, = 5.63 GeV; (8) 7.84 GeV.

16.17. (a) 1.36 MeV; (b) 197 MeV.,

16.18. (a) From the condition that in the C frame the total
energies of both processes have the same value, we can write (using
the invariant E* — p%): (my, + my + T,)% — Ty (Ty -+ 2m,) =
= (my +mp + Tp)> — Ty (Tp -+ 2my).

Hence, Tp = —2 (Ty — Tq tn)-

mp
(b) Ts="Fo—mx (14 52 ) =50 MoV.

My
mp

16.19. From the expression for sin¥y,y, where M=
=V 2m (T +2m), we find ¥,y = 10.5°
16.20. Using the invariant E2 — p?, we obtain M =

=V (my-+ma)?2+2m,T; 1.24, 1.51, and 1.69 GeV.
16.21. 19.5 MeV; 193 MeV/ec.
16.22. 52.4 MeV; 53 MeV/c.
16.23. Ep = mp — (Q + mp + ma) = 2.8 MeV.

Ey
16.24. tan 9, = e 2
O, =~ 10°.

16.25. (a) From the conservation laws of energy and momentum,
we find: sin (8/2) = my/2V E,E,, where E, and E, are the energies
of y-quanta. It is seen from this expression that 0 reaches the mini-
mum value when E, = E, = (my; + Tx)/2 = my. Hence, Opy, =
= 60°.

(b) At 8 = m, the energy of one y-quantum is the highest and of
the other the lowest. In this case sin (n/2)=m./2V E,(E—E)),
where E is the total energy of the pion. Thus, E-=

~ L (ot To £ V Ta (T 2m)) = 252 and 18.1 MeV.

16.26. (a) T =(mg—2my)mg/2my = 0.42 GeV; (b) cos6=
27 (T - 2mg) a0
= T Emg—im? —1; 6=103°.
16.27. From the conservation laws of energy and momentum, we
get: m2 = m%+ m — 2 [V (m%+ p%) (m2 + pZ) — pzpacos¥]. Whence
m=10.94 GeV (a neutron); ¢=0.11 GeV.

16.28. Since O=£m, the decay must have occurred when the
particle was moving. From the conservation laws of energy and

momentum, we obtain: m2=m}--m2 -+ 2[} (m3 -+ p3) (mZ + p%) —
'— ppPacosB]. Whence m —= 1115 MeV (a A-hyperon).

2 2
my—mj

» where By = Ty
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161}29. {nstruction. In the C frame, M —=F— l/mf—{—;Z-{—
+ V mi 4 p2.

16.30. V\ie proceed from the relations pix:(gix—{—ﬁﬁ,)ﬂ/i—“ﬁz
and py, = p;,. Noting that pfx—i—p%y :;2, we obtain the equation

2
of an ellipse: AL 4 (Pra—2y)?
b2 a?

=1, where b=Dp; a — p/}/ T—P%;
o= EB/)/1—P2=E\f/b. The focal length is f=V) a2 —p2—
= pp/V 1—p2. The line segment oty == ppr— oty = ppr— % (M — Ez) =

=17z :
‘:—TEZ. It is easy to see that % 2= [, and &, > f, with the sign
equals” being valid only for the particles with zero rest mass.

h16.31‘. (@) pa=13my B=1V 32 P =ma/2. The parameters of
;; e ;lllpse’:va:Zb:pn/l/ 3 ay=ay=f=p./2; (b) pa=m,V 5/2;
=V 5/3; p=(mz—mi)/2m, =0.19

v ol3; a=0.19p,. The parameter f
ellipse: &=0.19p,; a=0.29p,; f=0.21p.; ay=f; (¢) Sth?s cglslg
can be treated as a decay of a particle whose re

t

the total energy of interacting particles in ther SC fl;laaxflse: eunfis

:E:V(Zn.zp)z—}—ZmpT:]igmp; Pp=V3m,. The parameters
of the ellipse: b=p,/V 6 a=py/2; f=pp2V 3; oy = Oy == a3
(d) as in the previous case, we have: M:E:Vl—i-m 7 Pa=
.= P N
f:VS"’;L%} The parameters of the ellipse:tb = pu/)/ 11; a=4py/11;
= Pa 11; ay,=a; (e) b=0.224p ; a;0.275 A fo ;
on =0.1685p . ! P 1= 04585y
16.32. (a) About 20° (b) assuming sin ® = i
Tawn> (na — my)2m, = 5.5 MoV, = o omax =1, we obtain

16.33. ~ Y  pcosO—BE ~ o~
(a) From the formulas p cos & — —ﬁ— and psin 9 =

=psin{ (see Fig. 41), we have tanr}:w , Where we
took into account that Elp=1, for peuteir

_ = the neutrino’

1s zero. The rest of the proof is’obvious. Tino Test mass

(B) As o(9)sin 49 = (8) sin T dF, then o (0)— 5 (§) Leos8
Now we have only to find the derivative by means of the ?Ocr(;;fi]a

given in the point (a) of this problem.
{((:3)320 =( ;1 ~+ B)/2 = 0.93.
-94. (a) The narrow maximum be] i
th?b}))r%qd one to reaction branch (2). o1 o reaction branch (1),
Isregarding the momentum of a TT-meson ite t
conservation of total energy and momentum for ’b‘;‘v;:lcil ?16):12;::: —({)-f
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+my, = E, + Ey, Prn = py. Whence m, = Vmi + E; +E, —
—my = 0. 14 GeV

(c) From the spectral characteristics of y-quanta emerging in the
decay of n’-meson (the broad maximum), it follows that n’®-mesons
disintegrate in flight (otherwise, monochromatic y-quanta would be
emitted). From the conservation laws of energy and momentum, it
follows that m, = 2 } E,E, = 135 MeV.

16.35. If the process goes via the bound state p (in two stages),
then in the reference frame fixed to the p-particle the rest mass of the
p-particle equals the sum of the total energies of the particles into
which it decays:

B ~ ~ ~ i~ ~ ~
EOZEI’(++ETE-:E‘)=MQ; ‘p:pﬂ++pﬂ_:0'
Using the invariance of the expression E? — p? on transition from

the C to L frame, we obtain for the pions: £2 — p? = E2, where £ =
= En+ + En-; p = | Pa+ + Pa-|-

If the reaction proceeded only via the bound state, we would
obtain the same value of E* — p2 in any case considered. But if the
reaction goes partially via the bound state, the value of E? — p?
varies from case to case and exhibits the maximum which proves
the existence of the resonance, or the bound state.

.. 16.36. Using the E? — p? invariant, find the total energy of

interacting particles in the C frame: EzV(mK+m 24—2m TK
The total energy of the resonance (the Y*-particleﬁj in the

frame is Ky==FE — En—E~(T1-rmn) and MY#I/EZ——EY_

=1.38 GeV, where py=pn= Tn(Tn—}—Zmn). The decay energy is
equal to 125 MeV.

16.37. (a) to=1V 1—pE=1m,/(m,+T)=2.2 us.

(b) 7o=1V 1—Pp%Pc=lmy/pc=2.5-10" s,

16.38. w =1 — e"t/* = 0.43, where t is the flight time, 7 is
the mean lifetime of the moving meson.

16.39. From the condition w, = apy + (1 — &) ps, where a is
the fraction of time during which the proton possesses the properties

of “the ideal proton”, we find o = ‘§ . Here we took into account that
Pallhy = Mplmz.

16.40. 25, + 1 =7 S22 (pplpa)* = 1.05; 51 = 0. The proton’s
,momentum pp in the C frame is found by means of the E? — p?

invariant on_ transition from the L to C frame; p* = mpTp/2. The

momentum p,t of the pion in the reverse process can be found from
Eq. (16.5), considering this process as a decay of the system with

rest mass M equal to the total energy E;[d of the interacting particles
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in the C frame. In accordance with the detailed balancing principle

Erg = Epp, so that M = By, = V E3, — p* =V 2my, (T, + 2my).
16.41. For the y-quantum, 2s, + 1 = 2 in accordance with two

possible polarizations, so that 6., = 20, (p,/px)? = 0.6 mb. Here
Sv is found by means of the E? — p? invariant and the momentum
5;: in the reverse process is found{from the condition of equality of

total energies in both processes in the € frame (E’,’va = Eﬂp):

~ (2m _E,—m2)2—4mZm2
”_ b P
Ey p Im_(m,T2E,)
16.42. Forbidden are reactions 1, 3, 5, and 6.
16.43. (2) and (6).
16.44. (a) Branch (2) is forbidden in terms of energy; (b) Branch
(1) is forbidden for | AS | = 2.

e M
m +2E

nn | pp np ntp P nop tn Tn non

T, | -1+t 0 | +372 —1/2 +1/2 +1/2 | —3/21 —1/2
T {4410 3/2 |3/2:1/2]3/2;4/2]3/2;1/21 3/2] 3/2; 1/2

16.46. (a) The system can possess 7' = 1 or 0. 3P: (—1)**1*T =
=1, T =1;3D: (1T = 1, T = 0.

(b) The system can possess T = 2 or 1 (T = 0 is out since T,
= 41). 1P: (=) = +1, T =1, D: (— 1)2+"+T =41, T = 2

(¢c) Here 7 = 0, 1, and 2. In *P states ' = 1; in 1D states T = 2
and O.

16.47. (a) Write out all possible reactions of this type:

l 14 - I 70
(1) pp—mtn=, (') an—>mwt . . .0y 2 2 —
() pp—atn®, () map—>nm® . . ,0, | — | — 4
@3) pn—a-n®, (39 r?p—»n*n“ . Og 1 1 2

All of these reactions have three different cross-sections o, o,, and
o3. The cross-sections o, of processes 1 and 1’ are equal due to the
charge symmetry. Just as equal are the cross-sections o, of processes
2 and 2’ and cross-sections g, of processes 3 and 3'.

Let us construct the Table with the numbers a; for the produced
pions of either sign in the reactions with different cross-sections o;.
The total number of pions of either sign is equal to the sum Xa;0;.
Since the emerging particles are non-polarized, the number of pions
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of either sign must be the same, and therefore
20, + 1oy = 20, + 103 = 40, + 205, or 20; = 40, 4+ 0;.

(b) In this case, as one can easily see, the analysis of the direct
reactions does not provide the sought relation. Therefore, having
written all reactions of this type, we compile the table for the reverse
processes:

(=

(1) atn—> AK*Y, ap—>AK® . . .0y
(2) n%p—> AK*, na'n—AK® . . . 0, —

From the absence of polarization in the reverse processes, we obtain
using this table o, = 20,.

. (¢) In this case, having written all reactions of this type, we com-
pile the table for the direct and reverse processes:

2 | Z- | Z0 |t | nm | @O
(1) =*p—>Z*K*, a7n—>3"K? . . .0y 1 1 — 1 1 —
(2) n%p—ZK* non—>30K9 . . . 0, — | — 2 — | — 2
(3) nOp—>3*K?, non »>3I"K* . . . 03 1 1 — | — | = 2
(4) wp—>3IKY, ntn—>3*K? . . . gy 1 1 — 1 1 —
(5) 7w p—>3K?, ntn—»>I0K+ .. . oy — — 1 —

From the condition of absence of polarization for the direct and
reverse processes, we obtain o, + 03 + o, = 2 (0, + 05), oy +
+ 0, + 05 = 2 (0, -+ 03), whence g3 = 0;; 0y + 0, = 20, + 03

(d) Assuming the t-particles to be non-polarized in terms of iso-
topic spin, write all possible decay reactions of this type and compile
the corresponding table for these processes:

qt i ‘ no
1) - ntatn®, 1" —->natnd oL L wy 1 1 4
(2) TT-oaatn, tTtontaat L. . w, 3 3 —
3) ->arwlno, . ... ... .. wg — — 3
(4 —>nln-mt, ... ... w, 1 1 1

Whence w, + 3w, + w, = 4w, + 3w; + w,, or w, -+ wy = w,.

(e) Write the hypothetical reaction branches for a w’ quasiparticle
decaying into three pions, indicating the probability of each branch,
and compile the corresponding table:

n* - ’ o
o /nﬂzﬁn‘ ...... wy 1 1 1
NG L L. w, — — 3
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From the condition of absence of polarization in the produced pions,
we obtain w, = w; 4+ 3w,, whence w, = 0.

16.48. (a) and (b) AT, = 0 and AS = 0; thus, the interaction is
strong and A7 = 0 for it; (c¢) the isotopic spin T of the system
(s’ *) is equal to 2 and 4. From the generalized Pauli principle, it
follows that (—1)!+s+T = (—1)i+T = 1. According to the law of
conservation of the angular momentum / must be equal to zero.
Whence (—1)T = +1, T = 2. Thus, AT = 3/2, AT, = 1/2; (d) the
projection of the isotopic spin of the system 2n°7, = 0. Of all
possible values of isotopic spin (2, 1. and 0), only 0 and 2 are realized,
since according to the generalized Pauli principle (—1)!+0+T = -1,
From the law of conservation of angular momentum, it follows that
! = 0. Thus, T must be even, i.e. 0 or 2. Consequently, AT is equal
to 1/2 or 3/2.

16.49. From the laws of conservation of parity P and angular
momentum, we have

PP, (—1)!x = P} (—1)n, whence P;= (—1)n;
$x + 8¢ + In = 28, + I, whence 1 = s, 4 s,/ 4 .

If the neutrons were produced in the s state (I, = 0), they would
possess, according to the Pauli principle, the opposite spins; in this
case, however, the,total moment would be equal to O, which is
impossible. When [, = 1 (p-state), the momentum conservation law
is satisfied: 1 = 1/2 — 1/2 + 1. The other values of I, are not suit-
able. Thus, P, = (—1)ln = —1.

16.50. (a) It follows from the generalized Pauli principle that
(—1)1*+T = 1. Besides, taking into account the law of conserva-
tion of isotopic spin in strong interactions, we find 7 = 1 and [
which is equal to 1, 3, 5, . . . From the law of conservation of angular
momentum, we obtain for the spin of p-particle [, =1 =1,3,5,...
From the experiment, we have /, = 1.

(b) p*—>n*+ n% p°—>mn*t+ a7, p~—>n~ + a®. The decay
p° — 2n? is forbidden because in this case [ must be even (the wave
function is symmetric for the particles are indistinguishable); yet
cannot be even owing to the law of conservation of angular momen-
tum (as it was shown in the solution of the foregoing item (a), the
spin of the p-particle is odd, or, to be more precise, I, =

_16.51. (2) 10195} 019202 157 920285 Di9edsi Gadsds (D) igas

$192: Q193 D193 G203
(¢) The magnetic moments of quarks g, and g,, of which a neutron

n (g,9:9:) and proton p (g,¢:9,) are composed, are equal to p, =
2 . .
==l and py = — -3 o, where p, is a certain constant. Allow-

ing for the probability of possible states, we can find the mag-
netic moments of a neutron and proton (in units of py):

=t (~2 )b (o e ) = -3



b (Fr3ad) e (3ot )

Thus, p,/p, = —2/3=0.667 (cf. the experimental value —0.685).
m 2/3
17.4. T="3 (5o 12E)" = 18 V.

17.2. Integrate the relativistic equation of motion:

d | mv et
eV =¢E; v=—— = . Thus T =
T —r—( Vi ) eE; oV n=eE/me us

=me2 () 1+n212—1)=2.5 MeV; 2.5 m.
17.3. (a) E=ATsin?a (—Z——cot oco) =0.31 kV/cm; (b) cot ay=

er

=2ylz—cota, «,=103"; E=0.22 kV/cm; (e) t2=2_’1’;1(1i

T ENT
,i]/1—x;]’;y ), whence 1= y+

; hence £ =0.270r 0.10 ps.

17.4. (a) tana = ez?,a , o~ 6% (7—|—b) tan o = 2.9 cm;
(b) tana:%g—(—%)sm; o=~ 3°% 6:(i+ b)tanoc=1.‘2 cm;

__ ek wa om0, - eEg
(c) tana=—=% (1—005—;—), a="7% g= %—( ot — sin 01) 4+

4+btana=2.8 cm, where v is the initial velocity; o= 2nv;
T =alv.
17.5. e/m =2 (vy—v,)2 12/V =5.107 CGSE units/g.

17.6. T,=1.2 MeV; T,=mc2(V 1+ (epB/mc2)2—1) = 1.1 MeV.

ing=—58% o _ 7. o5=Y(1_ » ab =

17.7. s1noc—-cV2_mf,oc—7,6 - (1—n)+- - , Where 1
=71 "1—(ao/v)?; ®=eB/mc; in the given case (aw/v)2< 1, there-
p ____eBa a _
fore 6_——c omT ( —|—b) 3 cm.

17.8. (a) Az=-2 -8 cm; (b) r_zp{sm—|_.15c,m
Here v is the Veloclty, o =eB/mc; p=(v/w)sina; ¢=wl/vcosa.

e 8m2c2V
17.9- (a) —E=W—2_B—l)—"—5 .3-1017" CGSE unlts g; (b) 32 G.

17.10. T=mc?(V 1+ (eBl/2numc2 cos )2 — 1) =0.24 MeV.
17.01. (a) T =mex( )/ 4+ (2 +-22R2) (g2 )’ —1) =0.32 MeV.

N 335 G for n=1

2ﬂn " T (T -+ 2me?) ,
(b) B= l/ 1—|—(n”‘LR/l)2 —[ 642 G for n=3.
n=1, 3, 5, ... 25° and 55°.
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tana=nnR/l,

17.12. (a) =L £ =0.85 mm/am.u;

(b) 6—;= %1—) z=0.3 mm/keV.

17.13. M — 0% _ 0.62 deg/a.m.u.

17. 14 (a) A particle moving along a non-circular trajectory
r— rcp = —¢E (r Y/m. Taking into account that r2p = const =

— r’g, and (po = v cos alryg & Virg = w,, for a < 1, we obtain

(p = (ro/r)> @, Then substitute this expression into the initial
equation of motion.

Introduce the parameter § < 1, describing the deviation of r from
ry, according to the formula r = r, (1 + 6). After the appropriate
transformations with due regard for § < 1, we obtain £ = E, (1 — §)

and § -~ 20% = 0, ©, = vir, = V eEo/mr, where E, is the field
strength at r = r,. The solution of this equation is 8§ = §,, X
X sin (@ V' 2), ¢ = w4, where we took into account that § (0) = O.
From the] requirement § (¥) = 0, we find ¥ = z/})/ 2.

(b) Consider the two ions leaving the point 4 (see Fig. 48) along

the normal of the radius vector with velocities v and v (1 + m), where
1 < 1. If the first®ion moves along the circle of radius r, and its

motion is thus described as r?¢ = ryv, then for the second ion the

equation rzcb = rov (1 - %) is valid. Substituting the latter expres-
sion into the initial equation of motion and taking into account that

r=ry(1 4+ 8), where 8§ « 1, we obtain § + 2038 = 2win; 8 =

=11 — cos V 2¢); ¢ = wgt. When ¢ = a/}/ 28 = 2n, or Ar/r, =
= 2Av/v.

17.15. (a) The motion of the particle in the horizontal plane is
described by the equation:

52
r——L-r—_—.. —%—B(r), e>0
Here we took into account that B, = —B (r) and also the fact that

in the case of motion along the tra]ectory which only insignificantly

differs from the equilibrium one, r< v and therefore rq') =~ v.
Introduce the parameter § < 1 describing the deviation of r from

ro, according to the formula r =r; (1 4 8). Then r = re6 and
B (r) = B, (ro/r)» &~ By (1 — nd), where B, is the induction of the
magnetic field when r = r,. Substituting these expressions into the
initial equation of motion and taking into account that 6 < 1, we

obtain: & -+ 01 —n)d =0; o, =v/r, = eBy/mc. The solution
of this equation is 8§ = &, sin (¢ V1= n), ¢ = wyt, where the
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initial condition § (0) = O is taken into account. From the require-
ment 8 (¥) =0, we find ¥ = n/V'1 — ~.
(b) The motion of the particle in the vertical plane is described by

the equation: Z= -—% B, e> 0. Here we alsotook into account that

r cpz v. When the deviations z from the symmtry plane are small,

8 . e
B,z( a}j’ )Oz. Since rot B=0, %l:r = aalzz ~ er? and B,:n%’z.

Consequently, the equation of motion takes the form .z'—{— nwiz =

=0, 0y="v/ry=eBy/mec. Its solution is z =z, sin (p )/ n), = wt.
It can be seen that at n—=1/2 both deviations, § and 3z, turn to

zero when =72,

“(¢) The reasoning is similar to that given in the solution of the
point (b) of the foregoing problem. Assuming Av/v = n, we obtain

81 (1—n) o =0l S=-"—(1—cos @)/ T—n), g=oyt.

When n=1/2, o=t} 2 and 8§=4m, or Ar/ry=4Av/v.
17.16. 42keV.

_ncE e _rn o v
17.17. (a) v= NE D m T, B where E = TN
cE e 26 c2E

W) v=F w=Frr T

17.18. By = o2 1/ 2n¥ — 0.05kG.

2
2 —Tq

17.49. Vi =22 (I 1n :—j)z:!&_

17.20. The equations of motion of the particle: z— —mz., y=a,

. ° . . v .
z= @z, where a = e¢E/m, ¢ = eB/mc. Their solutions are z = - sin wt;

LA L
Y=t z=—(1l—coswi).

17.21. tan LY _Z where 4= 20%E

m A 1) B?
:A_’Z_(_;_-)Z.

; when z<l, y=

/

17.22. (a) The equations of motion of the particle are: x= (01}; é.z

N . . a
=a—ox, where w =eB/mc, a=eE/m. Their solutions are T=— (ot —

— sin wt); ly:%(i——cos ot). This is {the equation of a cycloid
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(Fig.73). The particle’s motion can be visualized as a rotation
angular velocity « along the circle whose centre is displaced

with constant velocity a/w; (b) 8a/w? (c) (:.c):a/m.

9N 2%

17.23. 2= %[t — (1 —=2) sin ot + 2o (1—coswt) |; y=

G 35—“sin mt+( 0% ) (1 —cos cot)] , where a—=e¢E/m;

ra a
o =eB/mec.
1 . a
(a) x:% ((ot——2—51n mt) ; yz—ﬁ(b—cosmt)-

a

— (1—cos wi)-

(b) :c:—ofz—(mt——Zsincot); y=2
() x:-a%(i-}—wt—sinmt——cosmt); y=-(;—12—(1-|—sinmt—cosmt).

(d) z= 6‘12— (1+ot—coswl)y y= _01)1_2 sin ot. The corresponding

curves (trochoids) are shown in Fig. 74.

U X
!

v
o d
a

\%4

0 v‘ X
Fig. 74

17.24. From the equations of motion derived. in the solution of
the foregoing problem, it follows that the equation y (ot) = O pos-
sesses the roots of two types, one of which depends on the initial
conditions and the order does not. We are interested in the latter

type of roots: wt, = 2nn, n is an integer. For n = 1, we have z; =

a a
=—(;)? mtl—ZTL o2 *
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a

a .
17.25. z= (sin 0t — wi cos wi); y= ot sin ©t, where g=

2m2 202
ek .
= m" - The trajectory has the shape of an unwinding spiral.
17.26. (a) Use the equations m.r.=_eE,, m?/2 = —eV,, where

the minus sign in the latter equation is due to the fact that V, << 0.
Express £, as a derivative of the potential on the axis with respect
to z. To do this, separate a small
imaginary cylinder in the vicinity € Ep
of z axis (Fig. 75) with the height
8z and radius r. From Gauss’s

theorem, (§ E, dS = 0, it follows: -z Eg+dEz - 2

2nrdzE, + nrz% 0z2=0

.
K

Er:'—‘ r JFE,

2 9z

r
~—=V".
70 Fig. 75
Pass frorp differentiating with re-
spect to time in equations of motion to differentiating with respect to z:

L4 a
r=v——(r'v)=vr"4+w'r|= V.

0

o]

__e‘_
—.
Now itV }'/emains to take into account that 1?2 = —2eVy/m and v’ =
= —eV,/m.
. (b). The pa;'ticlebj with different values of e/m will move along the
1deptlcal tra]ect‘orles under the same initial conditions since the
trajectory equation does not contain the quantity e/m. In the second
;:alsle thef tra]e&ltorly also increases n-fold, retaining its form, which
oliows from the linearity of the equati i ’ i
dorivatives y quation with respect to r and its
1’}71 .27_. (a) Transfprm the equation given in the foregoing problem
so that it can be easily integrated. To do this, divide all the terms by

V'V, and transfer the last term to the right-hand side: 36- " V7,
Z

r - ” . . . B
= — 7 Vo V?V,. Integrate this equation with respect to z between

N . 2
"V Vo= 'V Vo= =12 [ vz12v; s,
1
Inasmuch as the field is practically absent outside the lens, the

value of the integral will not change i i i imi
ge if the integration limits are
replaced by —oo and -+ oo. Finally, it should'be taken into account
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that r; = ro/(—s;) and r, = —r/s, (see Fig. 52).

, r 2 1 7 " 1
(b) When s,= —o0, sy,=74, [and ?—2:—4— ) Voii2vidz = - X

-: + -QL S Vgs/zV; dz) , where V(&£ o0) =0, since the

-0

< (Vv

field is absent outside the lens.

17.28. Use the equations given in the introduction to this chapter
(in our case E, = E, = 0).

First of all, express B, and B, in terms of the induction on the
axis. B, differs only slightly from B,, and we can therefore assume
that B, = B,. To determine B,, we proceed as in the solution of
Problem 17.26, when we derived the component E,. This way we
obtain: B, = — -;— ai’ ~ — % B,. Now we integrate the second

equation of motion from 0 to z, taking into account that the particle
leaves the source located on the axis (rig, = 0):

2o —— {1 (LB’ 4r == (g (ZB)=
rigp = s .(Eﬂrl‘(zBo—}—rBo)dz-— mc}d( 3 )_
e
P _ — 2
g T B.
Since (p = vg’, we obtain ¢’ = —abB,. Now substitute the latter

expression for ¢ into the first equation of motion. Taking into ac-

count that r = v®", we obtain after simple transformations the
second equation given in the text of the problem.

17.29. Integrate the equation for r (z) with respect to z between
points 1 and 2 (see Fig. 52), noting that within these limits r =~
~ r, = const:

2
2
rg—ry= — ( 2:ch) o S B} (z) dz.
1
Since (according to the condition) there is no field outside the
lens, the integral will keep its value if the limits of integration
are replaced by —oo and 4 oc. Besides, taking into account
that r;=r¢/(—s,) and r,= —r¢/s,, and putting s equal to — oo
(with s;=7), we obtain the sought expression; (a) f=

2 mea 16¢*RV . .
=8 l/? —i (b) f= —SmE = 0.5 m. Integrating the equation

for @' (see the foregoing problem), we get: Ag=nl/V 2e/mV/c2=
=0.37 rad or 21°.
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17.30. (a) tv=2n (7 -+ me2)/ceB; 7.3.10710 and 6.6.108 s; r=
= VT (T + 2mc®/eB = 3.5 and 46 cm; (b) 7T = me®X
X (V 1+ (erB/me2)2—1); 2.9MeV and 5.9keV.

17.31. (a) E = ®/2nrc =0.32 V/em; T = ne ®/c =25 MeV; (b) [ =
== (VT+a22—1)=0.9-10km, where a=eE/mc (see the solu=
tion of Problem 17.2) T =eEl =28 MeV.

17.32. (a) 7 =mc? (V' 1+ (erB,,/mc2)2 —1)=0.15GeV.

T/4
1

(b) L= S vdt= % arcsin VieE! A=mc?/erB,,, where v is
0

« found from the formula p——i- rB. In the case considered here

1
A< 1, so that arcsin (1-+ 42) 2 ~ —;I- and L=c¢/4v=1,5-103km;
2.4.10°% revolutions.

dp e dD
17.33. (@) On the one hand, = —¢E=5——-; on the
other hand, dp/dt can be {found, having differentiated the
relation p:—g—rB with respect to time at r=const. Comparing
the expression obtained, we find that é:(é)/Z. In particular,
this condition will hold with B =(B)/2.
(b) Differentiating the expression pc=erB with respect to time,

where pc =V E2—m2ct, we obtain

¢ dE dr 0B B dr
ca=eBatratrayw)
Since = 4f1; = ed_,_ 27 iB) , it follows from the latter ex-
Ter 2c
r(BY—2B) ___ r 0B

. T .
pression that T A=y T T where n is the

fall-off index of the field. It can be seen that when 0 << n<1 the

derivative dr/dt > 0 (the orbital radius grows), provided (B) > 2B
and vice versa.

17.34. Differentiating the expression E = ®@/2ncr with respect
to r (E is the modulus of the vector of the electric field strength) and
; taking into account that a®/or = 2nrB (r), we obtain 9E/or = 0
and @%E/or? > 0.

17.35. (a) In the frame rotating about the field’s axis with the
angular velocity of the electron, the electron experiences the centri-
fugal force of inertia in addition to the Lorentz force. The resultant
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force f (r) = mzvz — ip vB (r), and when r =r,, f(r,) = 0. The

molion is stable if the force f is the restoring one. i.e. when r > r,
f <C O and vice versa. It is easy to see that this is the case when B (r)
diminishes slower than 1/r, i.e. n < 1.

(b) Sinee the field falls off toward the periphery, it has the barrel
shape, i.e. there is a radial component 5, outside the plane of sym-
metry. The latter component produces the vertical component of the
Lorentz force f, = % vB.. In the vicinity of the plane of symmetry
B, = (0B,/0z), z. Since rot B =0, 08B,/8z = 0B /6r. Thereefore
f. = % v —‘% 2. If n>0 0B/or << 0 and the force f, is always,
directed toward the plane of symmetry.

17.36. (a) @,=w,V 1—n; (b) w,=w,)/ n, where w,=eB/me
(see the solution of Problem 17.15).

17.37. E—me* V 1538 ce = 0.29 GeV.

17.38. (a) T = (epB)2/2me?; 6, 12 and 12MeV; (b) v=V T/72m/np;
20, 14 and 10MHz.

17.39. V =2n2mv2poAp/e=0.2 MV,

17.40. (a) t:nzmpzx/ql =10 ps where ¢ is the particle’s charge;

(b) L= 2 v, ::.__]/ 2¢V7m 2 V n, where v, is the velocity

of the partlcle after the nth passmg of the accelerating gap, N is
the total number of passings. In the given case A is large
(N = Tmax/qV), and therefore, X} n=~ g V ndn. Thus, L~
=~ 4rdmv2p3/3qV == 0.2 km. )

17.41. T = me? Av/t,; 5.1 keV, 9.4 and 37 MeV.

17.42. n = 2nf AE/ceB = 9.

Vo—WV T ,

17.43. (a) ()Vo Rl eyt 3D and 12%; (b) the angular veloc-
ity of the particle is related to its total energ\ E as E=ceB/w.
ar ceBB  dw € 0]

Thus, el e v . On the other hand, —- dt = =5, From
. dw e . .
these formulas, we obtain: e o3, After integration,

we get o (1) = wy/)/ 1+ At; w,=eB/me; A= ewy/nme2,
c 4/ mewg \3 { .
17.44. (@) ri=—- = (552 ) sor s
(b) from 42.0 to 429 cm, L =, {r)/20=1.5.103km.

C
Ta }/m ’

17.45. w (t)= A=mclerDB (t).
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17.46. (a) From 0.3 to 1.89 MHz, 0.82s; (b) 8F =2ner?B/c==
=0.19keV; (e) 1.5-10°km; 5.2.10% revolutions.

17.47. (a) vi= 'VT_IC_T’“E , A=mc2/erB (t),0.20 and 1.44 MHz,

3.2s; (b) 8E= erllBlc = 2.33keV; (¢) 9-10° km; 4.3.10° revolutions.
. - ¢
17.49. (a) The length of the nth drift tube is [, =57 X

i he proton in
x V1—(mc¥/E,)?, where E, is the total emergy of t.
theVnth Eirift tube and E,=mc>+T,+nAE. In this case Ty-+
+nAE < me?, and therefore 1,=4.9) 4+ncm. The number of
drift tubes is N=35; l;=11cm, l3=31cm; (b) L= Z l,~
N

~ 4.9 S Vifrdn=1.5m.

1 =
17.50. From 258 to 790 MHz; from 2.49.10° to 2.50-10° Hz.
17.51. (a) Ex= (Ty— TyleL = 0.15 MV/em; (b) v =
=¢ |/ 1+ [mc*/E (x)]?, where E@x)=mc?+T,+eE,; by a factor

of 9.5, by 0.65%.
17.52. 5.5-103GeV (see the solution of Problem 16.3).

APPENDICES

1. Units of measurements and their symbols

Unit Symbol Unit Symbol Unit Symbol
ampere A gauss G newton N
angstrom A gram g oersted Oe
barn b hertz Hz pascal Pa
calorie cal joule J second s
coulomb C kelvin K steradian sr
dyne dyn maxwell Mx volt v
electronvolt eV metre m watt w
erg erg mole mol weber Wb
Decimal prefixes for the names of units:

E exa (1018) h hecto (10?) n nano (1079)

P peta (10%) da deca (10Y) p pico (10712)

T tera (1012%) d deci (1071) f femto (10-15)

G giga (109) ¢ centi (10°2) a atte (10718)

M  mega (109%) m milli (1073)

k kilo (103) p  micro (107¢) \

2. K- and L-absorption of X-ray radiation
Absorption edge, A
Z Element
X Ly It L
23 |V ..o 2.268 — 23.9 241
26 Fe .. ... .. 1.741 — 17.10 17.4
27 Co .. .. ... 1.604 — 15.46 15.8
28 | Ni ... .. .. 1.486 — 14.11 14.4
29 [Cu .. ..o 1.380 — 12.97 13.26
30 {Zn ... ... 1.284 — 11.85 12.1
42 | Mo . . ... .. 0.619 4,305 4.715 4.91
47 |Ag .. ... 0.4860 3.236 3.510 3.695
50 {Sn .. .. ... 0.4239 2.773 2.980 3.153
74 W oo 0.1785 1.022 1.073 1.215
78 [Pt .. ... 0.1585 0.888 0.932 1.072
79 Au . . .. ... 0.1535 0.861 0.905 1.038
8 |(Pb .. .. ... 0.1405 0.781 0.814 0.950
92 u ... 0.1075 0.568 0.591 0.722
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3. Some properties of metals .
5. Constants of diatomic molecules
Crystal structure Temperature
nter Vibrati iei
. | Density, lattice constant, Molecule |Basic term Idff';anr}lcc(}egr frg()[luetligl;, ?}g?é?igg{?w Dissociation
Metal A, eV «/cm? type Debye mel%ing, 10-8 cm ¥, em-1 10-3 ! enercy D, eV
‘ ¢ H, 13 0.741 4395.2 28.5 ;
N, 13 1,09 23506 615 78
ini 4 9 7 - O, ) 1.207 15804 7.65 5
Aluminium 3.74 2.7 cfc 4.04 374 658.7 F 1 1 989 13¢ [0 5.08
Barium 229 | 375 |esc | 5.0 16 | 704 P s L 5os 1139.8 8.51 ~1.6
Bery 1lium 392 | 185 |hep | 2.28 | 3.58 | 4100 | 1278 g2 = R 7804 3.59 5.03
Bismuth 462 | 9.8 | hex | 4.54 | 11.84 80 | 27 a. i R 125.7 3.93 ~ 4.4
Cesium 1.89 1.87 |csc | 6.05 60 28.5 Br. 15 5 503 §g§ 9 7.09 2.48
Cobalt 4.25 8.9 |hep | 2.51 | 4.07 397 | 1480 12 = 5 Gon STk 3.31 1.97
Copper 547 | 8.9 |ecfe | 3.6 329 | 1083 HF 15 Cote 246 2,84 1.54
Gold 458 | 19.3 |ecfe | 4.07 164 | 1063 HCI 15 1 o 3080 2 21.8 5.8
Iron 4.3 | 7.8 |cse | 2.86 467 | 1535 HBr 15 Uals 5640 T 17.4 4.43
Lead 445 | 11.3  Jefc | 4.94 89 | 327.5 HI 15 L 604 900 5 7.1 3.75
Lithium 2.39 0.53 | cse | 3.50 404 | 186 CO 15 1 158 53‘_9‘3 17.2 3.06
Magnesium 3.69 1.74 | hep 3.20 | 5.20 350 650 NO o] e q“’ = 6.22 ~9.7
Molybdenum 4.27 | 102 Jesc | 3.14 357 | 2620 OH 0 0001 1906 7.55 5.29
Nickel 4.8 | 89 |ecfc | 3.52 425 | 1452 I 3735 22.2 4.35
Platinum 5.20 | 21.5 |ecfc | 3.92 212 | 1775
Potassium 2.15 0.86 cse 5.25 132 62.3
Silver 4.28 10.5 cfc 4.08 210 960
Sodium 2.27 0.97 |esec | 4.24 226 97.5
Tin 4.51 7.4 | tsc 5.82 | 3.18 11 | 231.9
Titanium 3.92 4.5 hep 2.95 4 .69 300 1720
Tungsten 4,50 19 .1 cse 3.16 315 3370
Vanadium 3.78 5.87 cse 3.03 413 1715 :
Zinc 3.74 7.0 {hep | 2.66 | 4.9 213 | 419.4 6 .
. Radioactive Uranium Family

Notation. A is the work function; cfc — cubic face-centered;
fered; hex — hexagonal; hcp -- hexagonal close-packed; tsc — tetragon

csc — cubic space-cen -
al space-centered -

4. Density of substances

Substance D?_I/ls;rs; ’ Substance DS?;‘IS’!’
Air 1.293.10-3 | Plutonium 19.8
Beryllium oxide BeO 3.03 Selenium 4.5
Boron 2.45 Silicon 2.35
Cadmium 8.65 Strontinm 2.54
Germanium 5.46 L Sulphur 2.1
Graphite 1.60 Tellnrinm 6.02
Heavy water D,0 1.10 Thorium 11.7
Indium 7.28 Uranium 19.0
Mercury 13.6 Water 1.00
Paraffin CH, 0.89 NaCl 2.18
Phosphorus 1.83 C=:Cl 4,04

Note. The densities of other metals are given in the foregoine tabhle,
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g1

89
88
87
86
85

Notalion:
y - years ]
d - days
m - minutes |
s - seconds
i i
222 226 250 234 A
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7. Properties of nuclides

Surplus of

Nuc- A tura Energy of a-
Z | Nuclide | lear |3tomic mass Sane | TIFC Hali-life and f-parti-
spin amu. dance, % | decay Mg\rfnam
n 1/2 0.008665 — B 11.7 min 0.78
1] H 1/2 0.007825 | 99.985
2H 1 0.014102 0.015
3H 1/2 0.016049 —_ B- 12.3 years 0.018
2| %He 1/2 0.016030 | 3.10~¢
4He 0 0.002604 | ~ 100
31 °Li 1 0.015126 7.52
Li 372 0.016005 | 92.48
4| "Be 3/2 0.016931 — K 53 days
8Be 0 0.005308 — 2a 10-16 g 0.039
9Be 3/2 0.012186 | 100
10Be 0 0.013535 — p- 2.5.10¢ years 0.555
5] B 3 0.012939 | 20
1B 3/2 0.009305 | 80
6| 1'C 3/2 0,011431 — B 20.4 min 0.97
12G 0 0 98.89
13C 1/2 0.003354 1.11
1iC 0 0.003242 — p- 5570 years 0.155
7| 13N — 0.005739 — p* 10 min 1.2
1N 1 0.003074 | 99.63
5N 1/2 0.000108 0.37
8| 150 — 0.003072 — B+ 2.1 min 1.68
160 0 —0.005085 | 99.76
170 5/2 | —0.000867 0.037
180 0 —0.000840 0.204
9| 18F — 0.000950 — B+ 1.87 h 0.649
19F 1/2 | —0.001595 | 100
20F — —0.000015 — B- 12 s 5.42
10 2°Ne 0 —0.007560 | 90.92
21Ne — | —0.006151 0.26
22Ne 0 —0.008616 8.82
11| 22Na 3 —0.005565 — i 2.6 years 0.540
23Na 3/2 | —0.010227 | 100
21Na 4 —0.009033 — p- 15 h 1.39
2| 23Mg — | —0.005865 — Bt 11 s 2.95
24Mg 0 —0.014956 78.60
25Mg 5/2 | —0.014160 10.11
26Mg 0 —0.017409 11.29
2?Mg 1/2 | —0.015655 — p- 9.5 min 1.75 and 1.59
26A] — | —0.013100 — p+ 6.7 ¢ 3.20
27A1 5/2 | —0.018465 | 100
28A1 3 —0.018092 — p- 2.3 min 2.86
14] 283 0 —0.023073 | 92.27
295 1/2 | —0.023509 4.68
308i 0 —0.026239 3.05
818j — | —0.024651 — p- 2.65 h 1.47
15| sop — | —0.021680 — B+ 2.5 min 3.2
31p 1/2 | —0.026237 | 100
32p — | —0.026092 — B- 14.3 days 1.71

246

Continued
Nuc- | Surplus of atural | Type Energ}_' of a
2| Nuctide | lear atomic mass 1\gilhun-‘, of Halt-lite | And B p;’“'
spin amou. dance, 9% | decay M%V axs
16| 328 0 | —0.027926 | 95.02
338 3/2 | —0.028540 0.75
343 0 —0.032136 4.21
353 3/2 | —0.030966 — B- 87 days 0.167
171 35C1 3/2 | —0.031146 | 175.4
36C} 2 —0.031688 - p-, K 3.1.108 0.714
37C1 3/2 | —0.034104 | 24.6
181 3%Ar 0 —0.032452 0.34
37AT 3/2 | —0.033228 —_ K 32 days
39AT — | —0.035679 — p- 265 years 0.565
AP 0 —0.037616 | 99.60
19| 3K 3/2 | —0.036286 | 93.08
42 2 —0.037583 —_— B- 1.52 h 3.55 and 1.99
24| 5Cr 7/2 | —0.055214 — K 28 days
25| 3Mn 5/2 | —0.061946 | 100
27| %8CO 2 —0.064246 — K,p* 72 days 0.47
59Co 7/2 | —0.066811 | 100
80Co 4 —0.066194 — B- 5.2 years 0.31
29| %3Cu 3/2 1—0.070406 | 69.1
65Cu 3/2 | —-0.072214 | 30.9
30| %Zn 5/2 | —0.070766 — K, p* 245 days 0.325
35| 82Br 6 | —0.083198"| — p- 36 h 0.456
38| 88Sr 0 —0.09436 82.56
893 5/2 | —0.09257 — B- 51 days 1.46
95T 0 —0.09223 — p- 28 years 0.535
39| %Y 2 —0.09282 — B~ 64 h 2.24
47| 107Ag 1/2 | —0.09303 51.35
53| 1271 5/2 | -——0.09565 100
128] 1 —0.09418 —_ p-, K 25 min 2.12 and 1.67
79| 197Au 3/2 | —0.03345 | 100
198Ay 2 —0.03176 — p- 2.7 days 0.96
81| 204T] — | —0.02611 — p- 4.1 vears 0.77
821 206pPh 0 —0.02554 23.6
207Ph 1/2 | —0.02410 22.6
208 ph 0 —0.02336 52.3
83| 209Bi 9/2 { —0.01958 | 100
210Bj{ 4 —0.01589 — a 2.6-10% years 4.97
84| 29Po — 1 —0.017113 — o 138 days 5.3
86| 222Rn — 0.01753 — o 3.8 years 5.49
88| 226Ra 0 0.02536 — o 1620 vears 4.747758%nd
90| 232Th 0 0.03821 | 100 o | 1.4-100 years [4.00 and 3.98
233Th — 0.04143 — B- 22 min 1.23
92| 231U 0 0.04090 0.006 o 2.5-10% years |4.76 and 4.72
2350 7/2 0.04393 0.71 o | 7.1-108 years | 4.20-4.58
2367J 0 0.04573 — o 2.4-107 years |4.45 and 4.50
2387 0 0.05076 99.28 o | 4.5-10° years [4.13 and 4.18
2397 — 0.05432 — p- 23.5 min 1.2
941 233Pu — 0.04952 — a 89.6 years |5.50 and 5.45
23%Py 1/2 0.05216 — o | 2.4-10* years | 5.15-5.10
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8. Neutron cross-seetions ' 10. Free Path vs. Energy Dependence for a-particles in Air

Cross-section, b \
Ele- | Nuc- Natural Halflife of
ment | lide | abundance, nuclide absorption | activation | scattering Frergy, MeV (Curve IT)
% produced P o (G ) .
2 act sc 7 8 9 0 " I 13 14
] I i | |
H e 0.015 | 12.3 years | 5-107 5.7-107 7 & - +/
Li — — — 71 — 1.4 t
SLi 7.52 — 945 (nat) 2.8-1072 — i 18
Li 92.48 0.85 s —_— 3.3.10-2 _— — [TJ KT
Be %Be 100 2.7-108 years 102 9-10~¢ 7 T 1
B —_ — — 755 — 4 6 I 74 7
10B 20 — 3813 (nat) 0.5 — B -
up 80 0.03 s —_ 5-10-2 — — i
C — — — 3.8-10-9 — 4.8 I o 6
12G 98.89 — — 3.3-10-3 — 1 ) yAR —
13C 1.11 5570 years 0.5-10-3 9.104 — } , -
0 — — = 2.107 — 4.2 6 T - /5
F 18 100 11 s <1072 9.10-3 3.9 i }
Na 23Na 100 15 h 0.53 0.53 4 : T
Al 27A1 100 2.3 min 233 0.21 é,4 ' J y 4
Vool 0.2 _ 250 — — - ERaN: | / N
sy 99.76 3.76 min — 4.5 — o —+— - ©
Cu — — — 3.77 — 7.2 § 4 T Y —TF a 13 g
Cu | 69.1 12.8 b 4.5 4.5 — S y s 3
65Cu 30.9 5.15 min 2.2 1.8 — 1 NEY4 ~
o8 — — — 2540 _ : S i : AmEE 2§
Cd — — — — . : ! >
usCd|  12.26 — 20 000 — — g - eyl <
In — — — 196 —_ 2.2 N — // | ‘lI’fJ ! s
115]n 99.77 54.2 min — 155 — X T 7 =
1 127] 100 25 min 6.22 5.6.10-3 3.6 = =
Au 127Au| 100 2.7 days 98.2 96 gg i "( ; 0
U — — — 7.6 — . - ~ -
2387J 99.28 23.5 min 2.75 2.74 11.2 — Li A L 1 i
2 + I 1
o, and 0, are the cross-sections for thermal neutrons (2200 m/s); (Ogp) are the ; / T/ | f 9
cross-sections averaged over sufficiently wide energy interval. ; ’ ; ’.( | ']lr% 1
4 /‘{: [ 8
+— — i I T’ ™
. . — A A E Bl 1
9. Constants of fissionable nuclides ; e z ! B ; ,
(due to thermal neutrons, 2200 m/s) , T ‘f, }
T
S N N
Natural Cross-section, b Mean n%r;b%gsggnneutrons L& i — I = s = 5
Nuclide aﬁungance, r | 41 e o
i fissi instanta- | : 11 Tt | N
() absoxg:ltlon sg;on 1;1:0?123 delayed 0 ; 5 = - L L ]
Energy, MeV (Curvel)
233(J — 588+4 532-+-4 2.52 0.0066
2357 0.711 69443 58244 2.47 0.0158
239Py — 102548 73844 2.91 0.0061
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11. Attenuation and absorption coefficients for y-quanta

Aluminium Lead Water Air
Energy

MeV

u/o t/p u/p t/o n/o /o w/e </p
0.1 0.169 10.0371 |5.46 2.16 0.171 [0.0253 | 0.155 0.0233
0.2 0.122 [0.0275 {0.942 |0.586 {0.137 ]0.0299 |[0.123 0.0269
0.4 0.0927 10.0287 [0.220 {0.136 ]0.106 [0.0328 {0.0953 | 0.0295
0.6 0.0779 10.0286 {0.119 |0.0684 (0.0896 {0.0329 {0.0804 { 0.0295
0.8 0.06383 [ 0.0278 | 0.0866 {0.0477 10.0786 |0.0324 {0.0706 | 0.0288
1.0 0.0614 [0.0269 [0.0703 [0.0384 [0.0706 {0.0310 {0.0635 | 0.0276
1.5 0.0500 }0.0246 } 0.0550 | 0.0280 ;0.0590 [0.0283 | 0.0515 | 0.0254
2.0 0.0431 |0.0227 | 0.0463 [ 0.0248 [ 0.0493 | 0.0260 | 0.0445 | 0.0236
3.0 0.0360 {0.0201 {0.0410 [ 0.0238 1 0.0390 {0.0227 ] 0.0360 | 0.0211
4.0 0.0310 [ 0.0188 | 0.0421 [ 0.0253 | 0.0339 | 0.0204 {0.0307 | 0.0193
6.0 0.0264 {0.0174 {0.0436 {0.0287 {0.0275 ]0.0178 | 0.0250 | 0.0173
8.0 0.0241 [ 0.0169 | 0.0459 [0.0310 | 0.0240 [ 0.0163 1 0.0220 | 0.0163
10.0 0.0229 | 0.0167 | 0.0189 [0.0328 | 0.0219 {0.0154 {0.0202 | 0.0156

u/p and t/p are the coefficients of mass attenuation (for a narrow beam) and absorp=
tion, cm2/g.

12, Interaction Cross-Sections for y-Quanta in Lead
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13. The Graph of (ov) vs. Plasma Temperature
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14. The Values of Some Definite Integrals

2,31, n=1/2 0.225, =1
= 552/6. n=1 a 1 18
" dx L =2
57?__1___ 2.405, n=2 { 2dr ] 256 g—3
0 qayEs = g &t 7
5 n= 0 491, o=5
249, n=4 6.43, 10
[+¢]
¢ ( n!y >0, an integer ;
p—— 5 | .2
LZ ate X dg= L ]/JI/) ne=1/2 \ eV dr ~ 0.843
0

¥ 270 2, n=0
1 n—1
?H
(n—-1) 177 .
5~ s M 1S an even integer

o0
ane_xz d— ] n is an odd integer
0

Differentiation of an integral with respect to parameter:

5 le(}x) X
- \ f (7 OL) dr=— f d le
oo | ? . r+] 2) ~f( 1)
X

I3}



&%
The values of the error integral J (a)= I/L; 5 e * 2 gy

T
[¢1 J (o) o4 J () a J (o)
0.1 0.0797 0.9 0.6319 1.7 0.9109
0.2 0.1518 1.0 0.6827 1.8 0.9281
0.3 0.2358 1.1 0.7287 1.9 0.9426
0.4 0.3108 1.2 0.7699 2.0 0.9545
0.5 0.3829 1.3 0.8064 2.25 0.9756
0.6 0.4515 1.4 0.8385 2.50 0.9876
0.7 0.5161 1.5 (.8664 2.75 0.9940
0.8 0.5763 1.6 0.8904 3.00 0.9973

15. Radioactivity and dose units

Name and symbol

Quantity
Off-system

81

Conversion factors

Activity, A Curie (Ci)

Exposure dose,| Roentgen (R)

Dex

Absorbed dose,| Rad (rad)
D

Equivalent rem (rem)
dose, Deq

Becquerel (Bq)
1 Bg=1 dis/s

Coulomb per ki-

logram (C/kg)

Gray (Gy)
1 Gy=1 J/kg

Sivert (Sv)

1 Sv=1 Gy/Q.F.

* Here Q.F. denotes the quality factor.

1 Ci=3.700-101° Bq
1 R=258 puC/kg

1 rad= { 1892e(r}gy/g

.F.
1 rem :{ }Ofi‘ds/g

The conversion of doses:

Deq (rem)=1Q.F..D (rad)

Maximum permissible doses corresponding to 100 mrem a week.

s Radiation Dose rate for 36-hour
Radiation en;ruy ¢ W(r)rkins; week Q.F.
X-ray and y-radiation <3 MeV 0.78 uR/s 1
B-particles and electrons < 10 MeV | 20 particles/(cm?.s) 1
Neutrons‘ thermal 0.025 eV 750 neutrons/(cm?.s) 3
: ‘ | fast 1-10 MeV 20 neutrons/(cm?.s) 10

16. Conversion factors for some measurement units

17. Fundamental Physical Constants

Veloeity of light
Gravitational constants
Avogadro constant
Loschmidt’s number
Universal gas counstant
{Gas volume at S.T.P.
Boltzmann constant
Planck constant

Elementary charge

Y

Specific charge of electron

Faraday constant i
Stefan-Boltzmann’s constant
Wien’s displacement constant

Rydberg constant

First Bohr radius

Electron’s binding energy in a hydrogen
atom

Compton wavelength
Electronic radius

‘Thomson scattering cross-section
Fine structure constant

Bohr magneton

Nuclear maguneton

Atomic mass unit, a.m.u. (4/12 of 12C
atom mass)

eV=1.6-10"19 ] 1 Q=

m CGSE uni
1 A/lm=47-10"3 G
1 Wb=10% Mx

1 H=10% cm

1 A=10"% ¢m 1

1 b=10"2% ¢m? 1 C=3.10Y CGSE uunit
1 vear=3.11-107 s 1 A=23-10? CGSE unit

1 N=10> dyn 1 V=1/300 CGSE unit
1 J=107 erg 1 F=9-101} cm

¢=2.998-10°* m/s
v=06.67-10"8 cm?/(g-.s?)
N4 =6.02-1028 mol-1
ne=2.69-101% cm-3
R=8.314 J/(K-mol)
Vi=22.42.10-3 m3
k=1.38-10-16 ¢rg/K
=1.054-10"27 ¢rg-s
1.6-10718 C
€= {4.8().10—10 CGSE unit
e/m:{ll'ﬂi.“)u C/kg
e/m-—=5.273-1017 CGSE unit
F = 96487 C/mol
0="5.67-10-8 W.m=2. K~
b= hprI =2.90-10-% m-K

_ Meet -a~ 5 em-1
Roo = 7250 == 1.0973731-10° om
R% = 2¢R o =2.07-101 s-1
o= 052 9-10-% om

mee?
_ meet ;
B2 = 13.59 e\
_h _{ 3.86- 1011 cm (e)
T ome T 1 2.10-1071 cm (p)
G —-2.82.10-13 cm
MeC*
8
oT:—S” ri=6.65-10-2 cm?
=e*lhe=1/137
5
HB:Tfnlc_:mzrm—:o erg/Oe
—~ilte
y= 5 5.05.10-3 A.m?
l“‘\_’ lelpc T m
1.660-10-23
1 a.m.u.z{ ’ ¢
931.14 MeV

(O]
o
(IS



Gyromag-

Particle a.m.u. Mass, € MeV %fg&zgg netic
ratio
Electron 5.486-10—1 0.9108.10-27 0.511 ¢ 1.00116 up 2.0022
Proton 1.007276 1.6724.103 938.23 2.7928 u n 5.5855
Neutron 1.008665 1.6748.10~%* 939.53 | —1.913pny | —3.8263
Deuteron 2.013553 3.3385.10-24 | 1875.5 0.8574 p 0.8574
a-particle 4.001506 6.6444-10-2% | 3726.2 0 —
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ALSO FROM MIR PUBLISHERS

PROBLEMS IN PHYSICS

A. PINSKY, CAND, SC. (PHYS.-MATH.)

The material of this book is arranged in accordance with the two-
volume course Fundamentals of Physics by B. Yavorsky and A. Pin-
sky (Mir Publishers, 1975). It contains more than 750 problems cov-
ering all the topics discussed in the textbook.

In addition to the traditional material, the book contains problems
on theory of relativity (including relativistic collision, accelerators;
creation of particles, etc.), quantum mechanics (uncertainty prin-
ciple, de Broglie waves, potential barrier, degenerate state of matter,
statistics wave and quantum optics, atomic and nuclear physics.
The problems in astro-physics illustrate the applications of laws of
physics to cosmic objects. Most of the problems especially the dit-
ficult ones, carry detailed solutions or hints.

The book is meant for students of physics and mathematics at
teachers-training institutes and for physics teachers at secondary
schools and polytechnics.
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